首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
What is known and Objective: Both itraconazole (ITCZ) and voriconazole (VCZ) are potent inhibitors of cytochrome P450 (CYP) 3A, and their effects have been reported to be equal. However, ITCZ is metabolized by CYP3A, whereas VCZ is mainly metabolized by CYP2C9 and CYP2C19 and only partially by CYP3A. We experienced the case of a patient who showed a 5‐fold increase in trough levels of tacrolimus (FK) level after switching from ITCZ to VCZ. Our objective is to discuss the mechanism of the increase drug–drug interaction in terms of serum concentration of the azole drugs and patient pharmacogenomics. Case summary: A 53‐year‐old woman was treated with FK (1 mg/day) for lupus nephritis. Because fungal infection was suspected, she received ITCZ (100 mg/day). When ITCZ was replaced with VCZ (400 mg/day), the blood concentration of FK increased markedly from 6·1 to 34·2 ng/mL. During coadministration with FK, the levels of ITCZ and VCZ were 135·5 ng/mL and 5·5 μg/mL, respectively, with the VCZ level around 3‐fold higher than the previously reported level (1·4–1·8 μg/mL). Her CYP genotypes were CYP2C19*1/*2, CYP3A4*1/*1 and CYP3A5*3/*3. What is new and Conclusion: The patient was a CYP2C19 intermediate metabolizer (IM) and deficient in CYP3A5. The increase in plasma VCZ level appears to have been at least in part, associated with the CYP2C19 IM phenotype. One possible explanation for the marked increase in blood FK concentration was increased inhibition of CYP3A because of the impaired metabolism and subsequent increased plasma concentration of VCZ. This case shows that the severity of drug interactions may be influenced by metabolic gene polymorphism.  相似文献   

2.
What is known and Objective: Interindividual variability in drug responses may be attributable to genetically determined alteration in enzyme activity. In this study, we investigated the association between cytochrome P450 3A4 (CYP3A4) genetic polymorphisms and post‐operative fentanyl requirements. Methods: Patients (n = 94) scheduled for gynaecological laparotomy received i.v. fentanyl infusion (3 μg/kg/h) after induction of general anaesthesia. Post‐operative fentanyl requirements were quantified by using a patient‐controlled analgesia and the number of i.v. fentanyl rescue analgesia required were recorded. Pain control was assessed using visual analogue scores (VAS) and fentanyl’s adverse effects were documented. CYP3A4*4, CYP3A4*5 and CYP3A4*18 alleles of cytochrome P450 3A4 were identified by polymerase chain reaction–restriction fragment length polymorphism. Differences in fentanyl requirements, VAS scores and adverse effects among the various genotypes were compared. Results and Discussion: No CYP3A4*4 and CYP3A4*5 alleles were detected. Eighty‐nine patients (94·7%) were wild‐type, five (5·3%) were heterozygous and none was homozygous. No significant difference was demonstrated between the genotype groups in terms of fentanyl consumption, pain control and adverse effects. What is new and Conclusion: CYP3A4*4 and CYP3A4*5 are rare in the Malaysian Malay population. Genetic polymorphism of CYP3A4*18 may not play an important role in influencing postoperative fentanyl requirements.  相似文献   

3.
What is known and objective: Genetic polymorphism of interleukin (IL)–1β and IL‐1 receptor antagonist (IL‐1rα) are associated with efficacy of acid suppression, whereas cytochrome P (CYP) 2C19 polymorphism influences the metabolism of proton pump inhibitor family. Thus, CYP2C19 and IL‐1 polymorphisms may affect the efficacy of H. pylori eradication therapy. We compared the efficacies of omeprazole and rabeprazole on eradication of H. pylori in relation to CYP2C19, IL‐1B and IL‐1RN genotypes in Chinese people. Methods: Two hundred and forty Chinese with peptic ulcer disease were randomly assigned to the following regimens: amoxicillin and clarithromycin together with omeprazole (OAC) or rabeprazole (RAC). CYP2C19*2 and *3, IL1B‐511, IL1B‐31, IL1B+ 3954 and intron 2 of the IL‐1RN genotypes were analyzed by polymerase chain reaction‐restriction fragment length polymorphism. Results: The intention‐to‐treat‐based cure rate of the OAC regimen was significantly lower than that of the RAC regimen in the CYP2C19 wild‐type homozygotes (P = 0·014). No significant differences in the cure rates were observed among the IL‐1RN and the IL‐1B genotype groups. What is new and conclusions: The rabeprazole‐based triple regimen was better than the omeprazole in Chinese patients with the CYP2C19 extensive metabolizer genotype. The effectiveness of the PPI/AC regimen is unrelated to IL‐1B and IL1‐RN genetic polymorphism.  相似文献   

