首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The majority of Atm-deficient mice die of malignant thymic lymphoma by 4-5 mo of age. Cytogenetic abnormalities in these tumors are consistently identified within the Tcr alpha/delta locus, suggesting that tumorigenesis is secondary to aberrant responses to double-stranded DNA breaks that occur during V(D)J recombination. Since V(D)J recombination is a recombinase-activating gene (RAG)-dependent process, we generated Rag2(-/-)Atm(-/-) mice to assess the requirement for RAG-dependent recombination in thymic lymphomagenesis. In contrast to expectation, the data presented here indicate that development of malignant thymic lymphoma in Atm(-/-) mice is not prevented by loss of RAG-2 and thus is not dependent on V(D)J recombination. Malignant thymic lymphomas in Rag2(-/-)Atm(-/-) mice occurred at a lower frequency and with a longer latency as compared with Atm(-/-) mice. Importantly, cytogenetic analysis of these tumors indicated that multiple chromosomal abnormalities occurred in each tumor, but that none of these involved the Tcr alpha/delta locus. Nonmalignant peripheral T cells from TCR-transgenic Rag2(-/-)Atm(-/-) mice also revealed a substantial increase in translocation frequency, suggesting that these translocations are early events in the process of tumorigenesis. These data are consistent with the hypothesis that the major mechanism of tumorigenesis in Atm(-/-) mice is via chromosomal translocations and other abnormalities that are secondary to aberrant responses to double-stranded DNA breaks. Furthermore, these data suggest that V(D)J recombination is a critical, but not essential, event during which Atm-deficient thymocytes are susceptible to developing chromosome aberrations that predispose to malignant transformation.  相似文献   

2.
We analyzed the usage of the delta recombining element (delta Rec) and six V delta genes in cell samples from 15 patients with CD3- and 10 patients with CD3+ T-cell acute lymphoblastic leukemia in an attempt to define the hierarchy of genetic events that is associated with the T-cell receptor (TCR) alpha/delta gene complex during T-cell ontogeny. Based on the deletion patterns of these genes, we surmised their relative order on chromosome 14 to be as follows: 5'-V delta 4, V delta 6, V delta 1, V delta 5, delta Rec, V delta 2, D delta 1-3, J delta 1-3, C delta, V delta 3-3'. In agreement with previous reports, V delta 1 was found to be preferentially rearranged in CD3+ samples. In CD3- samples, V delta 2 and V delta 3 rearrangements were observed at a high frequency. Incomplete V delta D delta rearrangements using V delta 2 or V delta 3, which are closest to C delta, were observed in three patients with CD3- and one patient with CD3+. These results suggest that V delta 2- and V delta 3-(Dn)D delta 3 recombinations are among the earliest recombinational events. Delta Rec was observed to be rearranged to phi J alpha on one allele. In addition, delta Rec rearrangements to J delta 1 and J alpha close to phi J alpha were also demonstrated on three alleles and one allele, respectively. Delta Rec rearrangements to J delta and J alpha other than phi J alpha also inhibit expression of the TCR delta locus. Approximately half of the alleles with J delta rearrangements showed no involvement of known V delta or delta Rec, indicating the existence of other, yet-uncharacterized V delta or delta Rec-like segments.  相似文献   

3.
Matei IR  Gladdy RA  Nutter LM  Canty A  Guidos CJ  Danska JS 《Blood》2007,109(5):1887-1896
Mutations in ATM (ataxia-telangiectasia mutated) cause ataxia-telangiectasia (AT), a disease characterized by neurodegeneration, sterility, immunodeficiency, and T-cell leukemia. Defective ATM-mediated DNA damage responses underlie many aspects of the AT syndrome, but the basis for the immune deficiency has not been defined. ATM associates with DNA double-strand breaks (DSBs), and some evidence suggests that ATM may regulate V(D)J recombination. However, it remains unclear how ATM loss compromises lymphocyte development in vivo. Here, we show that T-cell receptor beta (TCRbeta)-dependent proliferation and production of TCRbeta(low) CD4+CD8+ (DP) thymocytes occurred normally in Atm-/- mice. In striking contrast, the postmitotic maturation of TCRbeta(low) DP precursors into TCRbeta(int) DP cells and TCRbeta(hi) mature thymocytes was profoundly impaired. Furthermore, Atm-/- thymocytes expressed abnormally low amounts of TCRalpha mRNA and protein. These defects were not attributable to the induction of a BCL-2-sensitive apoptotic pathway. Rather, they were associated with frequent biallelic loss of distal Va gene segments in DP thymocytes, revealing that ATM maintains Tcra locus integrity as it undergoes V(D)J recombination. Collectively, our data demonstrate that ATM loss increases the frequency of aberrant Tcra deletion events, which compromise DP thymocyte maturation and likely promote the generation of oncogenic TCR translocations.  相似文献   

