首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The brain activation of a group of high-functioning autistic participants was measured using functional magnetic resonance imaging during the performance of a Tower of London task, in comparison with a control group matched with respect to intelligent quotient, age, and gender. The 2 groups generally activated the same cortical areas to similar degrees. However, there were 3 indications of underconnectivity in the group with autism. First, the degree of synchronization (i.e., the functional connectivity or the correlation of the time series of the activation) between the frontal and parietal areas of activation was lower for the autistic than the control participants. Second, relevant parts of the corpus callosum, through which many of the bilaterally activated cortical areas communicate, were smaller in cross-sectional area in the autistic participants. Third, within the autism group but not within the control group, the size of the genu of the corpus callosum was correlated with frontal-parietal functional connectivity. These findings suggest that the neural basis of altered cognition in autism entails a lower degree of integration of information across certain cortical areas resulting from reduced intracortical connectivity. The results add support to a new theory of cortical underconnectivity in autism, which posits a deficit in integration of information at the neural and cognitive levels.  相似文献   

2.
Brain activation and functional connectivity were investigated in high functioning autism using functional magnetic resonance imaging in an n-back working memory task involving photographic face stimuli. The autism group showed reliably lower activation compared with controls in the inferior left prefrontal area (involved in verbal processing and working memory maintenance) and the right posterior temporal area (associated with theory of mind processing). The participants with autism also showed activation in a somewhat different location in the fusiform area than the control participants. These results suggest that the neural circuitry of the brain for face processing in autism may be analyzing the features of the face more as objects and less in terms of their human significance. The functional connectivity results revealed that the abnormal fusiform activation was embedded in a larger context of smaller and less synchronized networks, particularly indicating lower functional connectivity with frontal areas. In contrast to the underconnectivity with frontal areas, the autism group showed no underconnectivity among posterior cortical regions. These results extend previous findings of abnormal face perception in autism by demonstrating that the abnormalities are embedded in an abnormal cortical network that manages to perform the working memory task proficiently, using a visually oriented, asocial processing style that minimizes reliance on prefrontal areas.  相似文献   

3.
Motor skill learning requires the involvement and integration of several cortical and subcortical regions. In this study, we focus on how the functional connectivity of cortical networks changes with the acquisition of a novel motor skill. Using functional magnetic resonance imaging, we measured the localized blood oxygenation level-dependent (BOLD) signal in cortical regions while subjects performed a bimanual serial reaction time task under 2 conditions: 1) explicitly learning a novel sequence (NOVEL) and 2) playing a previously learned sequence (LEARNED). To investigate stages of learning, each condition was further divided into nonoverlapping early and late conditions. Functional connectivity was measured using a task-specific low-frequency coherence analysis of the data. We show that within the cortical motor network, the sensorimotor cortex, premotor cortex, and supplementary motor area have significantly greater inter- and intrahemispheric coupling during the early NOVEL condition compared with the late NOVEL condition. Additionally, we observed greater connectivity between frontal regions and cortical motor regions in the early versus late NOVEL contrast. No changes in functional connectivity were observed in the LEARNED condition. These results demonstrate that the functional connectivity of the cortical motor network is modulated with practice and suggest that early skill learning is mediated by enhanced interregional coupling.  相似文献   

4.
The cortical underconnectivity theory asserts that reduced long-range functional connectivity might contribute to a neural mechanism for autism. We examined resting-state blood oxygen level-dependent interhemispheric correlation in 53 males with high-functioning autism and 39 typically developing males from late childhood through early adulthood. By constructing spatial maps of correlation between homologous voxels in each hemisphere, we found significantly reduced interhemispheric correlation specific to regions with functional relevance to autism: sensorimotor cortex, anterior insula, fusiform gyrus, superior temporal gyrus, and superior parietal lobule. Observed interhemispheric connectivity differences were better explained by diagnosis of autism than by potentially confounding neuropsychological metrics of language, IQ, or handedness. Although both corpus callosal volume and gray matter interhemispheric connectivity were significantly reduced in autism, no direct relationship was observed between them, suggesting that structural and functional metrics measure different aspects of interhemispheric connectivity. In the control but not the autism sample, there was decreasing interhemispheric correlation with subject age. Greater differences in interhemispheric correlation were seen for more lateral regions in the brain. These findings suggest that long-range connectivity abnormalities in autism are spatially heterogeneous and that transcallosal connectivity is decreased most in regions with functions associated with behavioral abnormalities in autism. Autism subjects continue to show developmental differences in interhemispheric connectivity into early adulthood.  相似文献   

