首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The m.3243A>G “MELAS” (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) mutation is one of the most common point mutations of the mitochondrial DNA, but its phenotypic variability is incompletely understood. The aim of this study was to revise the phenotypic spectrum associated with the mitochondrial m.3243A>G mutation in 126 Italian carriers of the mutation, by a retrospective, database-based study (“Nation-wide Italian Collaborative Network of Mitochondrial Diseases”). Our results confirmed the high clinical heterogeneity of the m.3243A>G mutation. Hearing loss and diabetes were the most frequent clinical features, followed by stroke-like episodes. “MIDD” (maternally-inherited diabetes and deafness) and “PEO” (progressive external ophthalmoplegia) are nosographic terms without any real prognostic value, because these patients may be even more prone to the development of multisystem complications such as stroke-like episodes and heart involvement. The “MELAS” acronym is convincing and useful to denote patients with histological, biochemical and/or molecular evidence of mitochondrial disease who experience stroke-like episodes. Of note, we observed for the first time that male gender could represent a risk factor for the development of stroke-like episodes in Italian m.3243A>G carriers. Gender effect is not a new concept in mitochondrial medicine, but it has never been observed in MELAS. A better elucidation of the complex network linking mitochondrial dysfunction, apoptosis, estrogen effects and stroke-like episodes may hold therapeutic promises.  相似文献   

2.
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common mitochondrial disease due to mitochondrial DNA (mtDNA) mutations. At least 15 distinct mtDNA mutations have been associated with MELAS, and about 80% of the cases are caused by the A3243G tRNA(Leu(UUR)) gene mutation. We report here a novel tRNA(Val) mutation in a 37-year-old woman with manifestations of MELAS, and compare her clinicopathological phenotype with other rare cases associated tRNA(Val) mutations.  相似文献   

3.
Nineteen patients were found to harbor the mitochondrial DNA A3243G mutation associated with MELAS syndrome (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). Eight of them had presented with stroke-like episodes and therefore had a clinical diagnosis of MELAS syndrome. The other 11 patients had no strokes and presented with generally less severe multisystemic disease. In the two groups, we compared muscle morphology, biochemical activities of muscle respiratory chain, and genetic characteristics: proportion and tissue distribution of the mutation, sequence of the 22 transfer RNA genes of the mitochondrial DNA. The proportion of mutant mtDNA in muscle was always greater than in blood. The number of patients in the two groups was too low to reach significant values. However, the patients with a MELAS syndrome presented with more severe respiratory chain abnormalities and with a proportion of the A3243G mutation that was both higher and more uniformly distributed among tissues. For symptoms others than stroke-like episodes, we did not observe any correlation with the level of mutant mtDNA in muscle. The analysis of the 22 tRNA sequences did not show differences between the two groups, and no co-inherited modifying tRNA genes could explain the variability of severity in our patients.  相似文献   

4.
BACKGROUND: Accumulating evidence suggests mitochondrial dysfunction in bipolar disorder. Analyses of mitochondria-related genes using DNA microarray showed significantly increased LARS2 (mitochondrial leucyl-tRNA synthetase) in the postmortem prefrontal cortices of patients with bipolar disorder provided by the Stanley Foundation Brain Collection. LARS2 is a nuclear gene encoding the enzyme catalyzing the aminoacylation of mitochondrial tRNA(Leu). A well-studied mitochondrial DNA point mutation, 3243A>G, in the region of tRNA(Leu (UUR)), related with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), is known to decrease the efficiency of aminoacylation of tRNA(Leu (UUR)). METHODS: The steady state level of LARS2 was examined in the transmitochondrial cybrids carrying 3243A>G. We examined the 3243A>G mutation in these brains using the peptide nucleic acid-clamped polymerase chain reaction restriction fragment length polymorphism method. RESULTS: LARS2 was upregulated in the transmitochrondrial cybrids carrying 3243A>G. The 3243A>G was detected in the postmortem brains of two patients with bipolar disorder and one with schizophrenia. These patients also showed higher levels of the mutation in their livers and significantly higher gene expression of LARS2 compared with other subjects. CONCLUSIONS: These results suggest that upregulation of LARS2 is a hallmark of 324A>G mutation. The accumulation of 3243A>G mutation in the brain may have a pathophysiologic role in bipolar disorder and schizophrenia.  相似文献   