4.
Bassing CH  Ranganath S  Murphy M  Savic V  Gleason M  Alt FW 《Blood》2008,111(4):2163-2169
Histone H2AX is required to maintain genomic stability in cells and to suppress malignant transformation of lymphocytes in mice. H2ax(-/-)p53(-/-) mice succumb predominantly to immature alphabeta T-cell lymphomas with translocations, deletions, and genomic amplifications that do not involve T-cell receptor (TCR). In addition, H2ax(-/-)p53(-/-) mice also develop at lower frequencies B and T lymphomas with antigen receptor locus translocations. V(D)J recombination is initiated through the programmed induction of DNA double-strand breaks (DSBs) by the RAG1/RAG2 endonuclease. Because promiscuous RAG1/RAG2 cutting outside of antigen receptor loci can promote genomic instability, H2ax(-/-)p53(-/-) T-lineage lymphomas might arise, at least in part, through erroneous V(D)J recombination. Here, we show that H2ax(-/-)p53(-/-)Rag2(-/-) mice exhibit a similar genetic predisposition as do H2ax(-/-)p53(-/-) mice to thymic lymphoma with translocations, deletions, and amplifications. We also found that H2ax(-/-)p53(-/-)Rag2(-/-) mice often develop thymic lymphomas with loss or deletion of the p53(+) locus. Our data show that aberrant V(D)J recombination is not required for rapid onset of H2ax/p53-deficient thymic lymphomas with genomic instability and that H2ax deficiency predisposes p53(-/-)Rag2(-/-) thymocytes to transformation associated with p53 inactivation. Thus, H2AX is essential for suppressing the transformation of developing thymocytes arising from the aberrant repair of spontaneous DSBs.  相似文献   

5.
We analysed the organization of V delta genes and delta recombining element (delta Rec) in 27 children with B-cell precursor acute lymphoblastic leukaemia. Twenty-two of 54 alleles showed rearrangements of the T-cell receptor (TCR) delta locus. These rearrangements resulted either from D2D delta 3 (2 alleles) or V delta 2(Dn)D delta 3 (20 alleles) recombinations, and the other V delta and delta Rec were not rearranged. Of 23 alleles with deletion of C delta and rearrangements of J alpha, V delta 2, V delta 4 and V delta 5 appeared to rearrange to J alpha on five alleles. With regard to the relationship between the rearranged V alpha/delta and J alpha genes, gene segments 5' to V delta 2 frequently rearranged to J alpha more proximal to C alpha, whereas V delta 2 and gene segments 3' to V delta 2 showed a tendency to rearrange to J alpha distal to C alpha. Based on these findings, we suggest that the initial recombination event of the TCR-alpha/delta gene may be D2D delta 3 joining, followed by V delta 2 recombination with the D2D delta 3 complex. It was also suggested that use of V alpha/delta and J alpha/delta may depend on the distance between the involved V alpha/delta and J alpha/delta at least in B-lineage cells. These rearrangements in B-precursor cells appear to be aberrant. However, this recombinational process may be one of the normal differentiation pathways in T-lineage cells, because cells with a V delta 2(Dn)D delta 3 rearrangement were detected in 0.1-0.01% of normal peripheral mononuclear cells by the polymerase chain reaction.  相似文献   