5.
To ascertain the effectiveness of slacklining as a supplementary therapy for elderly stroke patients who are functionally non-progressing. This case study involved an 18-mo prospective observation of the management of an 87-year-old female stroke-patient of the left hemisphere with reduced balance, reduced lower limb muscular activation, hypertonia, and concurrent postural deficits. This entailed the initial acute care phase through to discharge to home and 18-mo final status in her original independent living setting. The introduction of slacklining as an adjunct therapy was made 12 mo post incident. Slacklining involves balance retention on a tightened band where external environmental changes cause a whole-body dynamic response to retain equilibrium. It is a complex neuromechanical task enabling individualized self-developed response strategies to be learned and adapted. This facilitates the innate process of balance retention, lower-limb and core muscle activation, and stable posture through a combination of learned motor skills and neurological system down regulation. Individuals adopt and follow established sequential motor learning stages where the acquired balance skillsare achieved in a challenging composite-chain activity. Slacklining could be considered an adjunct therapy for lower limb stroke rehabilitation where function is compromised due to decreased muscle recruitment, decreased postural control and compromised balance. Initial inpatient rehabilitation involved one-month acute-care, one-month rehabilitation, and one-month transitional care prior to home discharge. A further six months of intensive outpatient rehabilitation was provided with five hourly sessions per week including:supervised and self-managed hydrotherapy, plus one individual and two group falls' prevention sessions. These were supported by daily home exercises. At 12 mo post incident, recovery plateaued, then regressed following three falls. Rehabilitation was subsequently modified with the hydrotherapy retained and the group sessions replaced with an additional individual session supplemented with slacklining. The slacklining followed stages one and two of a standardized five-stage protocol. Self-reported functional progression resumed with improvement by 14 mo which further increased and was sustained 18 mo(Students' t test P 0.05). Slacklining's external stimulations activate global-body responses through innate balance, optimal postural and potentially down-regulated reflex control. Incorporated into stroke rehabilitation programs, slacklining can provide measurable functional gains.  相似文献   

6.
When two tasks are performed simultaneously, performance often deteriorates, with concomitant increases in reaction time and error rate. Three potential neurophysiological mechanisms behind this deterioration in performance have been considered here: (i) dual-task performance requires additional cognitive operations and activation of cortical areas in addition to those active during single-task performance; (ii) two tasks interfere if they require activation of the same part of cortex; and (iii) cross-modal inhibition causes interference between two tasks involving stimuli from different sensory modalities. Positron emission tomography was used to measure regional cerebral blood flow (rCBF) during performance of an auditory working memory (WM) task, a visual WM task, both WM tasks (dual task) and a control condition. Compared to the control condition, the auditory and visual WM tasks activated sensory-specific areas in the superior temporal gyrus and occipital pole respectively. Both WM tasks also activated overlapping parts of cortex in the dorsolateral prefrontal, inferior parietal and cingulate cortex. There was no separate cortical area which was activated only in the dual task, and thus no area which could be associated with any dual task specific cognitive process such as task-coordination or divided attention. Decrease in rCBF in one WM task did not overlap with the areas of rCBF increase in the other WM task. However, an inhibitory mechanism could not be ruled out, since the rCBF increase in sensory specific areas was smaller in the dual- task condition than in the single-task conditions. The cortical activity underlying WM was to a large extent organized in a non-sensory specific, or non-parallel, way, and the results are consistent with the hypothesis that concurrent tasks interfere with each other if they demand activation of the same part of cortex.   相似文献   

