首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cardiac hypertrophy and left ventricular hypertrophy are known to be substantially controlled by genetic factors. As an experimental model, we undertook genome-wide screens for cardiac mass in F2 populations bred from the stroke-prone spontaneously hypertensive rats (SHRSP) and normal spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) of a Japanese colony. Two F2 cohorts were independently produced: F2(SHRSP x WKY) (110 male and 110 female rats) and F2(SHR x WKY) (151 male rats). The ratio of heart weight to body weight (Hw/Bw) was evaluated at 12 months of age in F2(SHRSP x WKY) after salt-loading for 7 months, and at around 15 weeks of age in F2(SHR x WKY) who had been fed a normal rat chow diet. Subsequent to an initial screen with 251 markers in F2(SHRSP x WKY) male progeny, 170 and 161 markers were selected and characterized in F2(SHRSP x WKY) female progeny and F2(SHR x WKY) male progeny, respectively. Markers from four chromosomal regions showed suggestive or significant linkage to Hw/Bw. The strongest and the most consistent linkage was found in the vicinity of D3Mgh16 on rat chromosome (RNO) 3 (a maximal log of the odds score reached 4.0 to 6.6 across the F2 populations studied). In the other three regions on RNO6, RNO10 and RNO13, the degree of linkage was more prominent in either males or females. These data provide solid evidence for a "principal" RNO3 quantitative trait loci regulating Hw/Bw in SHRSP and SHR, and also suggest the possible presence of sexual dimorphism in regard to genetic susceptibility for cardiac hypertrophy.  相似文献   

2.
A blood pressure (BP) quantitative trait locus (QTL) was previously located within 117 kb on rat chromosome 9 (RNO9) using hypertensive Dahl salt-sensitive and normotensive Dahl salt-resistant rats. An independent study between two hypertensive rat strains, the Dahl salt-sensitive rat and the spontaneously hypertensive rat (SHR), also detected a QTL encompassing this 117 kb region. Dahl salt-sensitive alleles in both of these studies were associated with increased BP. To map SHR alleles that decrease BP in the Dahl salt-sensitive rat, a panel of eight congenic strains introgressing SHR alleles onto the Dahl salt-sensitive genetic background were constructed and characterized. S.SHR(9)x3B, S.SHR(9)x3A and S.SHR(9)x2B, the congenic regions of which span a portion or all of the 1 logarithm of odds (LOD) interval identified by linkage analysis, did not significantly alter BP. However, S.SHR(9), S.SHR(9)x4A, S.SHR(9)x7A, S.SHR(9)x8A and S.SHR(9)x10A, the introgressed segments of which extend distal to the 1 LOD interval, significantly reduced BP. The shortest genomic segment, BP QTL1, to which this BP-lowering effect can be traced is the differential segment of S.SHR(9)x4A and S.SHR(9)x2B, to which an urinary protein excretion QTL also maps. However, the introgressed segment of S.SHR(9)x10A, located outside of this QTL1 region, represented a second BP QTL (BP QTL2) having no detectable effects on urinary protein excretion. In summary, the data suggest that there are multiple RNO9 alleles of the SHR that lower BP of the Dahl salt-sensitive rat with or without detectable effects on urinary protein excretion and that only one of these BP QTLs, QTL1, overlaps with the 117 kb BP QTL region identified using Dahl salt-sensitive and Dahl salt-resistant rats.  相似文献   

3.
To narrow the area known to contain the blood pressure quantitative trait locus (QTL) on rat chromosome 1, we constructed a fine linkage map covering the blood pressure OTL region on the chromosome using 22 genetic markers informative for stroke-prone spontaneously hypertensive rats of the Izumo colony (SHRSP/Izm) and Wistar-Kyoto rats of the Izumo colony (WKY/Izm). Linkage mapping was done by genotyping 626 backcrossed rats from matings between SHRSP/Izm and WKY/Izm. Nineteen genetic markers informative for the two strains were selected from public databases. Two markers were newly isolated by screening a rat genomic library. One marker was mapped using a restriction endonuclease polymorphism. The region between DlWox29 and D1Smu11 was covered with 22 informative markers placed every 0.6 cM on average. In addition, 6 physiological candidates for a hypertension gene were mapped in this region either by linkage or by radiation hybrid (RH) mapping. This information should be essential for the construction and analysis of congenic strains for this QTL region.  相似文献   