6.
Crosslineage T-cell receptor delta (TCR delta) rearrangements are widely used as tumor markers for the follow up of minimal residual disease in childhood B-precursor acute lymphoblastic leukemia (ALL) by polymerase chain reaction (PCR). The major drawback of this approach is the risk of false-negative results due to clonal evolution. We investigated the stability of V delta 2D delta 3 rearrangements in a group of 56 childhood B-precursor ALL patients by PCR and Southern blot analysis. At the PCR level, V delta 2D delta 3-to-J alpha rearranged subclones (one pathway for secondary TCR delta recombination) were demonstrated in 85.2% of V delta 2D delta 3-positive patients tested, which showed that small subclones are present in the large majority of patients despite apparently monoclonal TCR delta Southern blot patterns. Sequence analysis of V delta 2D delta 3J alpha rearrangements showed a biased J alpha gene usage, with HAPO5 and J alpha F in 26 of 32 and 6 of 32 clones, respectively. Comparison of V delta 2D delta 3 rearrangement status between diagnosis and first relapse showed differences in seven of eight patients studied. In contrast, from first relapse onward, no clonal changes were observed in six patients studied. To investigate the occurrence of crosslineage TCR delta rearrangements in normal B and T cells, fluorescence-activated cell sorter-sorted peripheral blood CD19+/CD3- and CD19-/CD3+ cell populations from three healthy donors were analyzed. V delta 2D delta 3 rearrangements were detected at low frequencies in both B and T cells, which suggests that V delta 2-to-D delta 3 joining also occurs during normal B-cell differentiation. A model for crosslineage TCR delta rearrangements in B-precursor ALL is deduced that explains the observed clonal changes between diagnosis and relapse and is compatible with multistep leukemogenesis of B-precursor ALL.  相似文献   

7.
Nonhomologous end joining (NHEJ), a major pathway of DNA double-strand break (DSB) repair, is required during lymphocyte development to resolve the programmed DSBs generated during Variable, Diverse, and Joining [V(D)J] recombination. XRCC4-like factor (XLF) (also called Cernunnos or NHEJ1) is a unique component of the NHEJ pathway. Although germ-line mutations of other NHEJ factors abrogate lymphocyte development and lead to severe combined immunodeficiency (SCID), XLF mutations cause a progressive lymphocytopenia that is generally less severe than SCID. Accordingly, XLF-deficient murine lymphocytes show no measurable defects in V(D)J recombination. We reported earlier that ATM kinase and its substrate histone H2AX are both essential for V(D)J recombination in XLF-deficient lymphocytes, despite moderate role in V(D)J recombination in WT cells. p53-binding protein 1 (53BP1) is another substrate of ATM. 53BP1 deficiency led to small reduction of peripheral lymphocyte number by compromising both synapse and end-joining at modest level during V(D)J recombination. Here, we report that 53BP1/XLF double deficiency blocks lymphocyte development at early progenitor stages, owing to severe defects in end joining during chromosomal V(D)J recombination. The unrepaired DNA ends are rapidly degraded in 53BP1(-/-)XLF(-/-) cells, as reported for H2AX(-/-)XLF(-/-) cells, revealing an end protection role for 53BP1 reminiscent of H2AX. In contrast to the early embryonic lethality of H2AX(-/-)XLF(-/-) mice, 53BP1(-/-)XLF(-/-) mice are born alive and develop thymic lymphomas with translocations involving the T-cell receptor loci. Together, our findings identify a unique function for 53BP1 in end-joining and tumor suppression.  相似文献   

