首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last two decades, many experiments have demonstrated that the hippocampus plays a role in the learning and processing of spatial and contextual information. Despite these demonstrations, some recent publications have indicated that the hippocampus is not the only structure involved in spatial learning and that even after hippocampal lesions, rats can perform spatial tasks. However, it is not well established whether animals with hippocampal dysfunction still have some spatial learning capacities or develop non-spatial solutions; these may require lengthier acquisition training. We now report the effects of conventional, dorsal hippocampal ablation on rats' performance on the water maze. We tested rats using a short (4 days) versus a long (16 days) acquisition period. We demonstrated that animals with dorsal hippocampal lesions have some residual capacity for learning the localization of a hidden escape platform in a pool during both a reference memory task and a working memory task. The animals with dorsal hippocampal lesions learned to escape at a fixed location, but only with extended training. It is suggested that these animals used non-spatial strategies to compensate for a spatial memory impairment. The results are discussed with respect to the experimental procedure and the strategy applied by the lesioned rats.  相似文献   

2.
This study investigated the effects of neonatal hippocampal ablation on the development of spatial learning and memory abilities in rats. Newborn rats sustained bilateral electrolytic lesions of the hippocampus or were sham-operated on postnatal day 1 (PN1). At PN20–25, PN50–55, or PN90–95, separate groups of rats were tested in a Morris water maze on a visible “cue” condition (visible platform in a fixed location of the maze), a spatial “place” condition (submerged platform in a fixed location), or a no-contingency “random” condition (submerged platform in a random location). Rats were tested for 6 consecutive days, with 12 acquisition trials and 1 retention (probe) trial per day. During acquisition trials, the rat's latency to escape the maze was recorded. During retention trials (last trial for each day, no escape platform available), the total time the rat spent in the probe quadrant was recorded. Data from rats with hippocampal lesions tested as infants (PN20–25) or as adults (PN50–55 and PN90–95) converged across measures to reveal that 1) spatial (place) memory deficits were evident throughout developmental testing, suggesting that the deficits in spatial memory were long-lasting, if not permanent, and 2) behavioral performance measures under the spatial (place) condition were significantly correlated with total volume of hippocampal tissue damage, and with volume of damage to the right and anterior hippocampal regions. These results support the hypothesis that hippocampal integrity is important for the normal development of spatial learning and memory functions, and show that other brain structures do not assume hippocampal-spatial memory functions when the hippocampus is damaged during the neonatal period (even when testing is not begun until adulthood). Thus, neonatal hippocampal damage in rats may serve as a rodent model for assessing treatment strategies (e.g., pharmacological) relevant to human perinatal brain injury and developmental disabilities within the learning and memory realm. Hippocampus 7:403–415, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The importance of the hippocampus in spatial learning is well established, but the precise relative contributions by the dorsal (septal) and ventral (temporal) subregions remain unresolved. One debate revolves around the extent to which the ventral hippocampus contributes to spatial navigation and learning. Here, separate small subtotal lesions of dorsal hippocampus or ventral hippocampus alone (destroying 18.9 and 28.5% of total hippocampal volume, respectively) spared reference memory acquisition in the water maze. By contrast, combining the two subtotal lesions significantly reduced the rate of acquisition across days. This constitutes evidence for synergistic integration between dorsal and ventral hippocampus in mice. Evidence that ventral hippocampus contributes to spatial/navigation learning also emerged early on during the retention probe test as search preference was reduced in mice with ventral lesions alone or combined lesions. The small ventral lesions also led to anxiolysis in the elevated plus maze and over‐generalization of the conditioned freezing response to a neutral context. Similar effects of comparable magnitudes were seen in mice with combined lesions, suggesting that they were largely due to the small ventral damage. By contrast, small dorsal lesions were uniquely associated with a severe spatial working memory deficit in the water maze. Taken together, both dorsal and ventral poles of the hippocampus contribute to efficient spatial navigation in mice: While the integrity of dorsal hippocampus is necessary for spatial working memory, the acquisition and retrieval of spatial reference memory are modulated by the ventral hippocampus. Although the impairments following ventral damage (alone or in combination with dorsal damage) were less substantial, a wider spectrum of spatial learning, including context conditioning, was implicated. Our results encourage the search for integrative mechanism between dorsal and ventral hippocampus in spatial learning. Candidate neural substrates may include dorsoventral longitudinal connections and reciprocal modulation via overlapping polysynaptic networks beyond hippocampus.  相似文献   