4.
What is known and Objective: Clinical investigations into postoperative intravenous patient‐controlled analgesia (PCA) have indicated interindividual differences in fentanyl consumption. Cytochrome P450 3A4 (CYP3A4) is the main metabolism enzyme of fentanyl, and single nucleotide polymorphisms within the CYP3A4 gene may contribute to the variability of fentanyl analgesic efficacy. The aim of this study was to investigate whether the most common genetic variation in Chinese, CYP3A4*1G, has an impact on the fentanyl consumption for intravenous PCA in Chinese Han women undergone abdominal total hysterectomy. Methods: A total of 79 female patients (American Society of Anesthesiologist physical status I or II) scheduled to undergo elective abdominal total hysterectomy were enrolled. All patients received combined spinal–epidural anaesthesia with bupivacaine. Intravenous fentanyl PCA was provided postoperatively for satisfactory analgesia. The doses of fentanyl consumption were recorded 2, 4, 24 and 48 h after the initiation of PCA postoperatively. Pain at rest and adverse effects were measured with rating scales. CYP3A4*1G was screened by means of direct sequencing and further confirmed by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Results and Discussion: Forty‐six patients were GG homozygotes, 27 patients were GA heterozygotes, and six patients were AA homozygotes, respectively. The distribution of the CYP3A4*1G allele was consistent with Hardy–Weinberg equilibrium (P > 0·05). At 2 and 4 h, the doses of fentanyl required for patients with GA/AA genotypes were 80·0 (45·0, 112·5) μg and 120·0 (80, 173·8) μg, respectively, and significantly lower than those for GG homozygotes [91·3 (80·0, 125·0) μg and 169·0 (112·5, 226·3) μg, respectively, P < 0·05]. There was trend of decreasing fentanyl consumption at 24 and 48 h in patients with GA/AA genotypes, relative to GG homozygotes, but the difference was not statistical significant (P > 0·05). What is new and Conclusions: CYP3A4*1G has an impact on the analgesic effect of fentanyl in Chinese Han subjects. Further validation of our results in a well‐powered study would be helpful.  相似文献   

5.
What is known and Objective: Cytochrome P450 2C19 (CYP2C19) and CYP2D6 are important xenobiotic metabolic enzymes and both show considerable genetic variability between Orientals and Caucasians. There are known marked heterogeneity in susceptibility to various cancers and hypertension among Chinese Mongolian, Hui and Han ethnic groups, but the molecular mechanisms are unknown. Our objective was to investigate the patterns of distribution of CYP2C19 and CYP2D6 polymorphisms among healthy Chinese subjects to determine whether any observed inter‐ethnic variability might be worth further investigation as possible contributors to the known differences in disease prevalence. Methods: Blood samples were collected from 454 unrelated Chinese healthy subjects (214 Han, 111 Hui, 129 Mongolian) for genotyping analysis. The single nucleotide polymorphisms (SNPs) CYP2C19*2 (681G>A in exon 5), CYP2C19*3 (636G>A in exon 4) and CYP2D6*10 (188C>T in exon 1) were determined by the polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) method. Results and Discussion: Significantly higher frequencies of the CYP2C19 poor metabolic genotypes were observed in Chinese Han (18·7%), Chinese Hui (25·0%) and Chinese Mongolian (10·9%) subjects than has been reported for Caucasians (1·7–3·0%, P < 0·01). The prevalent defective allele CYP2C19*2 occurred more frequently in both Chinese Hui (32·4%) and Han (29·7%) than in Chinese Mongolian (18·2%, P < 0·01) subjects. The CYP2C19*2 and CYP2C19*3 defective alleles were significantly more frequent in Chinese Han and Chinese Hui ethnic groups than have been reported for Caucasians (11·1–16·3% and 0–0·2%, P < 0·01). CYP2D6*1/*10 heterozygotes and CYP2D6*10/*10 homozygotes were observed more frequently in Chinese Han (43·1% and 27·2%), Hui (40·6% and 30·7%) and Mongolian subjects (31·3% and 9·6%, both P < 0·01) than have been reported for Caucasians (5·5% and 0·3%, P < 0·01). In Chinese Mongolians, the CYP2D6*10 allele occurred at a frequency (25·2%, P < 0·01) intermediate between those reported for Caucasians and the other two Chinese ethnic populations. What is new and Conclusions: This is first report of interethnic differences in frequencies of functional CYP2C19 and CYP2D6 genes among Chinese Mongolian, Hui and Han populations. These differences may be important in explaining reported inter‐ethnic differences in disease prevalence and response to drugs.  相似文献   

