首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaplastic lymphoma kinase (ALK) fusions have been recognized as a therapeutic target in non‐small cell lung cancer (NSCLC). However, molecular signatures and clinical characteristics of the Chinese population with ALK‐rearranged NSCLC are not well elucidated. In the present study, we carried out targeted next‐generation sequencing on tissue and plasma ctDNA samples in 1688 patients with NSCLC. Overall, ALK fusions were detected in 70 patients (4.1%), and the frequencies of ALK fusions detected in tissue and plasma samples were 5.1% and 3.3%, respectively. Additionally, the prevalence of breakpoint locations for EML4‐ALK fusions in ctDNA was significantly correlated with that in tumor tissues (R2 = .91, P = .045). According to age, the incidence rates of ALK fusions among young (age <45 years), middle‐aged (between 45 and 70 years) and elderly (>70 years) patients were significantly different (P < .001). In 70 ALK‐rearranged cases, coexistence of epidermal growth factor receptor (EGFR) alterations and ALK fusions was detected in 12 cases (17.1%) and EGFR mutations tended to coexist with non‐EML4‐ALK rearrangements. Notably, novel ALK fusion partners, including TRIM66, SWAP70, WNK3, ERC1, TCF12 and FBN1 were identified in the present study. Among EML4ALK fusion variants, patients with variant V1 were younger than patients with variant V3 (P = .023), and TP53 mutations were more frequently concurrent with variant V3 compared with variant V1 (P = .009). In conclusion, these findings provide new insights into the molecular‐clinical profiles of patients with ALK‐rearranged NSCLC that may improve the treatment strategy of this population.  相似文献   

2.
Patient‐derived xenograft (PDX) models are a useful tool in cancer biology research. However, the number of lung cancer PDX is limited. In the present study, we successfully established 10 PDX, including three adenocarcinoma (AD), six squamous cell carcinoma (SQ) and one large cell carcinoma (LA), from 30 patients with non‐small cell lung cancer (NSCLC) (18 AD, 10 SQ, and 2 LA), mainly in SCID hairless outbred (SHO) mice (Crlj:SHO‐PrkdcscidHrhr). Histology of SQ, advanced clinical stage (III‐IV), status of lymph node metastasis (N2‐3), and maximum standardized uptake value ≥10 when evaluated using a delayed 18F‐fluoro‐2‐deoxy‐d ‐glucose positron emission tomography (FDG‐PET) scan was associated with successful PDX establishment. Histological analyses showed that PDX had histology similar to that of patients’ surgically resected tumors (SRT), whereas components of the microenvironment were replaced with murine cells after several passages. Next‐generation sequencing analyses showed that after two to six passages, PDX preserved the majority of the somatic mutations and mRNA expressions of the corresponding SRT. Two out of three PDX with AD histology had epidermal growth factor receptor (EGFR) mutations (L858R or exon 19 deletion) and were sensitive to EGFR tyrosine kinase inhibitors (EGFR‐TKI), such as gefitinib and osimertinib. Furthermore, in one of the two PDX with an EGFR mutation, osimertinib resistance was induced that was associated with epithelial‐to‐mesenchymal transition. This study presented 10 serially transplantable PDX of NSCLC in SHO mice and showed the use of PDX with an EGFR mutation for analyses of EGFR‐TKI resistance.  相似文献   