8.
The ATM (ataxia telangiectasia mutated) protein plays a central role in sensing and responding to DNA double-strand breaks. Lymphoid cells are unique in undergoing physiologic double-strand breaks in the processes of Ig class switch recombination and T or B cell receptor V(D)J recombination, and a role for ATM in these processes has been suggested by clinical observations in ataxia telangiectasia patients as well as in engineered mice with mutations in the Atm gene. We demonstrate here a defect in thymocyte maturation in ATM-deficient mice that is associated with decreased efficiency in V-J rearrangement of the endogenous T cell receptor (TCR)alpha locus, accompanied by increased frequency of unresolved TCR Jalpha coding end breaks. We also demonstrate that a functionally rearranged TCRalphabeta transgene is sufficient to restore thymocyte maturation, whereas increased thymocyte survival by bcl-2 cannot improve TCRalpha recombination and T cell development. These data indicate a direct role for ATM in TCR gene recombination in vivo that is critical for surface TCR expression in CD4(+)CD8(+) cells and for efficient thymocyte selection. We propose a unified model for the two major clinical characteristics of ATM deficiency, defective T cell maturation and increased genomic instability, frequently affecting the TCRalpha locus. In the absence of ATM, delayed TCRalpha coding joint formation results both in a reduction of alphabeta TCR-expressing immature cells, leading to inefficient thymocyte selection, and in accumulation of unstable open chromosomal DNA breaks, predisposing to TCRalpha locus-associated chromosomal abnormalities.  相似文献   

9.
A high frequency (greater than 80%) of acute lymphoblastic leukemias (ALL) exhibit a recombination of the T-cell receptor (TCR) delta chain locus. Interestingly, distinct TCR delta elements are preferentially used in immunologic subtypes. In a recent series of 201 children with common ALL (cALL) we observed a TCR delta rearrangement in 162 patients, 57% of the latter showing a hybridization pattern in Southern blots suggestive of a V delta 2 to D delta 3 recombination. To verify this interpretation and to elucidate in more detail the diversity of this common type of TCR delta recombination we amplified and sequenced the junctional region of nine cALL patients and cell line REH-6 by polymerase chain reaction (PCR). A V delta 2 D delta 3 recombination was confirmed in all cases; convincing evidence for the participation of D delta 1 or D delta 2 elements was not obtained. Eight of nine patients and REH-6 showed complete 5' D delta 3 boundaries within V delta 2 D delta 3 segments, a limitation of junctional diversity also detected in 50% of peripheral blood cell clones derived from two healthy probands. Notably, sequence identity at the V delta 2 D delta 3 junction was demonstrated for a cALL and one of the control clones. Another group of 35 of 162 cALL patients was characterized by V delta 2 rearrangements and biallelic deletion of J delta and C delta sequences. Using a J alpha consensus primer, PCR-directed sequence analysis demonstrated V delta 2 D delta 3 J alpha recombinations in all four cases analyzed by this approach. The J alpha segments of these patients differed, but were identical or homologous to published J alpha elements. Our data suggest a recombination pathway of the TCR delta/alpha locus leading to chimeric TCR alpha molecules, containing V delta and, remarkably, also D delta sequences.  相似文献   

10.
Immune defect in ataxia telangiectasia patients has been attributed to either the failure of V(D)J recombination or class-switch recombination, and the chromosomal translocation in their lymphoma often involves the TCR gene. The ATM-deficient mouse exhibits fewer CD4 and CD8 single-positive T cells because of a failure to develop from the CD4(+)CD8(+) double-positive phase to the single-positive phase. Although the occurrence of chromosome 14 translocations involving TCR-δ gene in ATM-deficient lymphomas suggests that these are early events in T-cell development, a thorough analysis focusing on early T-cell development has never been performed. Here we demonstrate that ATM-deficient mouse thymocytes are perturbed in passing through the β- or γδ-selection checkpoint, leading in part to the developmental failure of T cells. Detailed karyotype analysis using the in vitro thymocyte development system revealed that RAG-mediated TCR-α/δ locus breaks occur and are left unrepaired during the troublesome β- or γδ-selection checkpoints. By getting through these selection checkpoints, some of the clones with random or nonrandom chromosomal translocations involving TCR-α/δ locus are selected and accumulate. Thus, our study visualized the first step of multistep evolutions toward lymphomagenesis in ATM-deficient thymocytes associated with T-lymphopenia and immunodeficiency.  相似文献   