6.
What is Known and Objective: The pathogenic mechanism of antituberculosis drug‐induced hepatotoxicity (ATDH) is thought to involve drug‐metabolizing enzymes including N‐acetyl transferase2 (NAT2), cytochrome P4502E1 (CYP2E1) and glutathione S‐transferase (GST) M1, T1. The associations between genetic polymorphisms of those genes and ATDH have been reported but with inconsistent results. Moreover, most studies were hospital‐based retrospective studies and not prospective. We aimed to investigate possible associations of CYP2E1, GSTM1 and GSTT1 genetic polymorphisms with ATDH using a more robust case–control study nested in a population‐based prospective antituberculosis treatment cohort. Methods: A total of 4304 patients with smear‐positive tuberculosis (TB) who received standard short‐course chemotherapy were monitored for 6–9 months. Incidence density sampling method was adopted to select controls and 4 : 1 matched with each ATDH cases by age (±5 years), sex, treatment history, disease severity and drug dosage. The CYP2E1, GSTM1 and GSTT1 polymorphisms were genotyped using PCR–RFLP and multiplex PCR methods. Conditional logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval (CI), as well as corresponding P‐values. Results and Discussion: A total of 89 ATDH cases and 356 controls were included in this study. There was no statistically significant association between CYP2E1 RsaI c1/c1 genotype or DraI C/C genotype and ATDH (OR = 0·99, 95% CI:0·62–1·59; OR = 1·13, 95% CI: 0·40–3·20, respectively) compared with CYP2E1 RsaI c1/c2 or c2/c2 genotypes or DraI D/D genotype, or between GSTM1/GSTT1 null genotypes and ATDH (OR = 1·22, 95% CI: 0·76–1·96; OR = 0·96, 95% CI: 0·60–1·52, respectively) compared with non‐null genotypes. What is new and Conclusion: This is the first study of the involvement of CYP2E1, GSTM1 and GSTT1 genetic polymorphisms in ATDH using a nested case–control population‐based prospective cohort design. We could not confirm positive associations of genetic polymorphisms of CYP2E1 RsaI, CYP2E1 DraI, GSTM1 null and GSTT1 null with ATDH reported by various groups, in our Chinese TB population.  相似文献   

7.
OBJECTIVE: We evaluated the potential of 15 herbal medicines (HMs), commonly used in Korea, to inhibit the catalytic activities of several cytochrome P450 (CYP) isoforms and microsomal NADPH-CYP reductase. METHODS: The abilities of 1-1000 microg/mL of freeze-dried aqueous extracts of 15 HMs to inhibit phenacetin O-deethylation (CYP1A2), tolbutamide 4-methylhydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), midazolam 1-hydroxylation (CYP3A4) and NADPH-CYP reductase were tested using human liver microsomes. RESULTS: The HMs Epimedii herba, Glycyrrhizae radix and Leonuri herba inhibited one or more of the CYP isoforms or NADPH-CYP reductase. Of the three HMs, Epimedii herba extracts were the most potent inhibitors of several CYP isoforms (IC(50) 67.5 microg/mL for CYP2C19, 104.8 microg/mL for CYP2E1, 110.9 microg/mL for CYP2C9, 121.9 microg/mL for CYP3A4, 157.8 microg/mL for CYP2D6 and 168.7 microg/mL for CYP1A2) and NADPH-CYP reductase (IC(50) 185.9 microg/mL ). CONCLUSION: These results suggest that some of the HMs used in Korea have the potential to inhibit CYP isoforms in vitro. Although the plasma concentrations of the active constituents of the HMs were not determined, some herbs could cause clinically significant interactions because the usual doses of those individual herbs are several grams of freeze-dried extracts. Controlled trials to test the significance of these results are necessary.  相似文献   