5.
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) are usually associated with the common 3243A-->G mutation of mtDNA. Onset of stroke-like episodes usually occurs before age 30. We report a patient with late onset MELAS harboring a rare 3256C-->T mutation in the tRNA(Leu(UUR)) gene of mtDNA. The patient presented with a stroke-like episode at age 36. MRI showed a stroke-like lesion in the right parietooccipital brain region. Proton MR spectroscopy showed elevated lactate concentrations in the lesion (8.4 mmol/l), and in the mid-occipital region (2.3-3.2 mmol/l) that appeared normal on MRI. Further tests revealed evidence of a severe oxidative defect of muscle metabolism as well.  相似文献   

6.
The A3243G mutation is one of the most frequent mutations of mitochondrial DNA. The phenotypic expression of the A3243G mutation is variable and causes a wide range of syndromic and non-syndromic clinical disorders. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is the most frequent syndromic manifestation of the A3243G mutation. Stroke-like episodes seem to be the dominant feature of MELAS. We have investigated the case of a family with A3243G mutation, in which a dominant symptom in three generations was the maternally inherited hearing loss with absence of stroke-like episodes. Besides deafness, we found also other clinical features such as myopathy, neuropathy, migraine, ataxia, short stature, diabetes mellitus, and cardiomyopathy.  相似文献   

7.
目的 报告6例mtDNA G13513A点突变引起的线粒体脑肌病患者的临床、影像学特点,总结mtDNA G13513A突变所致的线粒体病的临床表型.方法 对35例mtDNA常见突变(包括大片段缺失及A3243G、T3271C、A8344G、T8993G/C点突变)检查为阴性的线粒体脑肌病患者,用线粒体DNA全长测序和(或)聚合酶链反应-限制性片段长度多态法检测mtDNA G13513A点突变,分析阳性患者的临床特点,复习文献报道的mtDNA G13513A所致线粒体病的病例.结果 35例患者中有6例存在mtDNA G13513A突变.该6例患者均出现偏盲、轻偏瘫或偏身感觉障碍等卒中样发作表现,其中3例成人发病者以卒中样发作为主要症状,伴随癫痫、头痛、身材矮小、神经性耳聋等,头颅MRI显示以顶-枕-颢叶受累为主的大片病灶,符合成人型线粒体脑肌病伴高乳酸血症和卒中样发作(MELAS)的临床和影像学特点;3例青少年发病者除卒中样发作外,还有构音障碍、共济失调、眼外肌瘫痪等脑干受累的症状,MRI检查可见枕-颞叶大脑皮质非对称性病灶,以及双侧基底节和脑干的对称性病灶,符合青少年型MELAS-Leigh叠加综合征的临床和影像学特点.肌肉病理检查在5例患者发现不整红边纤维.经复习文献,发现mtDNA G13513A突变患者还存在婴幼儿型Leigh或Leigh样综合征表型.结论 mtDNA G13513A点突变是线粒体脑肌病较常见的致病性突变,主要导致Leigh综合征、MELAS-Leigh叠加综合征或MELAS综合征,其临床表型具有年龄依赖性.
Abstract:
Objective To report 6 Chinese patients with mitochondrial encephalomyopathy caused by mitochondrial DNA(mtDNA)G13513A mutation and discuss the mitochondrial phenotype associated with this mutation based on the data of our patient series as well as the reports by others.Methods Direct sequencing of polymerase chain reaction(PCR)products or PCR-RFLP analysis Was performed to screen mtDNA G13513A mutation in 35 cases with mitoehondrial encephalomyopathy.who carried no mtDNA common mutations(1arge 8eale deletion,A3243G,T3271 C,A8344G,or T8993G/C).The clinical features,MRI changes were retrospectively collected and analyzed.Published studies of all patients with mtDNA G13513A mutation were also reviewed.Results Six patients were identified carrying mtDNA G13513A mutation.All patients presented stroke-like episodes with hemianopsia.hemiparesis or hemiparesthesia.Three adult patients presented clinical and radiological features of adult-onset mitochondrial myopathy,encephalopathy,lactic acidosis,and stroke-like episodes(MELAS),including stroke-like episodes,epilepsy,headache,short stature,sensorineural deafness,multifocal lesions on parietal,occipital and temporal lobes on cranial MRI scans.Three iuvenile.onset patients presented the clinical and brain MRI features of MELAS-Leigh syndrome(LS)overlap syndrome.In addition to the stroke-like episodes,they also showed brain stem lesions with dysarthria,ataxia,and ophthalmopJegia. Brain MRI revealed asymmetrical lesions in the cortex of the oecipital and temporal lobes,as well as symmetrical lesions in the bilateral basal ganglia and brainstem.Muslce biopsy showed ragged redfibem in 5 patients.The infant-onset LS or Leigh-like syndrome with mtDNA G135 13A was described in the English literature.Conclusions mtDNA G13513A mutation is a common pathogenic mutmion for mitochondrial encephalomyopathy,which can result in Leigh syndrome,MELAS-LS overlap syndrome and adult MELAS.The onset of various phenotypes is relatively age-dependent.  相似文献   

