首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Mutations in the connexin 26 gene (GJB2), which encodes a gap-junction protein expressed in the inner ear, have been shown to be responsible for a major part of autosomal recessive non-syndromic hearing loss in Caucasians. The aim of our study was to determine the prevalence and spectrum of GJB2 mutations, including the (GJB6-D13S1830) deletion, in Moroccan patients and estimate the carrier frequency of the 35delG mutation in the general population. METHODS: Genomic DNA was isolated from 81 unrelated Moroccan familial cases with moderate to profound autosomal recessive non-syndromic hearing loss and 113 Moroccan control individuals. Molecular studies were performed using PCR-Mediated Site Directed Mutagenesis assay, PCR and direct sequencing to screen for GJB2, 35delG and del(GJB6-D13S1830) mutations. RESULTS: GJB2 mutations were found in 43.20% of the deaf patients. Among these patients 35.80% were 35delG/35delG homozygous, 2.47% were 35delG/wt heterozygous, 3.70% were V37I/wt heterozygous, and 1 patient was E47X/35delG compound heterozygous. None of the patients with one or no GJB2 mutation displayed the common (GJB6-D13S1830) deletion. We found also that the carrier frequency of GJB2-35delG in the normal Moroccan population is 2.65%. CONCLUSIONS: These findings indicate that the GJB2-35delG mutation is the major cause of autosomal recessive non-syndromic hearing loss in Moroccan population. Two other mutations were also detected (V37I and E47X), in agreement with similar studies in other populations showing heterogeneity in the frequencies and types of mutation in connexin 26 gene.  相似文献   

2.

Objective

The purpose of this study was to determine the prevalence of c.35delG and p.M34T mutations in the GJB2 gene among children with early onset hearing loss and within a general population of Estonia.

Methods

Using an arrayed primer extension assay, we screened 233 probands with early childhood onset hearing loss for 107 different mutations in the GJB2 gene. We then looked for the two most common mutations, c.35delG and p.M34T, in a population of 998 consecutively born Estonian neonates to determine the frequency of these mutations in the general population.

Results

In 115 (49%) of the patients with early onset hearing loss, we found a mutation in at least one allele of the GJB2 gene. Seventy-three (31%) were homozygous for the c.35delG mutation, seven (3%) were homozygous for the p.M34T mutation, and five (2%) had c35delG/p.M34T compound heterozygosity. Other six identified mutations in GJB2 gene occurred rarely. Among the 998 anonymous newborn samples, we detected 45 who were heterozygous for c.35delG, 2 individuals homozygous for c.35delG, and 58 who were heterozygous for p.M34T. Additionally, we detected two c.35delG/p.M34T compound heterozygotes.

Conclusion

The most common GJB2 gene mutations in Estonian children with early onset hearing loss were c.35delG and p.M34T, with c.35delG accounting for 75% of GJB2 alleles. The carrier frequency for c.35delG and p.M34T in a general population of Estonia was 1 in 22 and 1 in 17, respectively, and was higher than in most other countries.  相似文献   

3.

Objective

Hereditary hearing impairment is a genetically heterogeneous disorder. In spite of this, mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries and are largely dependent on ethnic groups. The purpose of our study was to characterize the type and prevalence of GJB2 mutations among Azeri population of Iran.

Methods

Fifty families presenting autosomal recessive nonsyndromic hearing loss from Ardabil province of Iran were studied for mutations in GJB2 gene. All DNA samples were screened for c.35delG mutation by ARMS PCR. Samples from patients who were normal for c.35delG were analyzed for the other variations in GJB2 by direct sequencing. In the absence of mutation detection, GJB6 was screened for the del(GJB6-D13S1830) and del(GJB6-D13S1854).

Result

Thirteen families demonstrated alteration in the Cx26 (26%). The 35delG mutation was the most common one, accounting for 69.2% (9 out of 13 families). All the detected families were homozygous for this mutation. Two families were homozygous for delE120 and 299-300delAT mutations. We also identified a novel mutation: c.463-464 delTA in 2 families resulting in a frame shift mutation.