8.
Kinase inhibitors (KIs) represent an important group of anticancer drugs, and many of them are substrates and inhibitors of human cytochrome P450s (CYPs), raising the potential of harmful drug interactions. This study investigated the effect of a library of KIs (= 91) including 11 FDA‐approved KIs on human CYP1A2, 2D6, 2C9, and 3A4 using high‐throughput screening kits and the binding modes with CYPs using the Discovery Studio program 3.1. The KIs exhibited differential inhibitory effect on CYP1A2, 2D6, 2C9, and 3A4, while some of them showed activating effect on CYP2C9 and 3A4. For example, SP 600125 was a potent inhibitor for CYP1A2, but enhanced the activity of CYP2C9 fourfolds. Among the 80 KIs that are not used clinically, about 13% showed significant inhibition to CYPs. Nilotinib, sunitinib, and imatinib were found to be potent CYP1A2 inhibitor. Our docking studies have demonstrated the importance of multiple amino acid residues in the active sites of CYP1A2, 2C9, 2D6, and 3A4 in binding with various KIs. Finally, the in vitro data were used to predict potential KI–drug interactions. These findings indicate that many KIs can serve as CYP inhibitors, and further studies are needed to examine the clinical impact.  相似文献   

9.
What is known and Objective: Coumarin derivatives such as acenocoumarol represent the therapy of choice for the long‐term treatment and prevention of thromboembolic diseases. Many genetic, clinical and demographic factors have been shown to influence the anticoagulant dosage. Our aim was to investigate the contribution of genetic and non‐genetic factors to variability in response to acenocoumarol in Moroccan patients. Methods: Our study included 114 adult Moroccan patients, receiving long‐term acenocoumarol therapy for various indications. Tests for VKORC1 ‐1639G>A promoter polymorphism (rs9923231), CYP2C9*2 rs1799853, CYP2C9*3 rs1057910, and CYP4F2 rs2108622 alleles were undertaken using Taq Man® Pre‐Developed Assay Reagents for allelic discrimination. The statistical analysis was performed using the SAS V9 statistical package. Results and Discussion: Genotyping showed that the allele frequencies for the SNPs studied were no different to those found in Caucasians population. A significant association was observed between the weekly maintenance dose and the VKORC1 (P = 0·0027) and CYP2C9 variant genotypes (P = 0·0082). A final multivariate regression model that included the target International Normalized Ratio, VKORC1 and CYP2C9 genotypes explained 36·2% of the overall interindividual variability in acenocoumarol dose requirement. What is new and Conclusion: Our study shows large interindividual variability in acenocoumarol maintenance dose requirement in our population. VKORC1 and CYP2C9 variants significantly affected acenocoumarol dose, in‐line with results in other populations. For the Moroccan population, the SNPs that have the largest effect on acecoumarol dose are CYP2C9 rs1799853, CYP2C9 rs1057910 and VKORC1 rs9923231.  相似文献   

10.
BACKGROUND AND OBJECTIVES: Trimethadione (TMO), an antiepileptic drug, may be used as a candidate for estimating hepatic drug-oxidizing activity. While TMO metabolism is mainly catalysed by CYP2C9, CYP2E1 and CYP3A4 the contribution of the different isoforms is unclear. In this study, we determined the percentage contribution of the three CYPs (CYP2C9, CYP2E1 and CYP3A4) to TMO N-demethylation. METHOD: We used human liver microsomes and human recombinant CYPs expressed in human B-lymphoblast cells and baculovirus-infected insect cells. RESULTS: The mean Km, Vmax and Vmax/Km values of TMO N-demethylation in human microsomes were 3.66 (mm), 503 (pmol/min/mg) and 2.61 (mL/h/mg), respectively. In the microsomes from human B-lymphoblast cells or baculovirus-infected insect cells, CYP 2C9, CYP 2E1 and CYP3A4 exhibited similar Km and higher Vmax in baculovirus-infected insect cells than B-lymphoblast cells. In baculovirus-infected insect cells, CYP2C9, CYP2E1 and CYP3A4 exhibited activities of 32, 286 and 77 pmol/min/pmol CYP, respectively. No CYP activity catalysed by CYP1A2 and 2D6 were detected in the two human cDNA expressed CYP isoforms. CONCLUSION: TMO is metabolized not only by CYP2E1 but also CYP3A4 and CYP2C9. The order of this metabolism is as follows: CYP2E1 > CYP3A4 > CYP2C9.  相似文献   