11.
The T-cell receptor (TCR) alpha/delta chain locus on chromosome 14q11 is nonrandomly involved in translocations and inversions in human T-cell neoplasms. We have analyzed three acute T-lymphoblastic leukemia samples carrying a t(10;14)(q24;q11) chromosome translocation by means of somatic cell hybrids and molecular cloning. In all cases studied the translocation splits the TCR delta chain locus. Somatic cell hybrids containing the human 10q+ chromosome resulting from the translocation retain the human terminal deoxynucleotidyltransferase gene mapped at 10q23-q24 and the diversity and joining, D delta 2-J delta 1, regions of the TCR delta chain, but not the V alpha region (variable region of the TCR alpha chain), demonstrating that the split occurred within the V alpha-D delta 2 region. Molecular cloning of the breakpoint junctions revealed that the TCR delta chain sequences involved are made from the D delta 2 segment. The chromosome breakpoints are clustered within a region of approximately 263 base pairs of chromosome 10. The results suggest that the translocation of the TCR delta chain locus to a locus on 10q, which we have designated TCL3, results in deregulation of this putative oncogene, leading to acute T-cell leukemia.  相似文献   

12.
Rearrangements of the T-cell receptor (TCR) delta locus are observed in the majority of human B-cell precursor acute lymphoblastic leukemias (ALL) with a striking predominance of V delta 2(D)D delta 3 recombinations in common ALL (cALL) patients. Recently, we and others showed that almost 20% of cALL cases are characterized by further recombination of V delta 2(D)D delta 3 segments to J alpha elements, thereby deleting the TCR delta locus in analogy to the delta Rec/psi J alpha pathway in differentiating alpha/beta-positive T cells. We report here that two human cALL-derived cell lines, REH and Nalm-6, are competent to recombine the TCR delta/alpha locus under standard tissue culture conditions. Analysis of different REH subclones obtained by limiting dilution of the initial culture showed a biased recombination of V delta 2D delta 3 to distinct J alpha elements. During prolonged tissue culture, a subclone acquired growth advantage and displaced parental cells as well as other subclones. Frequently, the DJ junctions of REH subclones contained extended stretches of palindromic sequences derived from modified D delta 3 coding elements. The other cell line, Nalm-6, started the TCR delta/alpha recombination with an unusual signal joint of a cryptic recombinase signal sequence (RSS) upstream of D delta 3 to the 3' RSS of D delta 3. The RSS dimer was subsequently rearranged in all investigated subclones to an identical J alpha element. Both cell lines might become valuable tools to unravel the complex regulation of TCR delta/alpha recombination pathways in malignant and normal lymphopoiesis.  相似文献   

13.
To define the junctional diversity of T-cell antigen receptor delta gene rearrangements in fresh T-acute lymphoblastic cells and to correlate cell phenotype with the coding potential of rearrangements, we determined the junctional nucleotide sequences of 13 T-cell antigen receptor delta gene rearrangements involving the preferentially rearranged V (V delta 1) and J (J delta 1) segments using in vitro gene amplification and direct sequencing. We showed that, as in gamma delta+ cell lines, extensive junctional diversity exists in these clones and that this diversity is due both to random nucleotide deletions/additions and to the use of at least two D delta segments. We also showed that a high percentage of these rearrangements are potentially translatable (7:13) and that such functional rearrangements occur in both surface CD3+ and CD3- cells. Comparison of alpha beta versus gamma delta surface expression demonstrates that all CD3+ T acute lymphoblastic leukemias with a functional V delta 1-J delta 1 rearrangement express a surface gamma delta receptor and are recognized by the anti-delta monoclonal antibody delta TCS1, whereas a control CD3+ gamma delta+ leukemic case that had not undergone V delta 1 rearrangement was delta TCS1-. In addition, expression of this monoclonal antibody is not restricted by V gamma or C gamma usage or by the covalent or noncovalent link between gamma and delta chains.  相似文献   