3.
4.
Intratumor heterogeneity (ITH) in non‐small cell lung cancer (NSCLC) may account for resistance after a period of targeted therapies because drugs destroy only a portion of tumor cells. The recognition of ITH helps identify high‐risk patients to make effective treatment decisions. However, ITH studies are confounded by interpatient heterogeneity in NSCLC and a large amount of passenger mutations. To address these issues, we recruited NSCLC patients carrying TP53 mutations and selected driver mutations within recurrently mutated genes in NSCLC. A total of 12‐paired normal‐tumor tissues were subjected to whole‐genome/whole‐exome sequencing. From these, 367 non‐silent mutations were selected as driver mutations and deeply sequenced in 61 intratumoral microdissections. We identified a universal prevalence of heterogeneity in all 12 tumors, indicating branched evolution. Although TP53 mutations were observed in single biopsy of all 12 tumors, most tumors consist of both TP53 mutated and non‐mutated cells in separate regions within the same tumor. This suggests the late molecular timing of the acquisition of TP53 mutations; therefore, the detection of TP53 mutations in a single biopsy may simply not reflect the early malignant potential. In addition, we identified regions of loss of heterozygosity surrounding TP53 and CDKN2A mutations in tumor 711, which also exhibited heterogeneity in different regional samples. Because the ITH of driver mutations likely has clinical consequences, further efforts are needed to limit the impact of ITH and to improve therapeutic efficiency, which will benefit NSCLC patients receiving targeted treatments.  相似文献   

5.
Next‐generation sequencing (NGS) and digital PCR technologies allow analysis of the mutational profile of circulating cell‐free DNA (cfDNA) in individuals with advanced lung cancer. We have now evaluated the feasibility of cfDNA sequencing for mutation detection in patients with non‐small cell lung cancer at earlier stages. A total of 150 matched tumor and serum samples were collected from non‐small cell lung cancer patients at stages IA–IIIA. Amplicon sequencing with DNA extracted from tumor tissue detected frequent mutations in EGFR (37% of patients), TP53 (39%), and KRAS (10%), consistent with previous findings. In contrast, NGS of cfDNA identified only EGFR, TP53, and PIK3CA mutations in three, five, and one patient, respectively, even though adequate amounts of cfDNA were extracted (median of 4936 copies/mL serum). Next‐generation sequencing showed a high accuracy (98.8%) compared with droplet digital PCR for cfDNA mutation detection, suggesting that the low frequency of mutations in cfDNA was not due to a low assay sensitivity. Whereas the yield of cfDNA did not differ among tumor stages, the cfDNA mutations were detected in seven patients at stages IIA–IIIA and at T2b or T3. Tumor volume was significantly higher in the cfDNA mutation‐positive patients than in the negative patients at stages T2b–T4 (159.1 ± 58.0 vs. 52.5 ± 9.9 cm3, P = 0.014). Our results thus suggest that tumor volume is a determinant of the feasibility of mutation detection with cfDNA as the analyte.  相似文献   

6.
While long‐term survival rates for early‐stage lung cancer are high, most cases are diagnosed in later stages that can negatively impact survival rates. We aim to design a simple, single biomarker blood test for early‐stage lung cancer that is robust to preclinical variables and can be readily implemented in the clinic. Whole blood was collected in PAXgene tubes from a training set of 29 patients, and a validation set of 260 patients, of which samples from 58 patients were prospectively collected in a clinical trial specifically for our study. After RNA was extracted, the expressions of FPR1 and a reference gene were quantified by an automated one‐step Taqman RT‐PCR assay. Elevated levels of FPR1 mRNA in whole blood predicted lung cancer status with a sensitivity of 55% and a specificity of 87% on all validation specimens. The prospectively collected specimens had a significantly higher 68% sensitivity and 89% specificity. Results from patients with benign nodules were similar to healthy volunteers. No meaningful correlation was present between our test results and any clinical characteristic other than lung cancer diagnosis. FPR1 mRNA levels in whole blood can predict the presence of lung cancer. Using this as a reflex test for positive lung cancer screening computed tomography scans has the potential to increase the positive predictive value. This marker can be easily measured in an automated process utilizing off‐the‐shelf equipment and reagents. Further work is justified to explain the source of this biomarker.  相似文献   