11.
What is known and Objective: Cholesterol excretion by ATP binding cassette transporters G5 and G8 (ABCG5/G8) and bile acid biosynthesis by 7a‐hydroxylase (CYP7A1) are major pathways for the removal of cholesterol into bile. This suggests that variations in the CYP7A1 and ABCG8 genes may influence the statin response. We aimed to investigate the effect of CYP7A1 A204C and ABCG8 C1199A polymorphisms and their interactions on the lipid‐lowering response to atorvastatin in a Chinese population. Methods: Genotypes were determined by using polymerase chain reaction‐restrict fragment length polymorphism (PCR‐RFLP) in 185 hyperlipidaemic patients treated with atorvastatin, 20 mg once daily for 4 weeks. Serum levels of triglycerides (TGs), total cholesterol (TC), low‐density lipoprotein cholesterol (LDL‐C), and high‐density lipoprotein cholesterol (HDL‐C) were determined before and after treatment. Results and Discussion: For 181 patients (89 males), variant allele frequencies of CYP7A1 ‐204C and ABCG8 1199A were 0·347 and 0·128, respectively. Among all patients, homozygotes for the ‐204A allele showed a slightly significant mean percentage reduction from baseline in TG level after treatment than heterozygotes and homozygotes for the ‐204C allele (?25·49 ± 8·12%vs. ?22·80 ± 8·72%, P = 0·054, and ?25·49 ± 8·12%vs.?22·51 ± 8·82%, P = 0·048, respectively). For patients with the ABCG8 C1199A variant allele, the difference in percentage reduction from baseline in TG level was increased between the CYP7A1 A‐204C wild‐type allele homozygotes and variant allele homozygotes after atorvastatin treatment (?28·35%vs.?19·28%, P = 0·001), and increased differences were found between the CYP7A1 A‐204C wild‐allele homozygotes and variant allele homozygotes (?18·95%vs.?15·61%, P = 0·009) and between the CYP7A1 A‐204C variant allele heterozygotes and homozygotes (?18·69%vs.?15·61%, P = 0·012, respectively). What is new and Conclusion: The CYP7A1 ‐204A and ABCG8 1199A alleles appear to interact to affect lipid‐lowering response to atorvastatin. However, given the relatively small number of subjects with the influential variant allele combinations, and the heterogeneity in response, even in the selected sub‐populations, testing would be of little clinical utility in the Chinese population sampled.  相似文献   

12.
The purpose of the study was to elucidate human intestinal cytochrome P450 isoform(s) involved in the metabolism of an antihistamine, ebastine, having two major pathways of hydroxylation and N-dealkylation. The ebastine dealkylase in human intestinal microsomes was CYP3A4, based on the inhibition studies with antibodies against CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A isoforms and their selective inhibitors. However, ebastine hydroxylase could not be identified. We then examined the inhibitory effects of anti-CYP4F antibody and 17-octadecynoic acid, an inhibitor of the CYP4 family, on ebastine hydroxylation in intestinal microsomes, since CYP4F was recently found to be the predominant ebastine hydroxylase in monkey intestine; and a novel CYP4F isoform (CYP4F12), also capable of hydroxylating ebastine, was found to exist in human intestine. However, the inhibitory effects were only partial (about 20%) and thus it was thought that, although human CYP4F was involved in ebastine hydroxylation, another predominant enzyme exists. Further screening showed that the hydroxylation was inhibited by arachidonic acid. CYP2J2 was selected as a candidate expressed in the intestine and closely related to arachidonic acid metabolism. The catalytic activity of recombinant CYP2J2 was much higher than that of CYP4F12. Anti-CYP2J antibody inhibited the hydroxylation to about 70% in human intestinal microsomes. These results demonstrate that CYP2J2 is the predominant ebastine hydroxylase in human intestinal microsomes. Thus, the present paper for the first time indicates that, in human intestinal microsomes, both CYP2J and CYP4F subfamilies not only metabolize endogenous substrates but also are involved in the drug metabolism.  相似文献   

