首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High biological activity of the transforming growth factor (TGF)‐β‐Smad pathway characterizes the malignant phenotype of malignant gliomas and confers poor prognosis to glioma patients. Accordingly, TGF‐β has become a novel target for the experimental treatment of these tumors. TGF‐β is processed by furin‐like proteases (FLP) and secreted from cells in a latent complex with its processed propeptide, the latency‐associated peptide (LAP). Latent TGF‐β‐binding protein 1 (LTBP‐1) covalently binds to this small latent TGF‐β complex (SLC) and regulates its function, presumably via interaction with the extracellular matrix (ECM). We report here that the levels of LTBP‐1 protein in vivo increase with the grade of malignancy in gliomas. LTBP‐1 is associated with the ECM as well as secreted into the medium in cultured malignant glioma cells. The release of LTBP‐1 into the medium is decreased by the inhibition of FLP activity. Gene‐transfer mediated overexpression of LTBP‐1 in glioma cell lines results in an increase inTGF‐β activity. Accordingly, Smad2 phosphorylation as an intracellular marker of TGF‐β activity is enhanced. Conversely, LTBP‐1 gene silencing reduces TGF‐β activity and Smad2 phosphorylation without affecting TGF‐β protein levels. Collectively, we identify LTBP‐1 as an important modulator of TGF‐β activation in glioma cells, which may contribute to the malignant phenotype of these tumors. © 2009 UICC  相似文献   

2.
3.
The tumor microenvironment (TME) consists of various components including cancer cells, tumor vessels, cancer‐associated fibroblasts (CAFs), and inflammatory cells. These components interact with each other via various cytokines, which often induce tumor progression. Thus, a greater understanding of TME networks is crucial for the development of novel cancer therapies. Many cancer types express high levels of TGF‐β, which induces endothelial‐to‐mesenchymal transition (EndMT), leading to formation of CAFs. Although we previously reported that CAFs derived from EndMT promoted tumor formation, the molecular mechanisms underlying these interactions remain to be elucidated. Furthermore, tumor‐infiltrating inflammatory cells secrete various cytokines, including TNF‐α. However, the role of TNF‐α in TGF‐β‐induced EndMT has not been fully elucidated. Therefore, this study examined the effect of TNF‐α on TGF‐β‐induced EndMT in human endothelial cells (ECs). Various types of human ECs underwent EndMT in response to TGF‐β and TNF‐α, which was accompanied by increased and decreased expression of mesenchymal cell and EC markers, respectively. In addition, treatment of ECs with TGF‐β and TNF‐α exhibited sustained activation of Smad2/3 signals, which was presumably induced by elevated expression of TGF‐β type I receptor, TGF‐β2, activin A, and integrin αv, suggesting that TNF‐α enhanced TGF‐β‐induced EndMT by augmenting TGF‐β family signals. Furthermore, oral squamous cell carcinoma‐derived cells underwent epithelial‐to‐mesenchymal transition (EMT) in response to humoral factors produced by TGF‐β and TNF‐α‐cultured ECs. This EndMT‐driven EMT was blocked by inhibiting the action of TGF‐βs. Collectively, our findings suggest that TNF‐α enhances TGF‐β‐dependent EndMT, which contributes to tumor progression.  相似文献   

4.
TGF‐β1 is a potent inductor of malignance in cancer cells. TGF‐β1 stimulates the expression of extracellular matrix degrading proteases, cell migration and it is also involved in the epithelial‐mesenchymal transition (EMT). In the present work, we analyzed the role of Spred2 in the urokinase‐type plasminogen activator (uPA) stimulation, EMT and cell migration by TGF‐β1. We found that both the expression of mRNA and the protein level of Spred2 were lower in transformed keratinocytes PDV compared with immortalized keratinocytes MCA‐3D. The transient ectopic expression of Spred2 in PDV cells inhibited the TGF‐β1‐transactivated SRE‐Luc reporter which is related with the ERK1,2 signal. The stable ectopic expression of Spred2 in PDV cells (SP cells) led to the loss of ERK 1,2 activation by TGF‐β1, although Smad2 activation was not affected, and the knockdown of Spred2 enhanced the activation of ERK1,2 signal by TGF‐β1. The increment of uPA expression induced by TGF‐β1 was suppressed in SP cells. In contrast, the stimulus on PAI‐1 expression was not affected and comparable to parental PDV cells. SP cells under TGF‐β1 treatment were unable to display the EMT, since the overexpression of Spred2 abolished the TGF‐β1‐induced disruption of the E‐cadherin cell to cell interactions, reorganization of the actin cytoskeleton and upregulation of the mesenchymal marker vimentin. Finally, SP cells could not respond to the TGF‐β1 stimulus on cell migration. Taken together, the data in the present study suggests that Spred2 is a regulator of TGF‐β1‐induced malignance in transformed keratinocytes.  相似文献   