4.
OBJECTIVE: Stroke-prone spontaneously hypertensive rats (SHRSP) are known to have sympathetic hyperactivity to various stimuli. In the search for 'intermediate phenotypes' inferring the function of hypertension genes, the present study assessed responsiveness to cold stress in a congenic strain derived from SHRSP/Izm and Wistar-Kyoto/Izm (WKY/Izm). DESIGN: A congenic strain, WKYpch1.0, was established by 10 generations of backcrossing to transfer the chromosomal fragment between D1Wox29 and D1Arb21 of SHRSP to WKY. This fragment covered the 100:1 confidence interval of the quantitative trait locus (QTL) for blood pressure identified in a previous study. Response to cold stress was studied by exposing rats to 4 degrees C for 4 h. Blood pressure was monitored with telemetry. Urine was collected during the exposure, and urinary concentrations of catecholamines were measured by high-performance liquid chromatography. RESULTS: Under the cold stress, urinary excretion of norepinephrine (NE) and vanillylmandelic acid (VMA), as well as the plasma level of NE, was significantly greater in WKYpch1.0 than in WKY. The increase in blood pressure during the cold stress was also greater in WKYpch1.0 than in WKY. Further, neonatal chemical sympathectomy using guanethidine abolished the exaggerated response in blood pressure and in urinary excretion of NE and VMA in WKYpch1.0. CONCLUSION: These results suggested that the QTL region on rat chromosome 1 harbored genes responsible for the exaggerated response of the sympathetic nervous system to the cold stress. The relationship of this with the pathogenesis of hypertension should be elucidated in future studies.  相似文献   

5.
In the present study, we evaluated the effect of aging on diurnal change in blood pressure in stroke-prone spontaneously hypertensive rats (SHRSP/Izm) using a telemetry system. Diurnal changes in blood pressure, heart rate, and locomotor activity were determined in unrestrained, freely moving condition in 24-week-old male SHRSP/Izm (n = 6) and 40-week-old male SHRSP/Izm (n = 6). Diurnal change in blood pressure was also investigated in 40-week-old male spontaneously hypertensive rats (SHR/Izm, n = 6) and Wistar-Kyoto rats (WKY/Izm, n = 5) as age-matched controls of the strain. All rats were kept in a 12-h light/dark cycle (light period from 06:00 to 18:00, and dark period from 18:00 to 06:00). Rats were active in dark phase and inactive in light phase. Mean blood pressures (MBP) were significantly higher in light phase as well as dark phase in old SHRSP/Izm compared with the other three groups. Light/dark phase ratio of MBP was significantly higher in old SHRSP/Izm compared with the other three groups. We observed a significant positive relationship between light/dark phase ratio of MBP and left ventricular mass index in a studied population of rats (r = 0.547, P < .01).Because SHRSP is a salt-sensitive model, the effect of high salt loading on the circadian pattern of blood pressure was also investigated. Male SHRSP/Izm, at the age of 22 weeks, were maintained on high salt (8%) for 2 weeks. High salt exposure significantly increased dark phase as well as light phase MBP in SHRSP/Izm. However, light/dark phase ratio of MBP was not significantly different from normal salt-fed (0.6%) SHRSP/Izm. These results indicate that aging and end-organ damage were associated with the alteration of diurnal change in blood pressure in SHRSP/Izm.  相似文献   

6.
A region with a major effect on blood pressure (BP) is located on rat chromosome 1 in the vicinity of the Sa gene, a candidate gene for BP regulation. Previously, we observed a single linkage peak for BP in this region in second filial generation rats derived from a cross of the spontaneously hypertensive rat (SHR) with the Wistar-Kyoto rat (WKY), and we have reported the isolation of the region containing the BP effect in reciprocal congenic strains (WKY.SHR-Sa) and (SHR.WKY-Sa) derived from these animals. Here, we report the further genetic dissection of this region. Two congenic substrains each were derived from WKY.SHR-Sa (WISA1 and WISA2) and SHR.WKY-Sa (SISA1 and SISA2) by backcrossing to WKY and SHR, respectively. Although there was some overlap of the introgressed regions retained in the various substrains, the segments in WISA1 and SISA1 did not overlap. Furthermore, although the Sa allele in WISA1, WISA2, and SISA2 remained donor in origin, recombination in SISA1 reverted it back to the recipient (SHR) allele. Surprisingly, all 4 substrains demonstrated a highly significant BP difference compared with that of their respective parental strain, which was of a magnitude similar to those seen in the original congenic strains. The findings strongly indicate that there are at least 2 quantitative trait loci (QTLs) affecting BP in this region of rat chromosome 1. Furthermore, the BP effect seen in SISA1 indicates that at least a proportion of the BP effect of this region of rat chromosome 1 cannot be due to the Sa gene. SISA1 contains an introgressed segment of <3 cM, and this will facilitate the physical mapping of the BP QTL(s) located within it and the identification of the susceptibility-conferring genes. Our observations serve to illustrate the complexity of QTL dissection and the care needed to interpret findings from congenic studies.  相似文献   