Conclusion

Our results suggest that c.35delG mutation in the GJB2 gene is the most important cause of GJB2 related deafness in Iranian Azeri population.  相似文献   

4.
Mutations in the GJB2 gene, mainly 35delG, are responsible for most autosomal recessive inherited genetic hearing loss. The audiometric standard of these hearing losses remains inconsistent and other genes, such as GJB6, have been involved in association with GJB2. The objective of the study was to identify the deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) in patients heterozygous for 35delG/GJB2 and analyze the phenotype they present. 101 patients with mild to profound degree of sensorineural hypoacusis were evaluated. The allele-specific PCR technique was used to identify 35delG. The del(GJB6-D13S1830) and del(GJB6-D13S1854) were identified through the PCR multiplex technique. 90 % of the subjects presented a normal genotype for the analyzed mutations; 6.93 % were shown to be heterozygous for 35delG/GJB2 and 1 % presented compound heterozygosis GJB2/GJB6). The data found reinforced the hypothesis of an interaction of more than one gene as the cause of autosomal recessive genetic hearing loss and emphasized the importance of an early diagnosis for appropriate intervention.  相似文献   

5.

Objective

Hearing loss is one of the major public health problems, with a genetic etiology in more than 60% of cases. Connexin 26 and connexin 30 mutations are the most prevalent causes of deafness. The aim of this study is to characterize and to establish the prevalence of the GJB2 and GJB6 gene mutations in a population of cochlear implanted recipients from Eastern Romania, this being the first report of this type in our country.

Methods

We present a retrospective study that enrolled 45 Caucasian cochlear implanted patients with non-syndromic sensorineural severe to profound, congenital or progressive with early-onset idiopathic hearing loss. We performed sequential analysis of exon 1 and the coding exon 2 of the GJB2 gene including also the splice sites and analysis of the deletions del(GJB6-D13S1830), del(GJB6-D13S1854) and del(chr13:19,837,343-19,968,698).

Results

The genetic analysis of the GJB2 gene identified connexin 26 mutations in 22 patients out of 45 (12 homozygous for c.35delG, 6 compound heterozygous and 4 with mutations only on one allele). We found 6 different mutations, the most prevalent being c.35delG - found on 32 alleles, followed by p.W24* - found on 2 alleles. We did not identify the deletions del(GJB6-D13S1830), del(GJB6-D13S1854) and del(chr13:19,837,343-19,968,698).

Conclusions

Although the most prevalent mutation was c.35delG (80% from all types of mutations), unexpectedly we identified 5 more different mutations. The presence of 6 different mutations on the GJB2 gene has implications in hearing screening programs development in our region and in genetic counseling.  相似文献   

6.
Non-syndromic hearing loss is one of the most common hereditary determined diseases in human, and the disease is a genetically heterogeneous disorder. Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of non-syndromic recessive hearing impairment in many countries and are largely dependent on ethnic groups. Due to the high frequency of the c.35delG GJB2 mutation in the Greek population, we have previously suggested that Greek patients with sensorineural, non-syndromic deafness should be tested for the c.35delG mutation and the coding region of the GJB2 gene should be sequenced in c.35delG heterozygotes. Here we present on the clinical and molecular genetic evaluation of a family suffering from prelingual, sensorineural, non-syndromic deafness. A novel c.247_249delTTC (p.F83del) GJB2 mutation was detected in compound heterozygosity with the c.35delG GJB2 mutation in the proband and was later confirmed in the father, while the mother was homozygous for the c.35delG GJB2 mutation. We conclude that compound heterozygosity of the novel c.247_249delTTC (p.F83del) and the c.35delG mutations in the GJB2 gene was the cause of deafness in the proband and his father.  相似文献   

7.

Objectives

Mutations in GJB2 are found to be responsible for 50% of congenital autosomal recessive non-syndromic hearing loss, one of the most important mutations in this gene is the c.35delG, which is responsible for the majority of GJB2 related deafness in the Tunisian population. The aim of this study was to determine the molecular etiology of hearing loss in two Tunisian individuals.

Methods

We screened two Tunisian individuals affected by congenital, bilateral, profound, sensorineural hearing loss for mutations in GJB2 gene using PCR and direct sequencing.

Results

We identified a novel frameshift mutation in the GJB2 gene, the c.405delC resulting in a truncated protein (p.Tyr136Thrfs*32). It was found in compound heterozygosity with the c.35delG in two non-consanguineous unrelated families from Tunisia. One patient underwent a cochlear implant at 4 years. Initial evaluations post-implantation indicate a successful cochlear implant outcome since the patient began to acquire language abilities and auditory sensation.