13.
What is known and Objective: Polymorphisms in the gene encoding CYP4F2 may partly explain the variability in warfarin maintenance dose by altering the metabolism of vitamin K. To determine the genetic factors that cause large inter‐patient variability in warfarin efficacy, we investigated the relationship between serum warfarin concentration and CYP4F2 V433M (1347C>T, rs2108622) polymorphism in Japanese subjects. Methods: Gene variations in VKORC1, CYP2C9 and CYP4F2 were analysed in 126 Japanese patients treated with warfarin. The daily dosage of warfarin, concentration of S‐ and R‐warfarin in plasma, and prothrombin time international normalized ratio (PT‐INR) was used as the pharmacokinetic and pharmacodynamic indices. Results and Discussion: The maintenance dose of warfarin was larger in the CYP4F2 1347 CT genotype group (3·59 ± 1·80 mg/day, P = 0·027) than in the CYP4F2 CC genotype group (2·88 ± 1·00 mg/day). CYP4F2 1347C>T polymorphism significantly affected serum R‐warfarin concentration when the VKORC1‐1639 genotypes are AG and GG. What is new and Conclusion: Although a significant inter‐patient difference in warfarin maintenance dose was observed between the CYP4F2 CC and CT genotypes, serum S‐warfarin concentration was not significantly different between them. An effect of CYP4F2 V433M polymorphism on warfarin maintenance dose was observed but was relatively small when compared to the effects of CYP2C9 and VKOR polymorphism.  相似文献   

14.
The relative activity factor (RAF) approach is being increasingly used in the quantitative phenotyping of multienzyme drug biotransformations. Using lymphoblast-expressed cytochromes P450 (CYPs) and the tricyclic antidepressant amitriptyline as a model substrate, we have tested the hypothesis that the human liver microsomal rates of a biotransformation mediated by multiple CYP isoforms can be mathematically reconstructed from the rates of the biotransformation catalyzed by individual recombinant CYPs using the RAF approach, and that the RAF approach can be used for the in vitro-in vivo scaling of pharmacokinetic clearance from in vitro intrinsic clearance measurements in heterologous expression systems. In addition, we have compared the results of two widely used methods of quantitative reaction phenotyping, namely, chemical inhibition studies and the prediction of relative contributions of individual CYP isoforms using the RAF approach. For the pathways of N-demethylation (mediated by CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and E-10 hydroxylation (mediated by CYPs 2B6, 2D6, and 3A4), the model-predicted biotransformation rates in microsomes from a panel of 12 human livers determined from enzyme kinetic parameters of the recombinant CYPs were similar to, and correlated with the observed rates. The model-predicted clearance via N-demethylation was 53% lower than the previously reported in vivo pharmacokinetic estimates. Model-predicted relative contributions of individual CYP isoforms to the net biotransformation rate were similar to, and correlated with the fractional decrement in human liver microsomal reaction rates by chemical inhibitors of the respective CYPs, provided the chemical inhibitors used were specific to their target CYP isoforms.  相似文献   

15.
What is known and Objective: Tacrolimus (TAC) is metabolized mainly by the CYP3A subfamily and extruded into the intestine by P‐glycoprotein, which is encoded by the ABCB1 gene. Several studies have suggested that the CYP3A5*3 genotype influenced the pharmacokinetics (PK) of TAC. The CYP3A4*18B and CYP3A5*3 alleles are clinically important in Chinese subjects because of their relatively high frequency. The present study aimed at evaluating the effects of ABCB1 (C1236T‐G2677T/A‐C3435T), CYP3A4*18B and CYP3A5*3 genetic polymorphisms on TAC PK in healthy Chinese subjects. Methods: Data were obtained from a comparative bioavailability study of oral TAC formulations (n = 22). TAC whole blood concentrations were measured by LC‐MS/MS. Genetic polymorphisms were determined using a direct sequencing method. Nonlinear mixed‐effects modelling (NONMEM) was performed to assess the effect of genotypes and demographics on TAC PKs. Results and Discussion: Both CYP3A4*18B and CYP3A5*3 polymorphisms affected the TAC PK, whereas ABCB1 genetic polymorphisms and other demographic characteristics did not. The combined genotypes of CYP3A4*18B and CYP3A5*3 had a greater impact than either genotype alone, and they were estimated to account for 28·4% of the inter‐subject variability of apparent clearance (CL/F) by NONMEM. The CL/F in subjects with CYP3A4*1/*1‐CYP3A5*3/*3 was 10·3 L/h and was 48·5% in those not carrying CYP3A4*1/*1‐CYP3A5*3/*3. What is new and Conclusion: This is the first study to extensively explore the influence of CYP3A4*18B, CYP3A5*3 and ABCB1 genetic polymorphisms on TAC PK in healthy Chinese subjects. The results demonstrated that subjects with a combined genotype of CYP3A4*1/*1‐CYP3A5*3/*3 may require lower TAC doses to achieve target concentration levels and further investigation is needed in larger populations to confirm the clinical benefits.  相似文献   