4.
This study was undertaken to compare the effect of hippocampal neurotoxic lesions in rats on two behavioral tasks, one a test of spatial learning, and the other an operant discrimination task that is acquired by forming nonspatial configural associations. Lesions of the hippocampus were made with microinjections of ibotenic acid. After postoperative recovery, rats were trained initially to locate a camouflaged escape platform in a water maze using distal spatial cues. Rats also were trained in the maze apparatus with a visible escape platform under conditions in which spatial information was made irrelevant to performance, i.e., cue learning. In an operant task, the same rats were then trained on a discrimination that included simultaneous feature positive and feature negative components (trial types XA+, A-, XB-, B+). After completion of this nonspatial configural learning task, rats received additional training in the water maze using a new platform location for spatial learning. To the extent that proficient performance in both the maze and operant tasks depends on a common function of the hippocampus, i.e., configural learning, the expectation was that hippocampal lesions would prove equally detrimental to performance in both tasks. Contrary to this expectation, lesioned rats were severely impaired in spatial learning but readily acquired the operant discrimination, even exhibiting some evidence of enhanced performance on this nonspatial configural learning task. Performance of the lesioned rats during cue training in the water maze was also enhanced relative to the control group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We investigated spatial learning in rats with unilateral and bilateral lesions of the nigrostriatal dopaminergic system. We used the Morris water maze paradigm, which tests spatial forms of learning and memory and allows discrimination between sensory-motor and learning disabilities. Animals were trained preoperatively to learn the location of a spatially fixed hidden platform to escape from the swimming pool (acquisition training). A visual and a probe test were used before and after the acquisition training, respectively. Our results show that animals with unilateral lesions, although displaying longer escape latencies, have normal spatial memory abilities. Animals with bilateral lesions were able to swim as fast or even faster than animals with unilateral lesion. Despite the fact that these animals had learned the spatial navigation tasks preoperatively, bilateral dopaminergic lesions led to a profound deficit in ability to find a hidden platform during an acquisition task. In general, animals with bilateral lesions persisted in swimming along the pool walls and their spatial navigation performance during a probe test was very poor. These results suggest that deficit of the nigrostriatal dopaminergic system can affect the selection and maintenance of behavioral strategies in spatial navigation.  相似文献   

6.
Long-Evans male, adult rats received selective and bilateral lesions of either the hippocampus, subiculum or lateral entorhinal cortex, and were then housed for 30 days in either enriched or standard conditions. Rats were then tested in the eight-arm radial maze to assess spatial working memory and the strategies that were employed (i.e. pattern of arms visited). Lesions of the hippocampus induced both a working-memory impairment and a loss in the use of allocentric strategies to perform the task. Rats with lesions of the subiculum were also impaired but less than hippocampectomized rats and showed a similar pattern of arm visits as control rats. In contrast with other lesioned rats, rats with lateral entorhinal cortex lesions performed the task like control rats. Postoperative enriched housing conditions (EHC) globally enhanced performance of rats, but did not affect the strategies selected by the rats to solve the task. The beneficial effect of EHC was particularly obvious in rats with lesions of the subiculum. In enriched rats with such lesions, performance was not significantly different from that of control rats housed in standard conditions. The present results indicate that 1) the structures within the hippocampal formation are not similarly involved in spatial learning and memory processes and in the management of navigational demands of the radial maze, and 2) enriched conditions may enhance the spared spatial abilities of some lesioned rats thus promoting functional recovery.  相似文献   