Conclusions

With this novel GJB2 mutation, the mutational spectrum of this gene continues to broaden in our population. The occurrence of biallelic GJB2 mutations for the other deaf girl, despite the neonatal pain and hypotension due to complicated delivery, led us to confirm the importance of GJB2 screening for cochlear implant candidates regardless of the etiology of deafness in populations with a relatively high frequency of GJB2 mutation carriers.  相似文献   

8.
BACKGROUND AND AIM: Recent studies have revealed a genotype-phenotype correlation for mutations in the GJB2 gene. Since ethnic difference may have an effect for the degree of hearing loss due to background genes, we aimed to search for confirmation of previously suggested genotype-phenotype correlation in GJB2 deafness in the Turkish population. METHODS: Pure tone audiograms of 63 unrelated probands with GJB2-associated hearing loss having 15 different mutations were obtained and evaluated for correlation between the degree of hearing loss and genotypes. RESULTS: Three GJB2 genotypes identified in more than one family were homozygous c.35delG (44 probands), homozygous p.E120del (four probands) and c.[35delG]+[IVS1+1G>A] (two probands). No statistical difference for the degree of hearing loss was observed when the genotypes were compared individually or grouped according to their effects on the protein. The most likely explanation for this result is the relatively small size of the studied population. Degree of hearing loss was variable in c.35delG and p.E120del homozygotes. Intra-familial phenotypic variability was present for some genotypes. The detailed audiological data for homozygous p.E120del and c.[35delG]+[328delG] genotypes are reported for the first time in this study. CONCLUSION: Previously reported genotype-phenotype correlations for the GJB2 deafness should be cautiously interpreted during the clinical counseling since variability in the degree of hearing loss is present for all GJB2 genotypes.  相似文献   

9.
Mutations in GJB2 gene are the leading cause of deafness in autosomal recessive inheritance, and the 35delG mutation is the most common in many ethnic groups. Besides the 35delG mutation in homozygosis, the mutation is also found in compound heterozygosis, coupled with other mutations in genes GJB2 and GJB6.AimTo determine the prevalence of 35delG/GJB2 and del (GJB6-D13S1830) mutations in patients with sensorineural hearing impairment in residents from the Espirito Santo state, Brazil.Materials and methods77 unrelated individuals with moderate to profound sensorineural hearing loss were evaluated. The 35delG mutation was studied by PCR / RFLP; and the del (GJB6-D13S1830) mutation was screened by the technique of multiplex PCR.Results88.3% had normal genotype for the studied mutations, 1.3% were compound heterozygotes, 3.9% homozygotic for the 35delG mutation, 6.5% heterozygotic for 35delG/GJB2. The frequency of 35delG/GJB2 and del (D13S1830/GJB6) alleles in the sample was 7.8% and 0.65%, respectively.ConclusionThe data confirmed the existence of the mutations studied in cases of sensorineural hearing loss in a population from Espírito Santo / Brazil. These findings reinforce the importance of genetic diagnosis, which can provide early treatment for children and genetic counseling for the affected families.  相似文献   

10.
Late postnatal onset of hearing loss due to GJB2 mutations   总被引:2,自引:0,他引:2  
GJB2 mutations account for approximately 50% of recessive non-syndromic deafness, with 35delG being the most prevalent. Homozygous 35delG mutations cause pre-lingual, non-progressive hearing loss that is detected on newborn hearing screening programmes. We present a sibling pair with homozygous 35delG mutations, who passed hearing tests in early infancy and developed progressive sensorineural hearing loss, one requiring a cochlear implant. These cases illustrate that deafness due to such mutations may have a late onset and consequently be missed on neonatal screening programmes and they may present an argument to consider neonatal screening for GJB2 mutations in order to aid early intervention.  相似文献   

11.
Mutations in the connexin 26 gene (GJB2) cause a significant proportion of prelingual non-syndromic autosomal recessive deafness in all populations studied so far. To determine the percentage of hearing loss attributed to GJB2 in northeast Turkey, 93 unrelated patients with autosomal recessive non-syndromic hearing loss (ARNSHL) were screened. Seven different mutations were found in 29 of the patients with severe to profound hearing loss. The 35delG mutation was the most common mutation, accounting for 76% of all mutant GJB2 alleles. Four already described mutations, W24X, 310del14, delE120 and R184P and two novel mutations, Q80K and P173S, were identified. The allelic Delta(GJB6-D13S1830), which can cause hearing loss in combination with GJB2 mutations, was not present in our patients. Our results are comparable to those reported in other regions in Turkey and indicate that GJB2 mutations account for about 30% of Turkish patients with ARNSHL. Besides 35delG, W24X and delE120 occur more than once in the Turkish ARNSHL population with a frequency of about 5%.  相似文献   