8.
CPEO and carnitine deficiency overlapping in MELAS syndrome   总被引:2,自引:0,他引:2  
Mitochondrial myopathy, encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is one of the mitochondrial encephalomyopathies that has distinct clinical features including stroke-like episodes with migraine-like headache, nausea, vomiting, encephalopathy and lactic acidosis. We report a 27-year-old woman who presented with partial seizure, stroke-like episodes including hemiparesis, hemianopia and hemihypethesia, sensorineural hearing loss, migraine-like headache, and lactic acidosis. Brain computed tomographic scan showed encephalomalacia in the right parieto-occipital area and recent hypodensity in the left temporoparieto-occipital area with cortical atrophy. Muscle biopsy revealed ragged-red fibers and paracrystaline inclusions in the mitochondria. Genetic study revealed an A to G point mutation at nucleotide position (np) 3243 of mitochondrial DNA. External ophthalmoplegia and ptosis were also found during two exaggerated episodes in this patient. Therefore, the overlapping syndrome of chronic progressive external ophthalmoplegia in the MELAS syndrome is considered in this case. Furthermore, we also found carnitine deficiency in this patient and she was responsive well to steroid therapy. Muscle biopsy also revealed excessive lipid droplets deposits. Therefore, the carnitine defiency may occur in MELAS syndrome with the A to G point mutation at np 3243. We recommend the steroid or carnitine supplement therapy be applied to the MELAS syndrome with carnitine deficiency.  相似文献   

9.
MELAS is a mitochondrial encephalomyopathy characterized clinically by recurrent stroke-like episodes, seizures, sensorineural deafness, dementia, hypertrophic cardiomyopathy, and short stature. The majority of patients are heteroplasmic for a mutation (A3243G) in the tRNAleu(UUR) gene in mitochondrial DNA (mtDNA). In cells cultured in vitro, the mutation produces a severe mitochondrial translation defect only when the proportion of mutant mtDNAs exceeds 95% of total mtDNAs. However, most patients are symptomatic well below this threshold, a paradox that remains unexplained. We studied the relationship between the level of heteroplasmy for the mutant mtDNA and the clinical and biochemical abnormalities in a large pedigree that included 8 individuals carrying the A3243G mutation, 4 of whom were asymptomatic. Unexpectedly, we found that brain lactate, a sensitive indicator of oxidative phosphorylation dysfunction, was linearly related to the proportion of mutant mtDNAs in all individuals carrying the mutation, whether they were symptomatic or not. There was no evidence for threshold expression of the metabolic defect. These results suggest that marked tissue-specific differences may exist in the pathogenic expression of the A3243G mutation and explain why a neurological phenotype can be observed at relatively low levels of heteroplasmy.  相似文献   