7.
Histamine H1 antagonists impaired the spatial memory performance. On the other hand, it is well recognized that the hippocampal theta rhythm plays a critical role in spatial memory. However, little work has been done the effect of H1 antagonists on the hippocampal theta rhythm which was associated with the memory performance. We investigated the effect of pyrilamine, a selective H1 receptor antagonist, on spatial memory performance as well as hippocampal theta rhythm during the memory task in rats. Effect of pyrilamine on spatial memory was measured using eight-arm radial maze with four arms baited. Hippocampal theta rhythm during the radial maze task was recorded with a polygraph system with a telemetric technique. Intraperitoneal injection of pyrilamine resulted in impairments of both reference and working memory on the radial maze task. The working memory deficit induced by pyrilamine was antagonized by the intrahippocampal injection of histamine and 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT), a histamine H1 agonist. Intraperitoneal injection of pyrilamine decreased the hippocampal theta power at a dose that impaired reference and working memory. This effect was antagonized by the intrahippocampal injection of histamine and HTMT at a dose that ameliorated the working memory deficit. Intrahippocampal injection of pyrilamine impaired working memory and simultaneously decreased the hippocampal theta power. These results suggest that: (i) the hippocampal H1 receptors play an important role in the working memory processes on the radial maze performance and (ii) the decrease in the hippocampal theta power is associated with the working memory deficit induced by the blocking of H1 receptors.  相似文献   

8.
This study examined structural-functional differences along the septo-temporal axis of hippocampus using radial-maze tasks that involved two different memory processes [reference memory (RM) and working memory (WM)], and the use of two kinds of information (spatial vs. nonspatial cue learning). In addition, retention of the nonspatial cue task was tested nine weeks following completion of acquisition, and the rats then underwent discrimination reversal training. Ibotenic acid lesions limited to either the dorsal pole, intermediate area, or ventral pole had minimal effects on acquisition of the complex place and cue discrimination tasks. The one exception was that rats with lesions confined to the dorsal third of hippocampus made more WM errors on the spatial task (but not the cue task) early in training. Selective lesions of the three hippocampal regions had no effects on either long-term retention or reversal of the nonspatial cue discrimination task. In contrast, rats that had all of the hippocampus removed were severely impaired in learning the spatial task, making many RM and WM errors, whereas on the nonspatial cue task, the impairment was limited to WM errors. Further analysis of the WM errors made in acquisition showed that rats with complete lesions were significantly more likely on both the spatial and nonspatial cue tasks to reenter arms that had been baited and visited on that trial compared to arms that had not been baited. A similar pattern of errors emerged for complete hippocampal lesioned rats during reversal discrimination. This pattern of errors suggests that in addition to an impairment in handling spatial information, complete removal of hippocampus also interferes with the ability to inhibit responding to cues that signal reward under some conditions but not under others. The finding that selective lesions limited to the intermediate zone of the hippocampus produce no impairment in either WM ("rapid place learning") or RM in our radial maze tasks serve to limit the generality of the conclusion of Bast et al. (Bast et al. (2009) PLos Biol 7:730-746) that the intermediate area is needed for behavioral performance based on rapid learning about spatial cues.  相似文献   

9.
The effects of intradentate colchicine injections on the performance of tasks requiring spatial working and reference memory are controversial. Multiple-site colchicine injections (7 microg/microl; via a drawn micropipette) throughout the dentate gyrus (DG) of rats (nine sites in each hemisphere, 0.06 microl at each site) selectively destroy about 90% of the DG granule cells, as revealed by quantitative stereological estimates; stereology also revealed minor neuronal losses in the CA4 (33%) and CA1 (23%) subfields, but lack of damage to the CA3 hippocampal subfield. Spatial reference and working memory were assessed in Morris' water maze; in the reference memory task, the rats were required to learn a single, fixed location for the platform over several days of training; in the working memory task, animals were required to learn a new platform location every day, in a matching-to-place procedure. Compared to sham-operated controls, lesioned rats showed significant disruption in acquisition of the reference memory water maze task; however, the data reveal that these rats did acquire relevant information about the task, probably based on guidance and orientation strategies. In a subsequent probe test, with the platform removed, lesioned rats showed disruption in precise indexes of spatial memory (e.g., driving search towards the surroundings of the former platform location), but not in less precise indexes of spatial location. Finally, the lesioned rats showed no improvement in the match-to-place procedure, suggesting that their working memory for places was disrupted. Thus, although capable of acquiring relevant information about the task, possibly through guidance and/or orientation strategies, DG-lesioned rats exhibit a marked difficulty in place strategies. This is particularly evident when these rats are required to deal with one-trial place learning in a familiar environment, such as in the working memory version of the water maze task, which requires flexibility in the use of previously acquired information.  相似文献   