7.
Traditionally, the medial temporal lobe (MTL) is thought to be dedicated to declarative memory. Recent evidence challenges this view, suggesting that perirhinal cortex (PrC), which interfaces the MTL with the ventral visual pathway, supports highly integrated object representations in recognition memory and perceptual discrimination. Even with comparable representational demands, perceptual and memory tasks differ in numerous task demands and the subjective experience they evoke. Here, we tested whether such differences are reflected in distinct patterns of connectivity between PrC and other cortical regions, including differential involvement of prefrontal control processes. We examined functional magnetic resonance imaging data for closely matched perceptual and recognition memory tasks for faces that engaged right PrC equivalently. Multivariate seed analyses revealed distinct patterns of interactions: Right ventrolateral prefrontal and posterior cingulate cortices exhibited stronger functional connectivity with PrC in recognition memory; fusiform regions were part of the pattern that displayed stronger functional connectivity with PrC in perceptual discrimination. Structural equation modeling revealed distinct patterns of effective connectivity that allowed us to constrain interpretation of these findings. Overall, they demonstrate that, even when MTL structures show similar involvement in recognition memory and perceptual discrimination, differential neural mechanisms are reflected in the interplay between the MTL and other cortical regions.  相似文献   

8.
It has been suggested that the cortico-striatal system might play a crucial role in learning behavioural plans of action. We have tested this hypothesis by studying the dynamics of functional coupling among the neural elements of cortico-striatal circuitry. Human cerebral activity was measured with functional magnetic resonance imaging (fMRI) during the learning of an associative visuomotor task. Structural equation modelling of regional fMRI time-series was used to characterize learning-related changes in effective connectivity. We report that learning to associate visual instructions with motor responses significantly altered cortico-striatal functional couplings. Specific learning-related increases of effective connectivity were found in temporo-striatal and fronto-striatal circuits. Connectivity among portions of the frontal cortex decreased as a function of learning. Temporo-frontal and parieto-frontal couplings were not altered during learning. We infer that novel visuomotor associations are established through the enhancement of specific cortico-striatal circuits, rather than through the alteration of direct temporo-frontal or parieto-frontal connectivity.  相似文献   

9.
In understanding the brain's response to extensive practice and development of high-level, expert skill, a key question is whether the same brain structures remain involved throughout the different stages of learning and a form of adaptation occurs, or a new functional circuit is formed with some structures dropping off and others joining. After training subjects on a set of complex motor tasks (tying knots), we utilized fMRI to observe that in subjects who learned the task well new regional activity emerged in posterior medial structures, i.e. the posterior cingulate gyrus. Activation associated with weak learning of the knots involved areas that mediate visual spatial computations. Brain activity associated with no substantive learning indicated involvement of areas dedicated to the declarative aspects learning such as the anterior cingulate and prefrontal cortex. The new activation for the pattern of strong learning has alternate interpretations involving either retrieval during episodic memory or a shift toward non-executive cognitive control of the task. While these interpretations are not resolved, the study makes clear that single time-point images of motor skill can be misleading because the brain structures that implement action can change following practice.  相似文献   

10.
The neurophysiological basis for stuttering may involve deficits that affect dynamic interactions among neural structures supporting fluid speech processing. Here, we examined functional and structural connectivity within corticocortical and thalamocortical loops in adults who stutter. For functional connectivity, we placed seeds in the left and right inferior frontal Brodmann area 44 (BA44) and in the ventral lateral nucleus (VLN) of the thalamus. Subject-specific seeds were based on peak activation voxels captured during speech and nonspeech tasks using functional magnetic resonance imaging. Psychophysiological interaction (PPI) was used to find brain regions with heightened functional connectivity with these cortical and subcortical seeds during speech and nonspeech tasks. Probabilistic tractography was used to track white matter tracts in each hemisphere using the same seeds. Both PPI and tractrography supported connectivity deficits between the left BA44 and the left premotor regions, while connectivity among homologous right hemisphere structures was significantly increased in the stuttering group. No functional connectivity differences between BA44 and auditory regions were found between groups. The functional connectivity results derived from the VLN seeds were less definitive and were not supported by the tractography results. Our data provide strongest support for deficient left hemisphere inferior frontal to premotor connectivity as a neural correlate of stuttering.  相似文献   

