首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acquired cellular resistance to anthracycline and vinca alkaloid drugs (pleiotropic resistance) is commonly associated with reduced drug accumulation, a phenomenon which is thought to be partly due to increased energy-dependent drug efflux. We have previously detected increased plasma membrane traffic to, and content of, the acid endosomal compartment in pleiotropic resistant Ehrlich ascites and P388 leukemia cells. This suggested that the endosome could be associated with the pleiotropic resistance phenotype by a mechanism of vesicular drug trapping and transport. The present study was undertaken in order to test the effects of the carboxylic ionophores monensin and nigericin, which are known to both disrupt intracellular vesicular traffic and to raise intravesicular pH, with relation to the pleiotropic resistance phenotype. Both monensin and nigericin increased daunorubicin (DNR) accumulation in daunorubicin resistant Ehrlich ascites tumor cells (EHR2/DNR+) in a dose-dependent manner. Further, monensin inhibited glucose induced DNR efflux from EHR2/DNR+ cells loaded with drug by energy deprivation. On the other hand, monensin had only negligible effect on DNR accumulation and efflux in wild-type Ehrlich ascites tumor cells (EHR2). In a clonogenic assay system, monensin reduced resistance to DNR in EHR2/DNR+, whereas only an additive effect was obtained in EHR2. However, both ionophores proved too toxic in in vivo experiments. These results, showing that drugs known to disrupt endosomal functions also inhibit the pleiotropic resistance phenotype, support the suggested link between the endosome and pleiotropic resistance.  相似文献   

2.
We have examined the cellular accumulation of anthracycline compounds, alone or in conjunction with resistance modifiers, in an attempt to identify mechanisms by which multidrug resistance (MDR) can be circumvented. This was facilitated by using the EMT6 mouse mammary tumour cell line EMT6/P and its MDR subline EMT6/AR1.0 with 30-fold resistance to Adriamycin (ADM), and the human small cell lung cancer line H69/P together with its MDR subline H69/LX4 with 100-fold resistance to ADM. Both MDR lines hyperexpress membrane P-170 glycoprotein. The accumulation of ADM was compared to that seen for the anthracycline analogues aclacinomycin A (ACL), Ro 31-1215 and 4'-deoxy-4'-iodo-Adriamycin (iodo-ADM). These analogues were selected because of their high activity against MDR sublines, including H69/LX4 and EMT6/AR1.0. Both MDR cell lines exhibited a deficiency in ADM accumulation compared to the parent lines. Smaller differentials were seen using Ro 31-1215 or iodo-ADM. Both resistant sublines were able to accumulate ACL in identical amounts to their respective parental sublines. Improved drug accumulation is likely to contribute to the improved activity of the analogues against MDR cell lines. However, the relative accumulation defects in the resistant lines did not correlate exactly with the degree of resistance to a particular compound. Cyclosporin A (5 micrograms/ml) or verapamil (3.3 micrograms/ml) caused a preferential increase in uptake in both MDR sublines, with a small or negligible effect for the parental line. A smaller effect was observed with iodo-ADM and Ro 31-1215, and levels of ACL were unchanged in the MDR lines in the presence of either resistance modifier. These results indicate two mechanisms for circumventing drug resistance due to reduced drug accumulation. Structurally modified derivatives can partially or completely eliminate uptake differentials between parent and drug resistant cell lines. Any residual uptake can be eliminated using resistance modifiers. The two mechanisms may both operate via inhibition or circumvention of P-170 mediated efflux. The situation is complex, however, and this study indicates the possible involvement of additional resistance mechanisms.  相似文献   

3.
Anthracyclines are considered to be some of the most effective anticancer drugs for cancer therapy. However, drug resistance and cardiotoxicity of anthracyclines limit their clinical application. We hypothesize that direct modifications of the sugar moiety of anthracyclines avert P-glycoprotein (P-gp) recognition and efflux, increase drug intracellular concentration in cancer cells, and thus overcome P-gp-mediated drug resistance. Daunorubicin (DNR) analogues with sugar modifications were synthesized by directly transforming the amino group of DNR to an azido group or triazole group. Molecular docking showed that the lead compound (3'-azidodaunorubicin, ADNR) averts P-gp binding, while daunorubicin (DNR) extensively interacts with multidrug-resistance (MDR) protein through H-bonds and electrostatic interactions. FACS assay demonstrated that these new compounds abolished P-gp drug efflux and accumulated high intracellular concentration in the drug-resistant leukemia K562/Dox. P-gp inhibition by CsA confirmed that these new analogues are no longer P-gp substrates. ADNR exhibited potent anticancer activity in both drug-sensitive (K562) and drug-resistant leukemia cells (K562/Dox), with a 25-fold lower drug resistance index than DNR. An in vivo xenograft model demonstrated that ADNR showed more than 2.5-fold higher maximum growth inhibition rate against drug-resistant cancers and significant improvement for animal survival rate versus DNR. No significant body weight reduction in mice was observed for ADNR at the maximum tolerable dose, as compared to more than 70% body weight reduction for DNR. These data suggest that sugar modifications of anthracyclines avert P-gp binding, abolish P-gp-mediated drug efflux, increase intracellular drug concentration, and thus overcome P-gp-mediated drug resistance in cancer therapy.  相似文献   