10.
In previous studies, we have shown that P11-20 treatment with D-methamphetamine (MA) (10 mg/kg x 4/day at 2-h intervals) induces impairments in spatial learning and memory in the Morris water maze after the offspring reach adulthood. Using a split-litter, multiple dose, design (0, 5, 10, and 15 mg/kg MA administered s.c. 4/day at 2-h intervals), the spatial learning effect was further explored with a multiple shifted platform (reversal), reference memory-based procedure and a working memory procedure. Prior to spatial learning, animals were first tested for swimming ability (in a straight swimming channel), sequential learning (in the Cincinnati multiple-T water maze), and proximal cue learning (in the Morris water maze). Rats were then assessed in the hidden platform, reference memory-based spatial version of the Morris maze for acquisition and on five subsequent phases in which the platform was moved to new locations. After the reference memory-based, fixed platform position learning phases, animals were tested in the trial-dependent, matching-to-sample, working memory version of the Morris maze. No group differences were found in straight channel, sequential maze, or cued Morris maze performance. By contrast, all MA groups were impaired in spatial learning during acquisition, multiple shift, and shifted with a reduced platform phases of reference memory-based learning. In addition, MA animals were impaired on memory (probe) trials during the acquisition and shifted with a reduced platform phases of learning. No effects on trial-dependent, matching-to-sample, working memory were found. The findings demonstrate that neonatal treatment with MA induces a selective impairment of reference memory-based spatial learning while sparing sequential, cued, and working memory-based learning.  相似文献   

11.
Substantial information is available concerning the influence of global hippocampal lesions on spatial learning and memory, however the contributions of discrete subregions within the hippocampus to these functions is less well understood. The present investigation utilized kainic acid to bilaterally lesion specific areas of the rat hippocampus. These animals were subsequently tested on a spatial orientation task using a circular water maze, and on an associative/contextual task using passive avoidance conditioning. The results indicate that both the dorsal CA1 and the ventral CA3 subregions play important roles in learning. Specifically, CA1 lesions produced a deficit in the acquisition of the water maze task and a significant memory impairment on the passive avoidance task. CA3 lesions also caused learning deficits in the acquisition of the water maze task, and produced even greater impairments in performance on the passive avoidance task. We conclude that CA1 and CA3 hippocampal subregions each play significant roles in the overall integration of information concerning spatial and associative learning.  相似文献   

12.
Kindling with electrical stimulation of the dorsal hippocampus has been shown to disrupt spatial task performance in rats. The present study investigated the specificity of this effect in terms of the possible contribution of nonmnemonic effects, the presence of a more general mnemonic deficit, and the involvement of learning/short-term memory and/or long-term memory processes. Rats were fully kindled with stimulation of the dorsal hippocampus and subsequently tested for acquisition, 7-day retention, and 28-day retention of a hidden platform (HP) location in the Morris water maze and an object discrimination problem in a modified water maze. To control for nonmnemonic behavioral impairments, testing on both tasks was preceded by training on visible platform control tasks. Kindling impaired acquisition of the HP location but spared performance on all other aspects of testing, indicating a specific impairment of spatial learning/short-term memory. These results suggest that epileptogenesis induced by hippocampal stimulation is indeed associated with a selective disruption of the mechanisms mediating spatial learning/short-term memory.  相似文献   