7.
8.
The present study aimed to investigate the overall changes in exosomal proteomes in metastatic and non‐metastatic non‐small‐cell lung cancers (NSCLC) and healthy human serum samples, and evaluate the potential of serum exosomal biomarkers to predict NSCLC metastasis. Tandem mass tags combined with multidimensional liquid chromatography and mass spectrometry analysis were used for screening the proteomic profiles of serum samples. Quantitative proteome, significant pathway, and functional categories of patients with metastatic and non‐metastatic NSCLC and healthy donors were investigated. In total, 552 proteins of the 628 protein groups identified were quantified. Bioinformatics analysis indicated that quantifiable proteins were mainly involved in multiple biological functions, metastasis‐related pathways. Moreover, lipopolysaccharide‐binding proteins (LBP) in the exosomes were found to be well distinguished between patients with metastatic and patients with non‐metastatic NSCLC. Area under the curve (AUC) was 0.803 with a sensitivity of 83.1% and a specificity of 67% (P < .0001). Circulating LBP were also well distinguishable between metastatic and non‐metastatic NSCLC, the AUC was 0.683 with a sensitivity of 79.5% and a specificity of 47.2% (P = .005). This novel study provided a reference proteome map for metastatic NSCLC. Patients with metastatic and non‐metastatic NSCLC differed in exosome‐related proteins in the serum. LBP might be promising and effective candidates of metastatic NSCLC.  相似文献   

9.
Accumulating evidence supports a role for exosomal protein in diagnosis. The purpose of this study was to identify the tumor‐derived exosomal biomarkers in the serum that improve the diagnostic value in Chinese non‐small cell lung cancer (NSCLC) patients. Serum exosomes were isolated from healthy donors (n = 46) and NSCLC patients (n = 125) by ultracentrifugation and were characterized using transmission electron microscopy, qNano, and immunoblotting. Proteomic profiles (by mass spectrometry) revealed multiple differentially expressed proteins in the healthy and NSCLC groups. The exosomal expression levels of alpha‐2‐HS‐glycoprotein (AHSG) and extracellular matrix protein 1 (ECM1) increased significantly in the NSCLC patients compared to the healthy group. Alpha‐2‐HS‐glycoprotein showed diagnostic values with a maximum area under the receiver operating characteristic curve (AUC) as 0.736 for NSCLC vs healthy individuals (P < .0001) and 0.682 for early stage NSCLC vs healthy individuals (P < .01). Extracellular matrix protein 1 showed the diagnostic capacity with AUC values of 0.683 (P < .001) and 0.656 (P < .05) in cancer and early stage NSCLC compared to healthy individuals. When AHSG was combined with ECM1, the AUCs were 0.795 and 0.739 in NSCLC and early stage patients, respectively. Taken together, the combination of AHSG, ECM1, and carcinoembryonic antigen improved the diagnostic potential of NSCLC. The diagnosis values were AUC of 0.938 for NSCLC and 0.911 for early stage NSCLC vs healthy individuals. Our results suggest that novel proteomic signatures found in serum exosomes of NSCLC patients show potential usefulness as diagnostic tools.  相似文献   

10.
11.
12.
The platinum‐based drugs cisplatin, carboplatin and oxaliplatin are often used for chemotherapy, but drug resistance is common. The prediction of resistance to these drugs via genomics is a challenging problem since hundreds of genes are involved. A possible alternative is to use mass spectrometry to determine the propensity for cells to form drug‐DNA adducts—the pharmacodynamic drug‐target complex for this class of drugs. The feasibility of predictive diagnostic microdosing was assessed in non‐small cell lung cancer (NSCLC) cell culture and a pilot clinical trial. Accelerator mass spectrometry (AMS) was used to quantify [14C]carboplatin‐DNA monoadduct levels in the cell lines induced by microdoses and therapeutic doses of carboplatin, followed by correlation with carboplatin IC50 values for each cell line. The adduct levels in cell culture experiments were linearly proportional to dose (R2 = 0.95, p < 0.0001) and correlated with IC50 across all cell lines for microdose and therapeutically relevant carboplatin concentrations (p = 0.02 and p = 0.01, respectively). A pilot microdosing clinical trial was conducted to define protocols and gather preliminary data. Plasma pharmacokinetics (PK) and [14C]carboplatin‐DNA adducts in white blood cells and tumor tissues from six NSCLC patients were quantified via AMS. The blood plasma half‐life of [14C]carboplatin administered as a microdose was consistent with the known PK of therapeutic dosing. The optimal [14C]carboplatin formulation for the microdose was 107 dpm/kg of body weight and 1% of the therapeutic dose for the total mass of carboplatin. No microdose‐associated toxicity was observed in the patients. Additional accruals are required to significantly correlate adduct levels with response.  相似文献   