7.
OBJECTIVE: To improve the localization of a blood pressure quantitative trait locus (BP QTL) on rat chromosome (RNO) 1. METHODS: Congenic substrains were derived from the progenitor congenic strains S.LEW(D1Mco4X1) and S.LEW(D1Mco4X5) which previously localized a BP QTL (region 2) to a 17cM interval on RNO1. The newly developed congenic substrains, along with control Dahl salt-sensitive (S) rats were fed a 2% NaCl diet for 24 days before their BP was compared by both tail-cuff and radiotelemetry methods. RESULTS: By comparing BP of these congenic substrains to that of S rats, we have refined the location of the BP QTL2 region to a 2.73 Mb genomic interval that contains 19 annotated genes in the latest rat genome assembly (version 2.1). Slc9a3, the gene encoding the Na(+)/H(+) exchanger 3, originally a candidate gene in the BP QTL2 region, is excluded based on its map location. CONCLUSION: Substitution mapping was used to reduce a BP QTL on RNO1 from 17 centimorgans (cM) to approximately 1.4 cM (= 2.73 Mb). This region now contains 19 annotated rat candidate genes.  相似文献   

8.
Through the genotype/phenotype cosegregation analysis of an F(2) intercross, from the crossbreeding of stroke-prone spontaneously hypertensive rats (SHRSP) and stroke-resistant spontaneously hypertensive rats (SHR), we previously identified a quantitative trait locus for stroke on rat chromosome 5 (STR2) that colocalized with the genes encoding atrial and brain natriuretic peptides (ANP and BNP) and conferred a stroke-delaying effect. To further characterize ANP and BNP as candidates for stroke, we performed additional studies. Comparative sequence analysis revealed point mutations in both the coding and regulatory regions of ANP, whereas no interstrain differences were found for BNP. In in vitro studies in COS-7 and AtT-20 cells that were performed to test the relevance of a G-->A substitution at position 1125, a Gly-->Ser transposition in the SHRSP pro-ANP peptide resulted in different posttranslational processing of the SHRSP ANP gene product that was also associated with higher cGMP production (P<0.05). Furthermore, an analysis of a 5' end mutation affecting a PEA2 regulatory binding site in the 5' untranslated regulatory sequence of SHRSP ANP demonstrated a significantly lower ANP promoter activation in endothelial cells (P<0.05 versus the SHR ANP). In addition, the expression of ANP was significantly reduced in the brain, but not in the atria, of SHRSP compared with SHR (P<0.0001). No differences were detected with regard to BNP expression. The present results reveal substantial differences in ANP, but not BNP, structure and product among SHR and SHRSP, which supports a role of ANP in the pathogenesis of stroke in the SHRSP animal model.  相似文献   

9.
Garrett MR  Meng H  Rapp JP  Joe B 《Hypertension》2005,45(3):451-459
Previously, a blood pressure (BP) quantitative trait locus (QTL) on rat chromosome 9 (RNO9) was localized to a <2.4 cM interval using congenic strains generated by introgressing segments of RNO9 from the Dahl salt-resistant (R) rat into the background of the Dahl salt-sensitive (S) rat. Renal gene expression using Affymetrix gene chips was profiled on S and a congenic strain spanning the 2.4-cM BP QTL interval. This analysis identified 20 differentially expressed genes/expressed sequence tags. Of these, the locus with the greatest differential expression (30- to 35-fold) was regulated endocrine-specific protein 18 (Resp18), which also mapped in the 2.4-cM BP QTL interval. Additional substitution mapping located the QTL to <0.4 cM or approximately 493 kb. This newly defined QTL region still included Resp18. Nucleotide variants were identified between S and R genomic DNA of Resp18 in the coding, 5' regulatory and 3' untranslated regions. The coding sequence variation (T/C) occurs in exon 2 and predicts an amino acid change (Ile/Val) in the protein product. Resp18 was considered a differentially expressed positional candidate for the QTL. To fine-map the BP QTL, we constructed a congenic strain with a smaller introgressed region. Compared with the S rat, this strain (1) had significantly lower BP, (2) did not contain the R form of Resp18, and (3) did not retain the rather spectacular differential expression of Resp18. Together, these results demonstrate that a BP QTL independent of Resp18 exists within the newly defined 117-kb QTL region on RNO9.  相似文献   