16.
What is known and objective: Tacrolimus, a widely used immunosuppressive agent in organ transplantation, has a narrow therapeutic window. It has been suggested that its interaction with lansoprazole could be dependent on polymorphisms of CYP3A5 and CYP2C19. The objective of this study was to investigate how, 1 year after renal transplantation, CYP3A5 and CYP2C19 polymorphisms, biochemical parameters and coadministration with lansoprazole, influenced tacrolimus pharmacokinetics. Methods: The pharmacokinetics of tacrolimus was studied 1 year after renal transplantation, in 75 recipients who were all receiving continuation treatment with 12‐hourly oral tacrolimus, and 30 mg lansoprazole daily (Group 1; n = 20) or, 10 mg rabeprazole daily or no proton pump inhibitor (Group 2; n = 55). Results: There were no significant differences in the dose‐adjusted area under the plasma concentration–time curve (AUC0–12) and maximum plasma concentration (Cmax) of tacrolimus between CYP2C19 genotype groups, but there were significant differences between CYP3A5 genotypes groups (*1/*1 + *1/*3 vs. *3/*3 = 45·2 ± 20·0 vs. 71·0 ± 34·1 ng·h/mL/mg, P < 0·0001 and 6·3 ± 2·6 vs. 9·3 ± 7·0 ng/mL/mg, P = 0·0017, respectively) and between co‐administration with and without lansoprazole (74·5 ± 34·0 vs. 52·4 ± 27·4 ng·h/mL/mg, P = 0·0054 and 10·9 ± 8·8 vs. 6·7 ± 3·0 ng/mL/mg, P = 0·0024, respectively). In a multiple regression analysis, the dose‐adjusted AUC0–12 and Cmax of tacrolimus were associated with CYP3A5*3/*3 and co‐administration with lansoprazole. What is new and conclusion: CYP2C19 does not seem to contribute to the interaction between tacrolimus and lansoprazole. The long‐term combination of tacrolimus and lansoprazole requires careful monitoring of patients with the CYP3A5*3/*3 genotype.  相似文献   

17.
R126638 is a novel triazole with in vitro activity similar to that of itraconazole against dermatophytes, Candida spp., and Malassezia spp. In animal models of dermatophyte infections, R126638 showed superior antifungal activity. R126638 inhibits ergosterol synthesis in Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis at nanomolar concentrations, with 50% inhibitory concentrations (IC(50)s) similar to those of itraconazole. The decreased synthesis of ergosterol and the concomitant accumulation of 14 alpha-methylsterols provide indirect evidence that R126638 inhibits the activity of CYP51 that catalyzes the oxidative removal of the 14 alpha-methyl group of lanosterol or eburicol. The IC(50)s for cholesterol synthesis from acetate in human hepatoma cells were 1.4 microM for itraconazole and 3.1 microM for R126638. Compared to itraconazole (IC(50) = 3.5 microM), R126638 is a poor inhibitor of the 1 alpha-hydroxylation of 25-hydroxyvitamin D(3) (IC(50) > 10 microM). Micromolar concentrations of R126638 and itraconazole inhibited the 24-hydroxylation of 25-hydroxyvitamin D(3) and the conversion of 1,25-dihydroxyvitamin D(3) into polar metabolites. At concentrations up to 10 microM, R126638 had almost no effect on cholesterol side chain cleavage (CYP11A1), 11 beta-hydroxylase (CYP11B1), 17-hydroxylase and 17,20-lyase (CYP17), aromatase (CYP19), or 4-hydroxylation of all-trans retinoic acid (CYP26). At 10 microM, R126638 did not show clear inhibition of CYP1A2, CYP2A6, CYP2D6, CYP2C8, CYP2C9, CYP2C10, CYP2C19, or CYP2E1. Compared to itraconazole, R126638 had a lower interaction potential with testosterone 6 beta hydroxylation and cyclosporine hydroxylation, both of which are catalyzed by CYP3A4, whereas both antifungals inhibited the CYP3A4-catalyzed hydroxylation of midazolam similarly. The results suggest that R126638 has promising properties and merits further in vivo investigations for the treatment of dermatophyte and yeast infections.  相似文献   