13.
Mice received cytotoxic lesions which selectively removed all of the hippocampus and dentate gyrus except the most ventral portions. They were impaired on both spontaneous and rewarded discrete-trial alternation in T-mazes. Acquisition of reference memory for the location of a hidden platform in the Morris water maze was impaired in lesioned mice. On an elevated Y-maze reference memory task, in which only one arm was rewarded, lesioned mice showed no evidence of learning. In a Lashley III maze task, however, where maze rotation demonstrated that control performance was independent of distal spatial cues, acquisition in the lesioned mice was unimpaired. Control levels of continuous spontaneous alternation in a Y-maze were too low to reveal a hippocampal deficit. A small impairment in acquisition of a multiple-trial passive avoidance task was seen in lesioned mice, despite a small but significant increase in reactivity to the footshock. These results are largely consistent with findings in hippocampal lesioned rats on the same or similar tasks, and reflect a major impairment of spatial cognition, with relative sparing of non-spatial task performance.  相似文献   

14.
Effects of hippocampal lesions on patterned motor learning in the rat   总被引:2,自引:0,他引:2  
Motor skill learning in rats has been linked to cerebellar function as well as to cortical and striatal influences. The present study evaluated the contribution of the hippocampus to motor learning. Adult male rats received electrolytic lesions designed to selectively destroy the hippocampus; a sham-lesioned group of animals served as a control. The animals with hippocampal lesions acquired a patterned motor learning task as well as sham controls. In contrast, rats with hippocampal lesions were impaired in spatial, but not cued, learning in the Morris water maze. In addition, lesioned rats showed profound impairment in the novel object recognition memory task, when a 1-h delay was used between training and testing. Taken together, these results suggest that the hippocampus is not necessary during acquisition of the motor learning task.  相似文献   

15.
The present study examined sex differences in spatial working and reference memory in C57BL/6 mice. Males and females were tested in a version of the spatial 8-arm radial arm maze in which the motivating stimulus was escape from water. To test spatial working memory, four arms were baited with submerged escape platforms, each of which was removed after it was found. Four arms that never contained platforms assessed spatial reference memory. In addition to determining the number of working memory and reference memory errors made in each session, working memory errors made in each trial were analyzed to examine performance as the number of arms to be remembered (i.e. the working memory load) increased. Males committed significantly fewer working memory and reference memory errors than females throughout testing. Within a session, males committed fewer working memory errors than females as the working memory load increased. These sex differences were particularly evident during task acquisition. The data indicate that male C57BL/6 mice learn both the working and reference memory components of a water-escape motivated radial arm maze task better than female mice.  相似文献   

16.
Lesions restricted to the dorsal, but not the ventral, hippocampus severely impair the formation of spatial memory. This dissociation was first demonstrated using the water maze task. The present study investigated whether the dorsal and the ventral hippocampus are involved differentially in spatial reference and spatial working memory using a four-baited/four-unbaited version of the eight-arm radial maze task. This test allows the concurrent evaluation of reference and working memory with respect to the same set of spatial cues, and thereby enables a within-subjects within-task comparison between the two forms of memory functions. Rats with N-methyl-d-aspartic acid-induced excitotoxic lesions of the dorsal hippocampus, ventral hippocampus or both were compared with sham and unoperated controls. We showed that dorsal lesions were as effective as complete lesions in severely disrupting both reference and working spatial memory, whereas rats with ventral lesions performed at a level comparable with controls. These results lend further support to the existence of a functional dissociation between the dorsal and the ventral hippocampus, with the former being preferentially involved in spatial learning.  相似文献   

17.
Although there is evidence to suggest that the retrosplenial cortex is involved in spatial learning and memory, many lesion studies have left the more caudal part of this region intact so leaving its role untested. In the first experiment, rats with neurotoxic lesions of the caudal half of the retrosplenial cortex (RspC1) were tested on a reference memory task in the water-maze. The RspC1 animals were impaired on initial acquisition although they performed normally on a subsequent probe test. The second experiment looked at working memory in the radial-arm maze and water-maze. Animals with caudal retrosplenial lesions (RspC2) were unimpaired on the acquisition stage of the radial-arm maze task but were impaired when the task involved maze rotation to control for the possible use of intramaze cues. The RspC2 animals also took longer to learn the platform position on a delayed matching-to-place task in the water-maze. These results show a subtle impairment in spatial memory performance that is not as severe as that seen when more complete lesions of the retrosplenial cortex are made.  相似文献   