5.
Though TGF‐β inhibition enhances antitumor immunity mediated by CD8+ T cells in several tumor models, it is not always sufficient for rejection of tumors. In this study, to maximize the antitumor effect of TGF‐β blockade, we tested the effect of anti‐TGF‐β combined with an irradiated tumor vaccine in a subcutaneous CT26 colon carcinoma tumor model. The irradiated tumor cell vaccine alone in prophylactic setting significantly delayed tumor growth, whereas anti‐TGF‐β antibodies alone did not show any antitumor effect. However, tumor growth was inhibited significantly more in vaccinated mice treated with anti‐TGF‐β antibodies compared to vaccinated mice without anti‐TGF‐β, suggesting that anti‐TGF‐β synergistically enhanced irradiated tumor vaccine efficacy. CD8+ T‐cell depletion completely abrogated the vaccine efficacy, and so protection required CD8+ T cells. Depletion of CD25+ T regulatory cells led to the almost complete rejection of tumors without the vaccine, whereas anti‐TGF‐β did not change the number of CD25+ T regulatory cells in unvaccinated and vaccinated mice. Though the abrogation of CD1d‐restricted NKT cells, which have been reported to induce TGF‐β production by MDSC through an IL‐13‐IL‐4R‐STAT6 pathway, partially enhanced antitumor immunity regardless of vaccination, abrogation of the NKT cell‐IL‐13‐IL‐4R‐STAT‐6 immunoregulatory pathway did not enhance vaccine efficacy. Taken together, these data indicated that anti‐TGF‐β enhances efficacy of a prophylactic vaccine in normal individuals despite their not having the elevated TGF‐β levels found in patients with cancer and that the effect is not dependent on TGF‐β solely from CD4+CD25+ T regulatory cells or the NKT cell‐IL‐13‐IL‐4R‐STAT‐6 immunoregulatory pathway.  相似文献   

6.
7.
Activation of transforming growth factor β (TGF‐β) combined with persistent hypoxia often affects the tumor microenvironment. Disruption of cadherin/catenin complexes induced by these stimulations yields aberrant extracellular matrix (ECM) production, characteristics of epithelial‐mesenchymal transition (EMT). Hypoxia‐inducible factors (HIF), the hallmark of the response to hypoxia, play differential roles during development of diseases. Recent studies show that localization of cadherin/catenin complexes at the cell membrane might be tightly regulated by protein phosphatase activity. We aimed to investigate the role of stabilized HIF‐1α expression by protein phosphatase activity on dissociation of the E‐cadherin/β‐catenin complex and aberrant ECM expression in lung cancer cells under stimulation by TGF‐β. By using lung cancer cells treated with HIF‐1α stabilizers or carrying doxycycline‐dependent HIF‐1α deletion or point mutants, we investigated the role of stabilized HIF‐1α expression on TGF‐β‐induced EMT in lung cancer cells. Furthermore, the underlying mechanisms were determined by inhibition of protein phosphatase activity. Persistent stimulation by TGF‐β and hypoxia induced EMT phenotypes in H358 cells in which stabilized HIF‐1α expression was inhibited. Stabilized HIF‐1α protein expression inhibited the TGF‐β‐stimulated appearance of EMT phenotypes across cell types and species, independent of de novo vascular endothelial growth factor A (VEGFA) expression. Inhibition of protein phosphatase 2A activity abrogated the HIF‐1α‐induced repression of the TGF‐β‐stimulated appearance of EMT phenotypes. This is the first study to show a direct role of stabilized HIF‐1α expression on inhibition of TGF‐β‐induced EMT phenotypes in lung cancer cells, in part, through protein phosphatase activity.  相似文献   

8.
9.
10.
11.
12.
The prolyl‐4‐hydroxylase domain 1–3 (PHD1–3) enzymes are regulating the protein stability of the α‐subunit of the hypoxia‐inducible factor‐1 (HIF‐1), which mediates oxygen‐dependent gene expression. PHD2 is the main isoform regulating HIF‐1α hydroxylation and thus stability in normoxia. In human cancers, HIF‐1α is overexpressed as a result of intratumoral hypoxia which in turn promotes tumor progression. The role of PHD2 for tumor progression is in contrast far from being thoroughly understood. Therefore, we established PHD2 knockdown clones of MDA‐MB‐231 breast cancer cells and analyzed their tumor‐forming potential in a SCID mouse model. Tumor progression was significantly impaired in the PHD2 knockdown MDA‐MB‐231 cells, which could be partially rescued by re‐establishing PHD2 expression. In a RNA profile screen, we identified the secreted phosphoprotein 1 (SPP1) as one target, which is differentially regulated as a consequence of the PHD2 knockdown. Knockdown of PHD2 drastically reduced the SPP1 expression in MDA‐MB‐231 cells. A correlation of SPP1 and PHD2 expression was additionally verified in 294 invasive breast cancer biopsies. In subsequent analyses, we identified that PHD2 alters the processing of transforming growth factor (TGF)‐β1, which is highly involved in SPP1 expression. The altered processing capacity was associated with a dislocation of the pro‐protein convertase furin. Thus, our data demonstrate that in MDA‐MB‐231 cells PHD2 might affect tumor‐relevant TGF‐β1 target gene expression by altering the TGF‐β1 processing capacity.  相似文献   