10.
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a syndrome associated with mitochondrial DNA mutations such as A3243G, the most common mutation. Ragged-red fibers and strongly succinate dehydrogenase-reactive blood vessels in the muscle are diagnostic pathologic features of MELAS. In general, the first typical attack of MELAS occurs in children at school age; it is rare for stroke-like episodes to occur in early infancy. This report describes a 4-month-old male harboring A3243G, whose phenotype at onset was consistent with that of MELAS in infancy. The patient was admitted because of disturbances of consciousness and ventilatory insufficiency. Remarkable lactic acidosis was observed. MRI revealed several bilateral lesions. Periodic lateralized epileptic discharges on the EEG suggested regional lesions. Biopsied muscle displayed scattered ragged-red fibers and succinate dehydrogenase-reactive blood vessels; over 90% of muscle mitochondrial DNA had A3243G. This case suggests that MELAS can develop in early infancy with its typical clinical presentation. The high percentage of A3243G may contribute to the early onset of the MELAS phenotype in this patient.  相似文献   

11.
《Brain & development》1996,18(3):224-229
A 14-year-old boy with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is reported. He had suffered blepharoptosis and cataracts prior to the stroke-like episodes, and was thus reported in 1984 as having Kearns-Shy (Sayre) syndrome. After his death, an A-to-G mutation of the mitochondrial DNA (mtDNA) at bp 3243 was identified in cardiac muscle and the liver. Neuropathologically, multiple old and recent necrotic foci were observed in the gray and white matter of the cerebrum and cerebellum. These lesions were occasionally observed in areas outside of the distribution of major blood vessels of the brain. In the recent necrotic foci, neural loss and sponginess were observed while some neurons were preserved intact. The latter finding has not been described in MELAS and suggests that metabolic degeneration had occurred in the neurons of this patient. This is the first report of a confirmed 3243 mutation of the mtDNA in an autopsied MELAS case.  相似文献   

12.
A point mutation of mitochondrial tRNALeu(UUR) gene is responsible for a MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) subgroup of mitochondrial encephalomyopathies. In most cases, the mutant mitochondrial DNA (mtDNA) coexists with normal mtDNA in a heteroplasmic manner. In order to quantify the content of mutant mtDNA, we developed a quantitative method of PCR. Using this method, the distribution of the mutant mtDNA was examined in 32 different tissues among 18 autopsied organs from a patient with MELAS, who had shown hypophyseal dysfunction. The percentage of the mutant mtDNA at nucleotide number 3243 in each tissue was ranged between 22% and 95%. The content of the mutant mtDNA was at the highest (95%) in the hypophysis and higher in the cerebral cortex than in the white matter. This study shows a possible correlation of tissue dysfunction with accumulation of the mutant mtDNA within the brain.  相似文献   

13.
OBJECTIVES: We investigated whether mutation of mitochondrial DNA (mtDNA) affects the copy number of the mitochondrial genome in patients with mitochondrial myopathy encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and those with myoclonic epilepsy with ragged-red fiber (MERRF) syndromes. MATERIALS AND METHODS: Forty-eight Taiwanese patients with MELAS syndrome and 20 patients with MERRF syndrome were recruited in this study. RESULTS: In relation to controls, the copy numbers of mtDNA in leukocytes of patients with MELAS or MERRF syndrome were significantly higher at a young age but lower at an advanced age. In addition, MELAS patients harboring higher proportions of mtDNA with A3243G transition had lower mtDNA copy numbers. The MELAS or MERRF patients with multi-system disorders had lower mtDNA copy numbers in leukocytes. Furthermore, higher proportions of mtDNA with 4977 bp deletion were found in leukocytes of MERRF patients with multi-system involvement. CONCLUSION: In leukocytes, alteration in the copy number of mtDNA is related to the proportion of mtDNA with a point mutation or large-scale deletion, which may serve as a biomarker in the pathogenesis and disease progression of MELAS and MERRF syndromes.  相似文献   