18.
Damage to the hippocampus typically produces temporally graded retrograde amnesia, whereby memories acquired recently are impaired more than memories acquired remotely. This phenomenon has been demonstrated repeatedly in a variety of species and tasks, and it has figured prominently in theoretical treatments of memory and hippocampal function. A striking exception to the finding of temporally graded retrograde amnesia comes from studies with rodents using spatial tasks like the water maze. In these studies, recent and remote memory were similarly impaired following hippocampal lesions. In contrast to work with rodents, studies of patients with medial temporal lobe lesions, including complete hippocampal lesions, indicate that remote spatial memory can be intact. One difference between studies in humans and studies in rodents is that spatial memory in animal studies is acquired during a limited period of time when the animals are adults. In contrast, the spatial memory studied in humans was acquired beginning at an early age and learning continued for a considerable period of time. We initiated training in a standard water maze immediately after rats had been weaned at 21 days of age and continued training until the rats were young adults (90 days old). Large hippocampal lesions were made 100 days after the completion of training. After recovery from surgery, control rats exhibited good retention on the first retention probe trial, but rats with hippocampal lesions performed at chance. Thus, even after extended training beginning early in life, and with a prolonged training-surgery interval, hippocampal lesions impair performance in the water maze task. Possible reasons for these findings are discussed in the context of the specific performance requirements of the water maze task.  相似文献   

19.
This work examines the effects of electrolytic mammillary body (MB) lesions on the performance of rats in different spatial memory tasks in the Morris water maze. The first experiment assessed the effect of MB lesion on performance in a spatial reference memory task (place learning with multiple trials). The second experiment examined the effect of a lesion in this nucleus on performance in a spatial working memory task (single-trial place learning). The results show that lesion of the MB impairs the animals performance in spatial working memory tasks but does not impair acquisition in spatial reference memory tasks (place learning, transfer task, reversal task) or in a visual-cued task. However, the deficit in the spatial working memory task does not appear to vary with the delay between acquisition and retention trials (30 s and 5 min). Our results demonstrate a clear role of the mammillary bodies in the processing of spatial information in a working memory task. Lesion of the MB impairs performance in a working memory task but does not affect reference memory processes.  相似文献   

20.
Hippocampus and remote spatial memory in rats   总被引:2,自引:0,他引:2  
Damage to the hippocampus typically produces temporally graded retrograde amnesia, whereby memories acquired recently are impaired more than memories acquired remotely. This phenomenon has been demonstrated repeatedly in a variety of species and tasks. It has also figured prominently in theoretical treatments of memory and hippocampal function. Yet temporally graded retrograde amnesia has not been demonstrated following hippocampal damage in spatial tasks like the water maze. We have assessed recent and remote spatial memory following hippocampal lesions in three different tests of spatial memory: (1) the standard water maze; (2) the Oasis maze, a dry-land version of the water maze; and (3) the annular water maze, where training and testing occur within a circular corridor. Training protocols were developed for each task such that retention of spatial memory could be expressed after very long retention intervals. In addition, retention in each task was assessed with single probe trials so that the assessment of remote memory did not depend on the ability to relearn across multiple trials. The findings were consistent across the three tasks. In the standard water maze (Experiment 1), spatial memory was impaired after training-surgery intervals of 1 day, 8 weeks, or 14 weeks. Similarly, in the Oasis maze (Experiment 2), spatial memory was impaired after training-surgery intervals of 1 day and 9 weeks. Finally, in the annular water maze (Experiment 3), spatial memory was impaired after training-surgery intervals of 9 weeks and 14 weeks. Dorsal hippocampal lesions impaired performance to the same extent as complete lesions. The impairment in remote spatial memory could reflect disruption of previously acquired spatial information. Alternatively, it is possible that in these tasks hippocampal lesions might produce an impairment in performance that prevents the expression of an otherwise intact spatial memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号