11.
Growing consensus suggests that autism spectrum disorders (ASD) are associated with atypical brain networks, thus shifting the focus to the study of connectivity. Many functional connectivity studies have reported underconnectivity in ASD, but results in others have been divergent. We conducted a survey of 32 functional connectivity magnetic resonance imaging studies of ASD for numerous methodological variables to distinguish studies supporting general underconnectivity (GU) from those not consistent with this hypothesis (NGU). Distinguishing patterns were apparent for several data analysis choices. The study types differed significantly with respect to low-pass filtering, task regression, and whole-brain field of view. GU studies were more likely to examine task-driven time series in regions of interest, without the use of low-pass filtering. Conversely, NGU studies mostly applied task regression (for removal of activation effects) and low-pass filtering, testing for correlations across the whole brain. Results thus suggest that underconnectivity findings may be contingent on specific methodological choices. Whereas underconnectivity reflects reduced efficiency of within-network communication in ASD, diffusely increased functional connectivity can be attributed to impaired experience-driven mechanisms (e.g., synaptic pruning). Both GU and NGU findings reflect important aspects of network dysfunction associated with sociocommunicative, cognitive, and sensorimotor impairments in ASD.  相似文献   

12.
Electrophysiological and neuroimaging studies have shown that attention to visual motion can increase the responsiveness of the motion- selective cortical area V5 and the posterior parietal cortex (PP). Increased or decreased activation in a cortical area is often attributed to attentional modulation of the cortical projections to that area. This leads to the notion that attention is associated with changes in connectivity. We have addressed attentional modulation of effective connectivity using functional magnetic resonance imaging (fMRI). Three subjects were scanned under identical stimulus conditions (visual motion) while varying only the attentional component of the task. Haemodynamic responses defined an occipito-parieto-frontal network, including the, primary visual cortex (V1), V5 and PR A structural equation model of the interactions among these dorsal visual pathway areas revealed increased connectivity between V5 and PP related to attention. On the basis of our analysis and the neuroanatomical pattern of projections from the prefrontal cortex to PP we attributed the source of modulatory influences, on the posterior visual pathway, to the prefrontal cortex (PFC). To test this hypothesis we included the PFC in our model as a 'modulator' of the pathway between V5 and PP, using interaction terms in the structural equation model. This analysis revealed a significant modulatory effect of prefrontal regions on V5 afferents to posterior parietal cortex.   相似文献   

13.
Visual-spatial ability and fMRI cortical activation in surgery residents   总被引:1,自引:0,他引:1  
BACKGROUND: We previously reported that a particular type of visual-spatial ability, mental rotation of visual forms, correlates with surgical performance in residents. In the current study, we used functional magnetic resonance imaging (fMRI) to identify patterns of cortical activation associated with mental rotation ability in those same residents. METHODS: Seventeen surgery residents underwent fMRI scan while performing a mental rotations test (MRT) and a perceptual matching task as a control (CON) for nonimagery components, such as visual attention. A contrast analysis (MRT greater than CON) revealed cortical regions engaged during mental rotation by all participants, and parametric statistical analysis identified regions having the strongest association with MRT performance. RESULTS: Significant bilateral (left greater than right) activation was seen in all participants for rotation-versus-perceptual CON contrast. Better MRT performance was associated with greater activation in several cortical regions related to visual imagery and motion processing. COMMENTS: Surgery residents represent a unique population in which to study individual differences in visual-spatial abilities and associated neural substrates because they may relate to technical skills. These findings suggest that variation in performance on spatially complex tasks involving imagery may reflect different spatial problem-solving strategies in surgery students.  相似文献   

14.
Human locomotor adaptive learning is thought to involve the cerebellum, but the neurophysiological mechanisms underlying this process are not known. While animal research has pointed to depressive modulation of cerebellar outputs, a direct correlation between adaptive learning and cerebellar depression has never been demonstrated. Here, we used transcranial magnetic stimulation to assess excitability changes occurring in the cerebellum and primary motor cortex (M1) after individuals learned a new locomotor pattern on a split-belt treadmill. To control for potential changes associated to task performance complexity, the same group of subjects was also assessed after performing 2 other locomotor tasks that did not elicit learning. We found that only adaptive learning resulted in reduction of cerebellar inhibition. This effect was strongly correlated with the magnitude of learning (r = 0.78). In contrast, M1 excitability changes were not specific to learning but rather occurred in association with task complexity performance. Our results demonstrate that locomotor adaptive learning in humans is proportional to cerebellar excitability depression. This finding supports the theory that adaptive learning is mediated, at least in part, by long-term depression in Purkinje cells. This knowledge opens the opportunity to target cerebellar processes with noninvasive brain stimulation to enhance motor learning.  相似文献   