13.
Improved understanding of cancer immunology has provided insight into the phenomenon of frequent tumor recurrence after initially successful immunotherapy. A delicate balance exists between the capacity of the immune system to control tumor growth and various resistance mechanisms that arise to avoid or even counteract the host's immune system. These resistance mechanisms include but are not limited to (i) adaptive expression of inhibitory checkpoint molecules in response to the proinflammatory environment and (ii) amplification of cancer stem cells, a small fraction of tumor cells possessing the capacity for self‐renewal and mediating treatment resistance and formation of metastases after long periods of clinical remission. Several individual therapeutic agents have so far been developed to revert T‐cell exhaustion or disrupt the cross‐talk between cancer stem cells and the tumor‐promoting microenvironment. Here, we demonstrate that a three‐arm combination therapy—consisting of an mRNA‐based vaccine to induce antigen‐specific T‐cell responses, monoclonal antibodies blocking inhibitory checkpoint molecules (PD‐1, TIM‐3, LAG‐3), and antibodies targeting IL‐6 and TGF‐β—improves the therapeutic outcome in subcutaneous TC‐1 tumors and significantly prolongs survival of treated mice. Our findings point to a need for a rational development of multidimensional anticancer therapies, aiming at the induction of tumor‐specific immunity and simultaneously targeting multiple resistance mechanisms.  相似文献   

14.
15.
Hepatocellular carcinoma (HCC) results from the cumulative effects of deregulated tumor suppressor genes and oncogenes. The tumor suppressor and oncogenes commonly affected include growth factors, receptors and their downstream signaling pathway components. The overexpression of transforming growth factor alpha (TGF‐α) and the inhibition of TGF‐β signaling are especially common in human liver cancer. Thus, we assessed whether TGF‐α overexpression and TGF‐β signaling inactivation cooperate in hepatocarcinogenesis using an in vivo mouse model, MT1/TGFa;AlbCre/Tgfbr2flx/flx mice (“TGFa;Tgfbr2hepko”), which overexpresses TGF‐α and lacks a TGF‐β receptor in the liver. TGF‐β signaling inactivation did not alter the frequency or number of cancers in mice with overexpression of TGF‐α. However, the tumors in the TGFa;Tgfbr2hepko mice displayed increased proliferation and increased cdk2, cyclin E and cyclin A expression as well as decreased Cdkn1a/p21 expression compared to normal liver and compared to the cancers arising in the TGF‐α overexpressing mice with intact TGF‐β receptors. Increased phosphorylated ERK1/2 expression was also present in the tumors from the TGFa;Tgfbr2hepko mice and correlated with downregulated Raf kinase inhibitor protein expression, which is a common molecular event in human HCC. Thus, TGF‐β signaling inactivation appears to cooperate with TGF‐α in vivo to promote the formation of liver cancer that recapitulates molecular features of human HCC.  相似文献   

16.
Pheochromocytomas and paragangliomas (PPGLs) are catecholamine‐producing chromaffin cell tumors with diverse phenotypic features reflecting mutations in numerous genes, including MYC‐associated factor X (MAX). To explore whether phenotypic differences among PPGLs reflect a MAX‐mediated mechanism and opposing influences of hypoxia‐inducible factor (HIF)s HIF2α and HIF1α, we combined observational investigations in PPGLs and gene‐manipulation studies in two pheochromocytoma cell lines. Among PPGLs from 140 patients, tumors due to MAX mutations were characterized by gene expression profiles and intermediate phenotypic features that distinguished these tumors from other PPGLs, all of which fell into two expression clusters: one cluster with low expression of HIF2α and mature phenotypic features and the other with high expression of HIF2α and immature phenotypic features due to mutations stabilizing HIFs. Max‐mutated tumors distributed to a distinct subcluster of the former group. In cell lines lacking Max, re‐expression of the gene resulted in maturation of phenotypic features and decreased cell cycle progression. In cell lines lacking Hif2α, overexpression of the gene led to immature phenotypic features, failure of dexamethasone to induce differentiation and increased proliferation. HIF1α had opposing actions to HIF2α in both cell lines, supporting evolving evidence of their differential actions on tumorigenic processes via a MYC/MAX‐related pathway. Requirement of a fully functional MYC/MAX complex to facilitate differentiation explains the intermediate phenotypic features in tumors due to MAX mutations. Overexpression of HIF2α in chromaffin cell tumors due to mutations affecting HIF stabilization explains their proliferative features and why the tumors fail to differentiate even when exposed locally to adrenal steroids.  相似文献   