14.
Many B-cell tumors have chromosomal translocations that result from failures of the immunoglobulin (Ig) gene during V(D)J recombination, somatic hypermutation (SHM), and class switch recombination (CSR). Nearly half of all multiple myeloma (MM) patients have 14q32/IGH translocations in CSR, including the five common translocations of 11q13/CCND1, 6p21/CCND3, 4p16/FGFR3, 16q23/MAF, and 20q11/MAFB. Although 14q32/IGH translocations are closely related to the biological features of MM, the most consistent and powerful prognostic factor has been reported to be the loss of all (monosomy 13/−13) or part of chromosome 13 (del(13)(q14)/13q−). Our fluorescence in situ hybridization (FISH) analysis method was designed to detect −13/13q− and 14q32/IGH rearrangements in 23 MM patients. FISH disclosed 14q32/IGH translocations in 10 of the 23 (43.5%) patients. The common translocation partners of 14q32/IGH were 11q13/CCND1 (five patients) and 16q23/MAF (four patients), followed in third place by 4p16/FGFR3 (one patient). Nine of the ten patients carrying 14q32/IGH translocations had −13/13q−. Abnormalities of chromosome 13 included −13 in seven (70%) and del(13)(q14) in two (20%). Our results suggest a significant correlation between the presence of 14q32/IGH translocations and chromosome 13 abnormalities (P = 0.0276) in MM patients.  相似文献   

15.
16.
The translocation (11;14)(p13;q11) was observed in karyotypes of leukemic cells from a 3-year-old boy with T-cell acute lymphocytic leukemia (T-ALL). Since this translocation is a recurrent marker of T-ALL, we undertook to investigate its mode of formation and role in leukemogenesis. The cytogenetic breakpoint on chromosome 14 occurs in 14q11, the same band wherein lies the T-cell receptor alpha/delta chain gene; and Southern hybridization analysis of peripheral blood and bone marrow DNA uncovered a tumor-specific rearrangement in the D delta-J delta region of this locus. DNA encompassing the rearrangement was isolated by molecular cloning, and further analysis revealed it to be the t(11;14)(p13;q11) junction. Nucleotide sequence determination of the junction indicates that the 14q11 breakpoint occurs immediately adjacent to the D delta 2 gene segment. Hence, the translocation arose as an aberrant rearrangement between the downstream recombination signal of D delta 2 and a pseudo recombination signal adjacent to the chromosome 11 breakpoint. Finally, comparison of the breakpoint in band 11p13 with those of other translocations (11;14)(p13;q11) identified a breakpoint cluster region of approximately 1.2 kilobase-pairs (kb), alterations of which may promote the development of T-ALL.  相似文献   