15.
Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.  相似文献   

16.
Although training-induced changes in brain activity have been previously examined, plasticity associated with executive functions remains understudied. In this study, we examined training-related changes in cortical activity during a dual task requiring executive control. Two functional magnetic resonance imaging (fMRI) sessions, one before training and one after training, were performed on both a control group and a training group. Using a region-of-interest analysis, we examined Time x Group and Time x Group x Condition interactions to isolate training-dependent changes in activation. We found that most regions involved in dual-task processing before training showed reductions in activation after training. Many of the decreases in activation were correlated with improved performance on the task. We also found an area in the dorsolateral prefrontal cortex that showed an increase in activation for the training group for the dual-task condition, which was also correlated with improved performance. These results are discussed in relation to the efficacy of training protocols for modulating attention and executive functions, dual-task processing, and fMRI correlates of plasticity.  相似文献   

17.
During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.  相似文献   

18.
Human functional neuroimaging of brain changes associated with practice   总被引:6,自引:3,他引:3  
The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. Results are incongruous, including patterns of increases, decreases and functional reorganization of regional activations. Following an extensive review of the practice-effects literature, we distinguish a number of factors affecting the pattern of practice effects observed, including the effects of task domain, changes at the level of behavioural and cognitive processes, the time-window of imaging and practice, and of a number of other influences and miscellaneous confounding factors. We make a novel distinction between patterns of reorganization and redistribution as effects of task practice on brain activation, and emphasize the need for careful attention to practice-related changes occurring on the behavioural, cognitive and neural levels of analysis. Finally, we suggest that functional and effective connectivity analyses may make important contributions to our understanding of changes in functional anatomy occurring as a result of practice on tasks.  相似文献   

19.
Emerging ideas of brain function emphasize the context-dependency of regional contributions to cognitive operations, where the function of a particular region is constrained by its pattern of functional connectivity. We used functional magnetic resonance imaging to examine how modality of input (auditory or visual) affects prefrontal cortex (PFC) functional connectivity for simple working memory tasks. The hypothesis was that PFC would show contextually dependent changes in functional connectivity in relation to the modality of input despite similar cognitive demands. Participants were presented with auditory or visual bandpass-filtered noise stimuli, and performed 2 simple short-term memory tasks. Brain activation patterns independently mapped onto modality and task demands. Analysis of right ventral PFC functional connectivity, however, suggested these activity patterns interact. One functional connectivity pattern showed task differences independent of stimulus modality and involved ventromedial and dorsolateral prefrontal and occipitoparietal cortices. A second pattern showed task differences that varied with modality, engaging superior temporal and occipital association regions. Importantly, these association regions showed nonzero functional connectivity in all conditions, rather than showing a zero connectivity in one modality and nonzero in the other. These results underscore the interactive nature of brain processing, where modality-specific and process-specific networks interact for normal cognitive operations.  相似文献   

20.
Little is currently known about the postnatal emergence of functional cortical networks supporting complex perceptual and cognitive skills, such as face processing. The present study examined the emergence of the core cortical network underlying face processing in younger and older school-age children as well as young adults. Participants performed 3 functional magnetic resonance imaging target detection tasks where they either had to detect a specific facial identity, expression, or direction of eye gaze in a stream of consecutively presented faces. We compared the connectivity of the face network using dynamic causal modelling and observed that it emerges gradually during childhood. Further, we found that while the relative strength of functional network connections were differentially modulated by task demands in adults, there was no such modulation of this network in either older or younger children. These results were independent of the behavioral performance in the 3 age groups. We suggest that the emergence of the face network is due to continuous specialization and fine-tuning within the regions of this network. The current results have important implications for future studies investigating trajectories of brain development and cortical specialization both in typically and atypically developing populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号