10.
11.
The stroke-prone spontaneously hypertensive rat (SHRSP) has been reported to show significantly lower levels of serum total cholesterol than the normotensive control strain Wistar-Kyoto rat (WKY). Because selective inbreeding was conducted for stroke proneness, this concomitantly inherited characteristic of SHRSP may play some pathophysiological role in stroke. We evaluated the genetic determinants of the cholesterol trait by estimating heritability and subsequently by undertaking a genome-wide screen with 161 genetic markers in F(2) progeny involving SHRSP and WKY (104 male and 106 female rats). Three quantitative trait loci (QTLs) were detected on rat chromosomes 5, 7, and 15. Markers from the linked region on chromosome 15 indicated significant evidence of linkage with a maximal log of the odds (LOD) score of 7.7, whereas those on chromosomes 5 and 7 cosegregated with the trait in a sex-specific manner (the QTL close to genetic marker D5 Mit5 reached an LOD score of 7.3 in males, and that close to D7 Mit10 reached an LOD score of 3.2 in females). The male-specific QTL on chromosome 5 appeared to overlap with previously reported QTLs for stroke-associated phenotypes, but an identical gene (or genes) appeared unlikely to control these and the cholesterol traits simultaneously. In the present study, serum cholesterol levels were shown to be highly genetically determined in SHRSP (the heritability estimates are 76% in males and 83% in females), and 3 QTLs with substantial effects were identified. Further work, however, is required to clarify whether the cholesterol trait is related to the etiology of stroke or has been retained by chance through the inbreeding process in SHRSP.  相似文献   

12.
The stroke-prone spontaneously hypertensive rat (SHRSP) is a unique genetic model of severe hypertension and cerebral stroke. SHRSP, as well as the spontaneously hypertensive rat, the parental strain of SHRSP, has made a tremendous contribution to cardiovascular research. However, the genetic mechanisms underlying hypertension and stroke in these rats have not yet been clarified. Recent studies using whole-genome sequencing and comprehensive gene expression analyses combined with classical quantitative trait loci analyses provided several candidate genes, such as Ephx2, Gstm1 and Slc34a1, which still need further evidence to define their pathological roles. Currently, genome-wide association studies can directly identify candidate genes for hypertension in the human genome. Thus, genetic studies in SHRSP and other rat models must be focused on the pathogenetic roles of 'networks of interacting genes' in hypertension, instead of searching for individual candidate genes.  相似文献   

13.
Candidate gene(s) for multiple blood pressure (BP) quantitative trait loci (QTL) were sought by analysis of differential gene expression patterns in the kidneys of a panel of eight congenic strains, each of which carries a different low-BP QTL allele with a genetic composition that is otherwise similar to that of the hypertensive Dahl salt-sensitive (S) rat strain. First, genes differentially expressed in the kidneys of one-month-old Dahl S and salt-resistant (R) rats were identified. Then, Northern filter hybridization was used to examine the expression patterns of these genes in a panel of congenic strains. Finally, their chromosomal location was determined by radiation hybrid (RH) mapping. Seven out of 37 differentially expressed genes were mapped to congenic regions carrying BP QTLs, but only one of these genes, L-2 hydroxy acid oxidase (Hao2), showed the congenic strain-specific pattern of differential kidney gene expression predicted by its chromosomal location. This data suggests that Hao2 should be examined as a candidate gene for the rat chromosome 2 (RNO2) BP QTL.  相似文献   