18.
BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.  相似文献   

19.
What is known and Objectives: Testing for cytochrome P450‐2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) variant alleles is recommended by the FDA for dosing of warfarin. However, dose prediction models derived from data obtained in one population may not be applicable to another. We therefore studied the impact of genetic polymorphisms of CYP2C9 and VKORC1 on warfarin dose requirement in Malaysia. Methods: Patients who were attending clinics at our hospital and prescribed warfarin with stabilized INR levels of 2–4 were selected. DNA was extracted from blood samples and subsequently genotyped for CYP2C9*1, *2, *3, VKORC1 (G‐1639A) and VKORC1 C1173T. Linear regression modelling using age, CYP2C9 and VKORC1 genotypes, sex, weight and height was undertaken to define a warfarin dosing algorithm. An initial model was developed using data from one cohort of patients and validated using data from a second cohort. Results and Discussion: A model which included age and variants of CYP2C9 and VKORC1 account for about 37% of the variability in warfarin dose required to achieve INR of 2–4. Among the parameters evaluated, only VKORC1 (G‐1639A) and (C1173T) alleles, and age correlated with warfarin dose at 6 month. The mean dose predicted using the algorithm derived from cohort 1 was lower than the actual dose for cohort 2 (3·30 mg, SD 0·84 vs. 3·45 mg, SD 1·42). There was no relationship between INR values and the dose taken by the patients. Race, sex, weight and height did not correlate with dose. What is new and Conclusion: This study identifies factors which affect warfarin dosing in the Malaysia population. However, our best model does not account sufficiently for the variability in dose requirements for it to be used in dose prediction for the individual patient. Other important influential factors affecting warfarin dose requirement remain to be identified.  相似文献   

20.
What is known and Objective: CYP2C19*17 allele increases the metabolic activity of CYP2C19 resulting in decreased therapeutic levels of CYP2C19 substrates. There exist inter‐ethnic differences in the distribution of this allele. The present study was aimed at establishing the allele and genotype frequencies of CYP2C19*17 in a South Indian Tamilian population. Furthermore, we describe the haplotype structure of the three common variant alleles of CYP2C19 in the Tamilian population. Methods: Two hundred and six subjects of South Indian Tamilian origin were genotyped for CYP2C19*17 allele by nested polymerase chain reaction and restriction fragment length polymorphism. A subset of 87 subjects were also genotyped for CYP2C19*2 and CYP2C19*3 alleles. After ascertaining linkage disequilibrium (LD), haplotypes were constructed. Allele and genotype frequencies, LD pattern and haplotype frequency were compared with those of the HapMap populations. Results and Discussion: The CYP2C19*17 allele frequency in the Tamilian population (n = 206) was found to be 19·2% (95% CI: 15·4 – 20·3). The CYP2C19*2 allele frequency (n = 87) was found to be 40·2% (95% CI: 32·9 – 47·5), whereas the CYP2C19*3 allele was not detected in the study subjects (n = 97). The high frequency of the CYP2C19*17 allele in the study population has resulted in a revision of frequencies for CYP2C19*1/*2 (31·0%) and CYP2C19*1/*1 (16·1%) genotypes in the Tamilian population. We also observed significant differences in haplotype structure and frequencies of these variant alleles in the HapMap population compared to Tamilian population. What is new and conclusion: CYP2C19*17 allele is present at high frequency in the Tamilian population. This study also demonstrates the need for reassessment of wild‐type allele frequencies in view of CYP2C19*17 allele. The estimated high frequency of CYP2C19*17 allele will aid in genotype–phenotype association studies in the Tamilian population. Further genotype–phenotype association studies are required to evaluate the clinical utility of this allele in South Indians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号