17.
Leukemia and lymphoma in ataxia telangiectasia   总被引:17,自引:7,他引:17  
Taylor  AM; Metcalfe  JA; Thick  J; Mak  YF 《Blood》1996,87(2):423-438
There is a large increase in lymphoid malignancy in A-T patients and a total absence of myeloid tumors. Penetrance of the tumor phenotype is about 10% to 15% by early adulthood. The increase in lymphoid malignancy includes both B- and T-cell tumors. However, young A-T patients do not show an increased susceptibility to cALL, and the UK data suggest that B-cell lymphoma occurs in older A-T children. T-cell tumors may occur at any age and may be T-ALL, T-cell lymphoma, or T- PLL; most strikingly, there may be a fourfold to fivefold increased frequency of T-cell tumors compared with that of B-cell tumors in these patients. If this is correct, it is possible that a significant proportion of all T-ALL/T-cell lymphoma in infants might be associated with undiagnosed A-T. The age range and sex predominance for T-ALL may be different for A-T and non-A-T patients and the age range for T-PLL may also be different in A-T and non-A-T patients. There is clearly some uncertainty concerning the ratio of T-cell to B-cell tumors in A- T, but this could be clarified by the publication of all tumors that occur in the disorder. In contrast, 8 of 9 tumors reported in NBS, which shows the same cellular features as A-T, were lymphomas and none was a leukemia. There are several indicators of genetic heterogeneity in A-T that suggest that not all patients are equally susceptible to all T-cell tumor types. Concordance for tumor type within individual families suggests that particular gene defects may be associated with particular tumor types. The logical extrapolation of this argument is that some patients may not have any increased risk for B-cell tumors at all or even to all T-cell types but only to a particular type of T-cell tumor. What is the cause of the increased predisposition to leukemia/lymphoma in A-T patients? There is no evidence that the immunodeficiency in A-T is related to this predisposition. One of the major findings in all A-T patients is the increase in V(D)J-mediated chromosome rearrangement observed in T lymphocytes. Particular chromosome translocations in T cells, involving a break in a TCR gene, are characteristically associated with either T-ALL or T-PLL in non-A-T patients. The majority of T-cell tumors in A-T are T-ALL and T-cell lymphoma, about which virtually nothing is known chromosomally, and the assumption is that the increased number of translocations leads to the increased level of these tumors. In older T patients, the expansion of specific translocation T-cell clones has been followed to the point to which they develop into T-PLL. All the evidence, therefore, suggests that the A-T mutation in the homozygous state allows a large increase in production of translocations formed at the time of V(D)J recombination, and this leads to the increased predisposition to leukemia. The general increased predisposition to T-cell tumors compared with B-cell tumors in A-T patients may be related to a preferential occurrence of translocations in T cells. Relatively little is known about translocations in circulating B lymphocytes in normal individuals, but A-T siblings have been shown to have clonal chromosome rearrangements of both B and T cells, simultaneously, although in these siblings the T-cell clones occupied all the T-cell compartment and the B-cell clones were small. An important inference from these facts is that the A-T defect preferentially affects immune system gene recombination in T cells rather than B cells. Recent evidence suggests that the V(D)J recombination machinery is not identical or is not regulated identically in T- and B-cell progenitors. This finding is consistent with the hypothesis that V(D)J rejoining in the majority, at least, of A-T patients may be preferentially deficient in T cells compared with B cells giving rise to the greatly increased number of translocations and T-cell tumors. Carbonari et al proposed that the recombination defect in A-T cells affected both Ig isotype switching and TCR rearrangeme  相似文献   

18.
19.
The t(11;14)(p13;q11) is presumed to arise from an erroneous T-cell receptor delta TCRD V(D)J recombination and to result in LMO2 activation. However, the mechanisms underlying this translocation and the resulting LMO2 activation are poorly defined. We performed combined in vivo, ex vivo, and in silico analyses on 9 new t(11;14)(p13;q11)-positive T-cell acute lymphoblastic leukemia (T-ALL) as well as normal thymocytes. Our data support the involvement of 2 distinct t(11;14)(p13;q11) V(D)J-related translocation mechanisms. We provide compelling evidence that removal of a negative regulatory element from the LMO2 locus, rather than juxtaposition to the TCRD enhancer, is the main determinant for LMO2 activation in the majority of t(11;14)(p13;q11) translocations. Furthermore, the position of the LMO2 breakpoints in T-ALL in the light of the occurrence of TCRD-LMO2 translocations in normal thymocytes points to a critical role for the exact breakpoint location in determining LMO2 activation levels and the consequent pressure for T-ALL development.  相似文献   

20.
We show that endemic (eBL), sporadic (sBL), and acquired immunodeficiency syndrome-associated (AIDS-BL) forms of Burkitt lymphoma (BL) carrying t(8;14) chromosomal translocations display different breakpoints within the immunoglobulin heavy-chain locus (IGH) on chromosome 14. In sBL (7 out of 11) and AIDS-BL (5 out of 6), the breakpoints occurred within or near the IGH mu switch (S-mu) region on chromosome 14 and within the c-myc locus (MYC) on chromosome 8. In most eBL (13 out of 16) the breakpoints were mapped within or 5' to the IGH joining (JH region on chromosome 14 and outside the MYC locus on chromosome 8. Cloning and sequencing of the t(8;14) chromosomal junctions from two eBL cell lines and one eBL biopsy sample show that the recombinations do not involve IGH-specific recombination signals on chromosome 14 or homologous sequences on chromosome 8, suggesting that these events are not likely to be mediated by the same mechanisms or enzymes as in IGH rearrangements. In general, these data have implications for the timing of occurrence of chromosomal translocations during B-cell differentiation in different BL types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号