14.
During the last two decades, significant progress in our understanding of the development of kidney diseases has been achieved by unravelling the mechanisms underlying rare familial forms of human kidney diseases. Due to the genetic heterogeneity in human populations and the complex multifactorial pathogenesis of the disease phenotypes, the dissection of the genetic basis of common chronic kidney diseases (CKD) remains a difficult task. In this regard, several inbred rat models provide valuable complementary tools to uncover the genetic basis of complex renal disease phenotypes that are related to common forms of CKD. In this review, data obtained in nine experimental rat models, including the Buffalo (BUF), Dahl salt-sensitive (SS), Fawn-hooded hypertensive (FHH), Goto-Kakizaki (GK), Lyon hypertensive (LH), Munich Wistar Fr?mter (MWF), Sabra hypertension-prone (SBH), spontaneously hypertensive rat (SHR) and stroke-prone spontaneously hypertensive rat (SHRSP) inbred strains, that contributed to the genetic dissection of renal disease phenotypes are presented. In this panel of inbred strains, a large number of quantitative trait loci (QTL) linked to albuminuria/proteinuria and other functional or structural kidney abnormalities could be identified by QTL mapping analysis and follow-up studies including consomic and congenic rat lines. The comprehensive exploitation of the genotype-renal phenotype associations that are inherited in this panel of rat strains is suitable for making a significant contribution to the development of an integrated approach to the systems genetics of common CKD.  相似文献   

15.
Aquantitative trait locus (QTL) for blood pressure was previously detected on rat chromosome 10 (RNO10) by linkage analysis and confirmed by the construction of congenic strains that encompass large regions of RNO10. In the present study, the rat RNO10 blood pressure QTL was dissected by the further construction of congenic substrains. The original congenic region was shown to contain 2 blood pressure QTLs (QTL 1 and QTL 2) approximately 24 cM apart. These were localized to a <2.6-cM region between markers D10Rat27 and D10Rat24 for QTL 1 and to a <3.2-cM region between D10Rat12 and D10Mco70 for QTL 2. Comparative mapping suggests that the rat RNO10 QTL 2 could be localized very close to a blood pressure QTL described by sib-pair analysis on human chromosome 17, but this is not definitively established because of multiple and complex chromosomal rearrangements between rodents and humans.  相似文献   

16.
Genetic dissection of the rat genome for identifying alleles that cause abnormalities in blood pressure (BP) resulted in the mapping of a significant number of BP quantitative trait loci (QTLs). In this study we mapped at least one such BP QTL on rat chromosome 10 (RNO10) as being within the introgressed segment of a S.LEW congenic strain S.LEWx12x2x3x8 spanning 1.34 Mb from 70,725,437 bp to 72,063,232 bp. BP of 3 congenic strains that span shorter segments of this region was additionally examined. Results obtained indicate that LEW alleles that comprise a 375-kb introgressed segment of the congenic strain S.LEWx12x2x3x5 (70,725,437 bp to 71,100,513 bp) increase BP. The magnitude of change in BP exhibited by the 2 strains, S.LEWx12x2x3x8 and S.LEWx12x2x3x5, is the net phenotypic effect of the underlying genetic determinants of BP. In this respect, the current data are superior to previous QTL localization of BP QTL1, which was hypothesized based on differential congenic segments. Genetic dissection using these 2 congenic strains as tools is expected to facilitate further dissection of the regions. Meanwhile, differential congenic segments were used to predict and thereby prioritize regions for candidate gene analysis. Using this approach, 2 distinct regions of 401 kb and 409 kb within S.LEWx12x2x3x8 and a 104 kb region within S.LEWx12x2x3x5 were prioritized for further consideration. Because all of these genetic elements are located within a 1.06-Mb region of RNO10, our study has revealed a remarkable insight into a genomic module comprising very closely-linked, opposing genetic determinants of BP.  相似文献   

17.
The role of the chromosome 1 blood pressure quantitative trait locus (QTL) on the sympathorenal interaction was studied using congenic strains. The two reciprocal congenic strains, WKYpch1.0 and SHRSPwch1.0, were respectively constructed by introgressing the stroke-prone spontaneously hypertensive rat (SHRSP)-derived fragment for the QTL into a Wistar-Kyoto rat (WKY) and vice versa. The role of the sympathetic nervous system in the kidney was evaluated by comparing the renal functions between denervated and sham-operated kidneys under anesthesia. The denervation was performed by stripping the adventitia off and applying 10% phenol to the blood vessels at the left renal hilus. Polyfructosan was continuously injected intravenously to determine the renal plasma flow and the glomerular filtration rate. A reciprocal and significant alteration in the renal norepinephrine (NE) content was observed between WKY and WKYpch1.0 and between SHRSP and SHRSPwch1.0. Concomitantly, the renal vascular resistance differed significantly between the congenic and the background parental strains. By contrast, no significant difference was observed in the fractional excretion of sodium, an index of the tubular function. While the denervation elicited a significant decrease of the renal NE content in all of the four strains studied, the significant effects of the denervation on the renal functions were observed only in SHRSP and WKYpch1.0, both of which harbored the SHRSP-derived QTL fragment. These results indicated that the chromosome 1 blood pressure QTL modulated the renal functions through the sympathetic nerve activity in the kidney.  相似文献   