13.
14.
The incidence of epidermal growth factor receptor uncommon mutation (EGFRum) is relatively low and patients harboring EGFRum are resistant to the first‐generation tyrosine kinase inhibitors (TKI). However, the mechanism of primary resistance remains unclear. Medical records of 98 patients who had never been treated by TKI and who accepted icotinib treatment were collected and followed. The circulating tumor DNA (ctDNA) were detected and analyzed using the next‐generation sequencing (NGS) platform after progression on icotinib. The potential primary resistance mechanism of icotinib was explored. A total of 21 (21.4%) and 48 (49%) patients developed primary and acquired resistance to icotinib, respectively. The median progression‐free survival (PFS) of primary resistance patients was 1.8 months (0.5‐2.3, 95% CI = 1.50‐2.10). Before treatment, 52.4% (11/21) of patients carried S768I, 23.8% (5/21) L861Q, 14.3% (3/21) G719X and 14.3% (3/21) exon 20‐ins mutations. Approximately 23.8% (5/21) of patients harbored the combined pattern mutations and 76.2% (16/21) of patients harbored the single pattern mutations. The combined pattern with EGFR classical mutation (EGFRcm) had worse PFS than the combined with EGFRum and single pattern (P < .05). There were 6 (28.57%) patients with acquired EGFR extracellular domain mutation, 5 (23.81%) with BCL2L11 loss (BIM deletion polymorphism), 3 (14.29%) with MET amplification, 1 (4.76%) with ERBB2 amplification, 1 (4.76%) with MYC amplification, 1 (4.76%) with PTEN mutation, 1 (4.76%) with PIK3CA mutation and 3 (14.29%) with unknown status. EGFR extracellular domain mutation, BCL2L11 loss, PI3K‐AKT‐mTOR signaling pathway (PTEN and PIK3CA mutations), MET amplification, ERBB2 amplification or MYC amplification might contribute to molecular mechanisms of primary resistance to icotinib in patients with advanced non‐small cell lung cancer harboring uncommon mutant epidermal growth factor receptor. Combined targeted therapy or chemotherapy should be considered in this population.  相似文献   

15.
16.
17.
18.
The aim of this article was to evaluate whether genetic variants in autophagy‐related genes affect the overall survival (OS) of non‐small cell lung cancer (NSCLC) patients. We analyzed 14 single nucleotide polymorphisms (SNPs) in core autophagy‐related genes for OS in 1,001 NSCLC patients. Three promising SNPs in ATG10 were subsequently annotated by the expression quantitative trait loci (eQTL) and methylation quantitative trait loci (meQTL) analyses based on Genotype‐Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. We observed that the variants of rs10514231, rs1864182 and rs1864183 were associated with poor lung cancer survival (HR = 1.33, 95% CI = 1.07–1.65; HR = 1.43, 95% CI = 1.13–1.81; HR = 1.38, 95% CI = 1.14–1.68, respectively) and positively correlated with ATG10 expression (all p < 0.05) from GTEx and TCGA datasets. The elevated expression of ATG10 may predict shorter survival time in lung cancer patients in TCGA dataset (HR = 2.10, 95% CI = 1.33–3.29). Moreover, the variants of rs10514231 and rs1864182 were associated with the increased methylation levels of cg17942617 (meQTL), which in turn contributed to the elevated ATG10 expression and decreased survival time. Further functional assays revealed that ATG10 facilitated lung cancer cell proliferation and migration. Our findings suggest that eQTL/meQTL variations of ATG10 could influence lung cancer survival through regulating ATG10 expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号