17.
Histone acetyltransferase binding to ORC1 (HBO1), a histone acetyltransferase, was recently identified as an oncoprotein; however, its role in bladder cancer remains unknown. In this study, we showed that HBO1 was highly expressed at both the mRNA and the protein levels in bladder cancer. HBO1 expression was associated with the clinical features of human bladder cancer, including tumor size (P = 0.018) and T (P = 0.007) classifications. Patients with higher HBO1 expression had shorter recurrence‐free survival time, whereas patients with lower HBO1 expression had better survival time. Moreover, we found that ectopic overexpression of HBO1 promoted, whereas HBO1 silencing inhibited tumor growth in bladder cancer cells both in vitro and in vivo. We further demonstrated that upregulation of HBO1 activated the Wnt/β‐catenin signaling pathway and led to nuclear localization of β‐catenin and upregulation of downstream targets of of Wnt/β‐catenin signaling. These findings suggest that HBO1 plays a key role in the progression of bladder cancer via the Wnt/β‐catenin pathway, and may serve as a potential therapeutic target for the treatment of bladder cancer.  相似文献   

18.
CD44, a transmembrane receptor for hyaluronic acid, is implicated in various adhesion‐dependent cellular processes, including cell migration, tumor cell metastasis and invasion. Recent studies demonstrated that CD44 expressed in cancer cells can be proteolytically cleaved at the ectodomain by membrane type 1‐matrix metalloproteinase (MT1‐MMP) to form soluble CD44 and that CD44 cleavage plays a critical role in cancer cell migration. Here, we show that transforming growth factor‐β (TGF‐β), a multifunctional cytokine involved in cell proliferation, differentiation, migration and pathological processes, induces MT1‐MMP expression in MDA‐MB‐435s cells. TGF‐β‐induced MT1‐MMP expression was blocked by the specific extracellular regulated kinase‐1/2 (ERK1/2) inhibitor PD98059 and the specific phosphoinositide 3‐OH kinase (PI3K) inhibitor LY294002. In addition, treatment with SP600125, an inhibitor for c‐Jun NH2‐terminal kinase (JNK), resulted in a significant inhibition of MT1‐MMP production. These data suggest that ERK1/2, PI3K, and JNK likely play a role in TGF‐β‐induced MT1‐MMP expression. Interestingly, treatment of MDA‐MB‐435s cells with TGF‐β resulted in a colocalization of MT1‐MMP and CD44 in the cell membrane and in an increased level of soluble CD44. Using an electric cell‐substrate impedance sensing cell‐electrode system, we demonstrated that TGF‐β treatment promotes MDA‐MB‐435s cell migration, involving MT1‐MMP‐mediated CD44 cleavage. MT1‐MMP siRNA transfection‐inhibited TGF‐β‐induced cancer cell transendothelial migration. Thus, this study contributes to our understanding of molecular mechanisms that play a critical role in tumor cell invasion and metastasis. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
The underlying mechanisms of breast cancer cells metastasizing to distant sites are complex and multifactorial. Bone sialoprotein (BSP) and αvβ3 integrin were reported to promote the metastatic progress of breast cancer cells, particularly metastasis to bone. Most theories presume that BSP promotes breast cancer metastasis by binding to αvβ3 integrin. Interestingly, we found the αvβ3 integrin decreased in BSP silenced cells (BSPi), which have weak ability to form bone metastases. However, the relevance of their expression in primary tumor and the way they participate in metastasis are not clear. In this study, we evaluated the relationship between BSP, αvβ3 integrin levels, and the bone metastatic ability of breast cancer cells in patient tissues, and the data indicated that the αvβ3 integrin level is closely correlated to BSP level and metastatic potential. Overexpression of αvβ3 integrin in cancer cells could reverse the effect of BSPi in vitro and promote bone metastasis in a mouse model, whereas knockdown of αvβ3 integrin have effects just like BSPi. Moreover, The Cancer Genome Atlas data and RT‐PCR analysis have also shown that SPP1, KCNK2, and PTK2B might be involved in this process. Thus, we propose that αvβ3 integrin is one of the downstream factors regulated by BSP in the breast cancer‐bone metastatic cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号