12.
OBJECTIVE: To determine the prevalence of GJB2 gene mutations in patients undergoing cochlear implantation (CI) and their impact on rehabilitative outcome following implantation. DESIGN: Prospective determination of GJB2 mutation by sequence analysis by denaturing high-performance liquid chromatography and its correlation with outcome following CI. SETTINGS: Two tertiary academic medical centers. PATIENTS: Subjects who have met the audiologic criteria and have undergone CI. RESULTS: Of 77 cochlear implant recipients screened, 13 (18%) harbored a detectable sequence alteration in the GJB2 gene. Only 3 of these 13 patients had hearing loss clearly attributable to a biallelic GJB2 mutation. There were 2 patients with homozygous mutations, including a 35delG and a 167delT mutation, and a third with a compound heterozygous mutation. Of the remaining 10 patients, 8 had 1 deafness allele, while 2 had a normal polymorphism that was not believed to be implicated in the hearing loss. Six patients had the common 35delG mutation: 5 patients had heterozygous mutations, which are probably not related to the underlying hearing loss (a second deafness allele cannot be ruled out in these cases because of the screening methodology used), while 1 patient had a homozygous mutation, which was clearly implicated in the patient's deafness. Rehabilitative outcome among those with detectable sequence alterations, as well as the 3 patients with biallelic mutations, varied but were similar on average when compared with outcomes seen in our entire CI population. CONCLUSIONS: A large percentage of implant candidates harbor mutations or sequence alterations in the GJB2 gene, although only a small number of these changes are biallelic and a clear cause of the hearing loss. These results demonstrate that patients with GJB2-related deafness clearly benefit from CI.  相似文献   

13.
Bolz H  Schade G  Ehmer S  Kothe C  Hess M  Gal A 《Hearing research》2004,188(1-2):42-46
Mutations in GJB2, encoding the gap junction protein connexin 26, are the most common cause of inherited non-syndromic hearing loss (NSHL), with a broad spectrum of mutations leading to recessive as well as dominant forms. It has been shown that patients who are compound heterozygous for a 342-kb deletion (Delta(GJB6-D13S1830)) involving a large portion of the 5'-part of GJB6, encoding connexin 30, and a GJB2 mutation develop NSHL due to a trait with a digenic pattern of inheritance. We have used a mutation-specific polymerase chain reaction assay to screen NSHL patients for the presence of Delta(GJB6-D13S1830) and identified two families segregating both c.35delG in GJB2 and Delta(GJB6-D13S1830). Remarkably, the severity of hearing loss due to heterozygosity for c.35delG in GJB2 in conjunction with Delta(GJB6-D13S1830) is considerably different in members of the two families, ranging from congenital deafness in one to moderate/severe hearing loss with congenital onset in the other case.  相似文献   

14.
In 15 Belgian subjects with prelingual sensorineural hearing impairment, the connexin 26 (GJB2) gene and the connexin 30 (GJB6) gene were analyzed for the presence of the 35delG mutation and the delta(GJB6-D13S1830) deletion first described by del Castillo et al in 2002. Seven patients were found to be homozygous for the 35delG mutation; 7 were combined heterozygotes for the 35delG mutation and the GJB6 deletion. In 11 subjects, phenotype and genotype were correlated. Significant, transient progression, in the range of 1.7 to 2.7 dB/y, was only found in 2 patients in the first part of the second decade of life. Hearing impairment was otherwise stable, with mean thresholds of 75, 90, and 100 dB at 0.125, 0.25, and 0.5 kHz, respectively, and 100 dB or higher at 1 to 4 kHz. There was no significant difference in hearing impairment between the patients with the homozygous 35delG mutation in GJB2 and those who are heterozygous for both the 35delG mutation and the deletion encompassing part of GJB6.  相似文献   