14.
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is most commonly associated with a mitochondrial DNA A to G point mutation at nucleotide 3243 (A3243G) and individuals with the disorder present a wide range of multisystemic symptoms. Seizures in MELAS patients are often intractable and require multiple antiepileptic drugs. Here we report a MELAS patient who presented with acute intestinal pseudo-obstruction following the administration of phenytoin (PHT) as an antiepileptic treatment. She presented with the first stroke-like episode at the age of 6 years and mitochondrial DNA analysis revealed A3243G with 94% mutation load in skeletal muscle. Despite treatment with phenobarbital and clobazam at the age of 16 years, she developed status epilepticus which ceased following PHT infusion. Thereafter, she was started on PHT treatment. One month later, however, she was readmitted because of remarkable abdominal distention. Although abdominal CT showed acute ileus with hepatic portal venous gas mimicking surgical emergency, the abdominal distention gradually recovered over several days following the discontinuation of PHT. Our clinical observations suggest the possibility that intestinal pseudo-obstruction in this patient related to PHT therapy. Careful clinical observation including gastrointestinal symptoms is required in the management of epilepsy in MELAS patients.  相似文献   

15.
MELAS: clinical phenotype and morphological brain abnormalities   总被引:5,自引:0,他引:5  
We describe the clinical and neuropathological findings of three unrelated autopsy cases of MELAS harboring the A3243G transition in the mitochondrial DNA (mtDNA). Using immunohistochemical techniques, we studied the expression of several subunits of the respiratory chain in various brain regions from the same cases. In all three cases there was a reduced immunocytochemical staining for mtDNA-encoded subunits of the respiratory chain, confirming the presence of a defective mitochondrial protein synthesis in this disease. Mitochondrial abnormalities were mostly confined to multiple areas of different size and shape, in agreement with the focal character of the brain pathology in MELAS, and were most prominent in the cerebral cortex, providing a morphological contribution to the explanation of the cognitive regression of the patients. Immunoreactivity for mtDNA-encoded subunits was reduced in the walls of many pial and intracerebral arterioles of different brain regions but there was no clear correlation between territories of affected vessels and distribution of the histological and immunohistochemical lesions. Cerebral focal lesions in MELAS might have a metabolic nature and several pathogenetic mechanisms might be involved in the genesis of stroke-like episodes when there is a local increased ATP demand.  相似文献   

16.
MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.  相似文献   

17.
Stroke-like lesions (SLL) are common radiological findings in patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (SLE; MELAS) harboring the m.3243A>G MTTL1 mutation. Imaging patterns in the m.3243A>G mutation carriers with encephalopathies lacking SLE have not been systematically examined to date. The aim of this study was to analyze brain imaging findings in encephalopathies associated with the m.3243A>G mutation irrespective of the presence or absence of SLE. Brain MRI and cranial CT scans from 11 m.3243A>G mutation carriers with encephalopathies were analyzed by two neuroradiologists in consensus. We evaluated stroke-like lesions (SLL), deep grey matter (DGM) changes on T1- and T2-weighted MR images, calcification on CT, brain atrophy, and white matter (WM) changes. SLL were present in all patients showing the full MELAS phenotype with SLE (4/11). Seven patients did not show SLE. DGM changes with T1 hyperintensity and T2 hypointensity were a distinctive finding in most patients (7/11) and present in the majority of m.3243A>G mutation carriers lacking SLE (5/7). DGM changes were also seen in half of our MELAS patients with SLL (2/4), though less pronounced. Brain atrophy was a prominent finding in general and accentuated in the cerebellum. In contrast, WM changes were rather mild and more prevalent and pronounced in MELAS. Our data stress that the distinction between MELAS with SLE and m.3243A>G mutation carriers lacking SLE is rather artificial. In clinical practice, mitochondrial disorders associated with the m.3243A>G mutation should be taken into consideration in encephalopathies with DGM changes, even when SLE and SLL are lacking.  相似文献   