18.
OBJECTIVES: Total genome scans of genetically segregating populations derived from the spontaneously hypertensive rat (SHR) and other rat models of hypertension have suggested the presence of quantitative trait loci (QTL) regulating blood pressure and cardiac mass on multiple chromosomes, including chromosome 2. The objective of the current study was to directly test for the presence of a blood pressure QTL on rat chromosome 2. DESIGN: A new congenic strain was derived by replacing a segment of chromosome 2 in the SHR between D2Rat171 and D2Arb24 with the corresponding chromosome segment from the normotensive Brown Norway rat. Arterial pressures were directly monitored in conscious rats by radiotelemetry. RESULTS: We found that the SHR congenic strain (SHR-2) carrying a segment of chromosome 2 from the Brown Norway rat had significantly lower systolic and diastolic blood pressures than the SHR progenitor strain. The attenuation of hypertension in the SHR-2 congenic strain versus the SHR progenitor strain was accompanied by significant amelioration of cardiac hypertrophy. CONCLUSIONS: These findings demonstrate that gene(s) with major effects on blood pressure exist in the differential segment of chromosome 2 trapped within the new SHR.BN congenic strain.  相似文献   

19.
Proteoglycans are an important component of the extracellular matrix, and are thought to play multiple roles not only in kidney remodeling, but also in regulating glomerular permeability, and in modulating the activity of other cytokines and growth factors. The aim of this study was to examine the gene expressions of proteoglycan core proteins in hypertensive rat kidneys, and their modulation by AT1 receptor antagonist. SHRSP/Izm rats and normotensive control WKY/Izm rats on a normal salt diet were treated with or without the AT1 receptor antagonist candesartan cilexetil (1 mg/kg/day) from 10 weeks to 22 weeks. At the end of the treatment period, renal tissue was excised, and gene expressions of the proteoglycan core proteins versican, perlecan, decorin, and biglycan were examined by Northern blot analysis and RT-PCR. Treatment with candesartan cilexetil caused significant decreases in blood pressure and amelioration of proteinuria and renal histological scores in the SHRSP/Izm rats. Compared to WKY/Izm rats, expression of biglycan mRNA showed a small increase in SHRSP/Izm rats which did not attain statistical significance. On the other hand, treatment with candesartan caused significant reductions in biglycan and decorin mRNA in the SHRSP/Izm rats. In contrast, the level of versican mRNA appeared to be increased after candesartan treatment. These results suggest that treatment with AT1 receptor antagonist was associated with diverse changes in renal proteoglycan gene expression in SHRSP/Izm rats. These changes could contribute to the beneficial effects of AT1 receptor antagonist on tissue remodeling and inhibition of disease progression in hypertensive rat kidneys.  相似文献   

20.
Linkage studies in the fawn-hooded hypertensive rat have suggested that genes influencing susceptibility to hypertension-associated renal failure may exist on rat chromosome 1q. To investigate this possibility in a widely used model of hypertension, the spontaneously hypertensive rat (SHR), we compared susceptibility to hypertension-induced renal damage between an SHR progenitor strain and an SHR congenic strain that is genetically identical except for a defined region of chromosome 1q. Backcross breeding with selection for the markers D1Mit3 and Igf2 on chromosome 1 was used to create the congenic strain (designated SHR.BN-D1Mit3/Igf2) that carries a 22 cM segment of chromosome 1 transferred from the normotensive Brown Norway rat onto the SHR background. Systolic blood pressure (by radiotelemetry) and urine protein excretion were measured in the SHR progenitor and congenic strains before and after the induction of accelerated hypertension by administration of DOCA-salt. At the same level of DOCA-salt hypertension, the SHR.BN-D1Mit3/Igf2 congenic strain showed significantly greater proteinuria and histologically assessed renal vascular and glomerular injury than the SHR progenitor strain. These findings demonstrate that a gene or genes that influence susceptibility to hypertension-induced renal damage have been trapped in the differential chromosome segment of the SHR.BN-D1Mit3/Igf2 congenic strain. This congenic strain represents an important new model for the fine mapping of gene(s) on chromosome 1 that affect susceptibility to hypertension-induced renal injury in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号