15.
Cx26 gene mutations in idiopathic progressive hearing loss   总被引:2,自引:0,他引:2  
OBJECTIVE: The present study evaluated the frequency and type of mutations throughout the entire GJB2 region in a population of 39 patients affected with sporadic progressive "idiopathic" hearing loss. MATERIAL: A large series of patients suffering from progressive hearing loss underwent a systematic screening program to identify the etiology of the hearing loss. Of these patients, 39 presented with sporadic idiopathic progressive hearing loss and were included in this study. METHOD: We performed molecular analysis of GJB2 in each patient sequencing the genomic deoxyribonucleic acid (DNA) in both directions for detection of GJB2 mutations. Furthermore, in all patients bearing a Cx26 mutation, a search was also conducted for mutations or deletions of GJB6 (Cx30 gene) and for the A1555G mutation of the mitochondrial DNA. A control group was also considered to evaluate the frequency of Cx26 mutations in the normal population. RESULTS: A Cx26 gene mutation was detected in nine cases. One subject was found to bear a homozygous genotype for the 35delG mutation, another subject was compound heterozygous for 35delG and E47X, and the remaining patients showed heterozygous genotypes (35delG, L90P, R127H, M34T, V153I, V37I). No mutation or delection of the Cx30 gene was observed in these nine patients, and none of them presented with the A1555G mutation in the mitochondrial DNA. In the control group (40 individuals), a Cx26 mutation was detected in two cases (5%). CONCLUSIONS: About 23% of our patients (nine subjects) presented with mutations in GJB2, and 18% (seven subjects) were heterozygous. However, most of the described mutations are recessive, so a monogenic model of inheritance cannot explain the deafness phenotype. On the basis of these findings, we can speculate that the heterozygote Cx26 genotype could be a cause of progressive hearing loss, probably in association with mutations in other alleles. Thus, we recommend carefully following all hearing-impaired subjects with GJB2 mutations, even if they present with only mild hearing loss, because the hearing deficit could worsen. Furthermore, molecular analysis of the Cx26 gene should also be performed in adult patients affected with idiopathic progressive hearing loss.  相似文献   

16.
OBJECTIVE: Despite the identification of mutations in the connexin 26 (GJB2) gene as the most common cause of recessive nonsyndromic hearing loss, the pattern of hearing impairment with these mutations remains inconsistent. Recently a deletion encompassing the GJB6 gene was identified and hypothesized to also contribute to hearing loss. We hereby describe the hearing impairment in Dutch patients with biallelic connexin 26 (GJB2) and GJB2+connexin 30 (GJB6) mutations. METHODS: The audiograms of patients who were screened for GJB2 and GJB6 mutations were analysed retrospectively. Standard statistical testing was done for symmetry and shape, while repeated measurement analysis was used to assess the relation between mutation and severity. Progression was also studied via linear regression analysis. RESULTS: Of 222 hearing-impaired individuals, 35 exhibited sequence variations; of these 19 had audiograms for study. Hearing loss in patients with biallelic "radical" (i.e. deletions, nonsense and splice site) mutations was significantly worse than in the wild type and heterozygotes (SAS proc GENMOD, p=0.013). The presence of at least one missense mutation in compound heterozygotes tends to lead to better hearing thresholds compared to biallelic radical mutations (p=0.08). One patient with the [35delG]+[del(GJB6-D13S1830)] genotype was severely impaired. Non-progressive hearing impairment was demonstrated in five 35delG homozygotes in individual longitudinal analyses. However a patient with the [299A>C]+[416G>A] genotype showed significant threshold progression in the lower frequencies. Findings on asymmetry and shape were inconclusive. CONCLUSIONS: Our data support the hypothesis that severity is a function of genotype and its effect on the amino acid sequence. A bigger cohort is required to establish non-progressivity more definitively.  相似文献   

17.
OBJECTIVE: DFNB1 locus has been reported as a major cause of autosomal recessive non-syndromic hearing loss (ARNSHL) worldwide. 35delG and del(GJB6-D13S1830) are thought to be two common mutations in this locus among Caucasians. The aim of this study is to determine the significance of these two mutations in aetiology of ARNSHL in Iran. METHODS: One hundred and thirty-three unrelated patients with ARNSHL were tested by using multiplex allele-specific PCR assay after validation by positive control samples. RESULTS: The frequency of 35delG was about 18.5%, however, del(GJB6-D13S1830) was not found in the studied patients. Parental consanguinity was observed in 50% of 35delG-mutated families. CONCLUSIONS: Our results support founder effect regarding these mutations.  相似文献   