18.
目的 调查1个疑似患有母系遗传性线粒体脑肌病伴高乳酸血症和脑卒中样发作(MELAS)综合征家系的临床表现、生物化学检测数据和影像学资料,并探索其与血细胞线粒体基因突变异质性水平的关联性.方法 收集先证者和11位其母系家系成员的一般情况、抽搐及脑卒中样发作等病史,检测家系成员的血常规和运动前后血浆乳酸水平等生化指标,并做头颅磁共振检查.用聚合酶链反应(PCR)-限制性内切酶片段长度多态和DNA测序法检测其成员是否存在线粒体基因组A3243G点突变,并用荧光实时定量PCR定量该突变的水平.结果 该家系部分成员存在抽搐、脑卒中样发作和高乳酸血症等MELAS综合征典型症状,以及身材矮小、运动不耐受和发热、偏头痛等非典型症状.发作期头颅磁共振成像符合MELAS综合征的典型特点,且普遍存在小脑萎缩.母系亲属均存在线粒体基因的A3243G位点点突变,突变异质性水平越高,症状越典型且严重.结论 该调查家系确诊母系遗传性MELAS综合征,其致病基因为线粒体A3243G点突变.外周血血细胞线粒体基因突变异质性水平与亲缘关系、抽搐早现性和血乳酸值等临床表型存在相关性.  相似文献   

19.
BACKGROUND: Myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome typically manifests in adults younger than 40 years with encephalopathy, stroke-like episodes, and lactic acidosis. Magnetic resonance imaging (MRI) abnormalities typically involve the cortical gray and the adjacent subcortical white matter. OBJECTIVE: To describe a 58-year-old woman diagnosed with MELAS who was initially seen with acute myopathy, cardiac ischemia, psychosis, and MRI changes in a watershed distribution. RESULTS: Initial MRI of the brain showed the characteristic parieto-occipital gray matter lesions involving the adjacent white matter. Follow-up MRI revealed striking deep white matter involvement in a watershed distribution. A cerebral angiogram and thorough hypercoagulable workup results were normal. Electromyography showed acute denervation and myopathy. A muscle biopsy specimen revealed ragged red and cytochrome-c oxidase-negative fibers. Mitochondrial DNA analysis revealed an A3243G mutation. CONCLUSIONS: Myopathy, encephalopathy, lactic acidosis, and stroke-like episodes should be considered in older patients with myopathy, cardiomyopathy, encephalopathy, and unaccountable MRI findings. Watershed pathologic features are a rare pattern of cerebral involvement in MELAS.  相似文献   

20.
Genexpressionsstudien bei klassischen Mitochondriopathien   总被引:1,自引:0,他引:1  
Mende S  Storch A  Reichmann H 《Der Nervenarzt》2007,78(10):1155-1159
Mitochondria are semiautonomous cell organelles which possess their own genome (mtDNA) but nonetheless depend on the import of nuclear-encoded proteins. In recent years, several mutations of mtDNA have been associated with specific diseases of the muscles and nervous system. In 1993, the A>G point mutation at position 3243 of the mtDNA, until then a prominent genetic marker for mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), was detected in patients with progressive external ophthalmoplegia (PEO). Due to the divergent clinical presentations of MELAS and PEO, the presence of potential nuclear secondary mutations or so-called modifier genes had been suspected. Now it is well known that a bidirectional information flow between the mitochondrion and the cell nucleus exists and that nuclear gene expression adapts to the functional status of the mitochondria. However it remains unclear when and how the nucleus responds to changes or mutations of the mtDNA and if there are indeed disease-specific biomarker genes whose expression changes in case of mtDNA aberrations. This review article focuses on the most recent gene expression profiling studies in the field of classic mitochondrial disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号