18.
Objective of the study is to assess the prevalence of Connexin 26 (GJB2) mutation in patients with congenital nonsyndromic sensorineural hearing loss in Bulgarian population. Study design is done prospectively. Patient inclusion criteria for this study were diagnosis of congenital nonsyndromic hearing loss, and absence of potential sibling relationships between patients included in the study (anamnestic pedigree for at least three generations). Patients were excluded from the study group if one of the following conditions were present: secondary hearing loss (cytomegalovirus, rubella, meningo-encephalitis, mastoiditis, other infections, posterior fossa tumors, etc.), exposure to drugs or other prenatal or perinatal etiology of deafness, and congenital syndromic hearing loss. Genomic DNA samples from whole blood were tested with sequence analysis for mutations in the coding region of the GJB2. Results state that 51 patients were analyzed for GJB2 mutations. Twenty of the patients (39%) with mutant alleles were homozygous for the c.35delG mutation (c.35delG/c.35delG) and four patients (8%) presented as heterozygotes (c.35delG/WT). In one patient, who carried a heterozygous mutation c.35delG, a second mutation was found—312del114. Additionally, in two other patients were discovered the mutations Trp24X (W24X) and, respectively, Arg127His(R127H), both in heterozygous states. From the whole study group there was only one patient with compound heterozygous genotype—p.Leu90Pro(L90P)/p.Ile121Asn. The latter one has never been reported in the literature so far. In conclusion, this study determines the importance of connexin 26 mutations in Bulgarian children with severe to profound congenital nonsyndromic sensorineural hearing loss, the prevalence of the different mutation variants and their relationship with the ethnical background of the patients. In addition, we report for the first time a novel mutation in the GJB2 gene.  相似文献   

19.
One of the topical problems of modern pediatric audiology is early diagnostics of congenital sensorineural loss of hearing in children and their timely rehabilitation. The objective of the present study was to obtain audiological characteristics of sensorineural hearing impairment associated with GJB2 gene mutations in children during the first year of life. The methods used were registration of short-latency auditory evoked potentials (slAEP) and the otoacoustic emission (OAE) techniques. The study included 66 children at the age of several months presenting with bilateral sensorineural loss of hearing who were available for the examination by an otorhinolaryngologist, tympanometry, slAEP recording, delayed EOAE (dEOAE) and distortion-product frequency OAE (dpOAE) techniques, and genetic counseling. The examination was carried out in duplicate, with an interval of 3 months. The genotype containing GJB2 gene mutations was identified in 47 (71.2%) children. The 35delG mutation was found in 41; in 31 of them it occurred in the homozygous state and in 10 in the heterozygous state. In the latter group, 8 children had the 35delG mutation in the compound heterozygous state together with one more mutation. Six children turned out to carry a pathological genotype with other GJB2 gene mutations. It was shown that OAE fails to be recorded in most patients with hearing impairment due to GJB2 gene mutations during the first months of life. The authors conclude that these mutations usually lead to the development of persistent bilateral symmetric sensorineural loss of hearing.  相似文献   

20.
GJB2 mutation analysis is used routinely as a first step in genetic testing for autosomal recessive non-syndromic sensorineural hearing loss. Although most GJB2 mutations can be detected by sequencing of the exon 2 of this gene, a prevalent splice mutation, c.?23+1G>A (IVS1+1G>A), is not usually included in the analyzed region. In this study, we have developed an ARMS-PCR strategy for detection of this mutation among Iranian deaf individuals. A total of 418 Iranian individuals with hearing loss consistent with autosomal recessive non-syndromic sensorineural hearing loss based on audiological test result, medical history, physical examination and pedigree of the family, were included in this study. c.35delG and c.?23+1G>A mutations were detected by using ARMS-PCR. Direct sequencing of the exon 2 of the GJB2 gene was performed for mutation analysis of the coding region of this gene. Among 418 investigated cases, a total of 81 patients (~19.4 %) with biallelic pathogenic mutations in the GJB2 gene and 13 cases with only one pathogenic mutant allele were identified. The total allele frequencies of the two most frequent mutations, c.35delG and c.?23+1G>A, among mutated alleles were found to be around 59 and 15.7 %, respectively. High frequency of the c.35delG and c.?23+1G>A mutations among Iranian deaf individuals shows the importance of developing rapid and cost-effective methods for primary mutation screening methods before performing direct sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号