4.
Anthracyclines, such as daunorubicin (DNR) and doxorubicin (Dox), are widely used for cancer therapy but are limited by drug resistance and cardiotoxicity. To overcome drug resistance, we synthesized a novel class of disaccharide analogues of DNR against drug-resistant leukemia. In these disaccharide analogues (1-6) the first (inner) sugar in the carbohydrate chain is a 3-azido-2,3,6-trideoxy-L-lyxo-alpha-hexopyranose; the second (outer) sugars that are linked via alpha(1-->4) to the first sugar are a series of uncommon sugars. Their cytotoxicities were examined in drug-sensitive leukemia cells K562 and doxorubicin-resistant K562/Dox cells by MTS assay. In drug-sensitive cells, compounds 1-6 were found to be active against leukemia K562 cells with IC50 in the nanomolar range (200-1100 nM), while compounds 2-5 with 2,6-dideoxy sugars showed better activity than compounds 1 and 6 with 2,3,6-trideoxy sugars. In doxorubicin-resistant K562/Dox cells, compounds 1, 3, and 5 exhibited much better activities (with IC50 between 0.29 and 2.0 microM) than DNR (with IC50 > 5 microM). Compound 3 emerged as the most active compound, showing at least 17-fold higher activity against drug-resistant cells than parent compound DNR. The IC50 values of compound 3 in both drug-sensitive and drug-resistant cells are identical, which indicates that compound 3 completely overcomes drug resistance. Structure-activity relationship (SAR) studies showed that the substitution and orientation of the 3-OH group in the second sugar significantly influence its activity against drug-resistant leukemia. These results suggest that sugar modifications of anthracyclines change their activity and overcome drug resistance.  相似文献   

5.
Synthetic dihydropyridine analogs were screened to determine whether they would reverse multidrug resistance of a multidrug-resistant human KB carcinoma cell line, KB-C1. Among twenty-four dihydropyridine analogs examined, thirteen almost completely overcame drug resistance (group A), nine partially overcame resistance (group B) and two did not reverse resistance (group C). The twenty-two compounds that reversed drug-resistance (groups A and B) were hydrophobic dihydropyridine derivatives. Three compounds that reversed resistance, NK-113, NK-138 and NK-194, increased the accumulation of [3H]vincristine in the resistant KB-C1 cells, but not in the parental KB cells, nor in a revertant cell line, KB-C1-R2. NK-101 (group C), which did not reverse resistance, had no effect on drug accumulation. Enhanced efflux of vincristine from the resistant cells was inhibited completely by NK-194, but NK-194 did not affect vincristine influx. Nine of the twenty-four compounds were screened to determine whether they inhibited photoaffinity labeling of the cell surface protein gp170 (P-glycoprotein) in KB-C1 cells by N-(p-azido-[3-125I]-salicyl)-N'-beta-aminoethylvindesine [( 125I]NASV). All five compounds of group A, NK-138, NK-194, NK-200, NK-203 and NK-220, inhibited the photoaffinity labeling of gp170 at less than 10-100 microM, whereas NK-113 and NK-196 of group B inhibited the labeling at 100-200 microM. By contrast, NK-101 and NK-102 of group C did not inhibit labeling even at 2000 microM. These studies confirm the relationship among reversal of multidrug resistance, decreased efflux of vincristine, and inhibition of [125I]NASV labeling of P-glycoprotein.  相似文献   

6.
To find a drug to overcome P-glycoprotein associated multidrug resistance, we synthesized 43 new isoprenoid derivatives. Ten compounds were effective in an in vitro assay with the human MDR-type resistant carcinoma KB/VJ-300 and MRP-type KB/VP-4 cell lines. One of the most effective compounds, N-5228 [trans-N,N'-bis(3,4-dimethoxybenzyl)-N-solanesyl-1,2-diaminocyclohexane, mol. wt 1100.481, was tested in P388/VCR-bearing mice. It showed a antitumor effect on MDR-type resistant tumor cells. Moreover, N-5228 potentiated the accumulation of [3H]vincristine in drug-resistant cells and blocked [3H]azidopine photoaffinity labeling of P-glycoprotein molecules in MDR-type resistant cell membranes. We think that N-5228 is promising as a lead compound in the screening of resistance reversing drugs for multidrug resistant cancers.  相似文献   

7.
A new class of anthracycline derivatives carrying a halogen atom in the 4' position of the aminosugar moiety was tested in cytotoxicity studies on HeLa cells and on P388 cell lines sensitive and resistant (P388/DX) to doxorubicin, in comparison with the parent drugs doxorubicin (DX) and daunorubicin (DNR). 4'-Haloderivatives of DX generally appear to be more cytotoxic than DX on HeLa, P388 and P388/DX cells. Cellular kinetic studies of DX-haloderivatives on HeLa, P388 and P388/DX cell lines show that they accumulate inside the cell in higher amounts than DX, whereas DNR haloderivatives accumulate in HeLa and P388 cells at levels similar to DNR; only in P388/DX is their accumulation higher as compared with DNR. The results reported suggest that, besides drug accumulation, other factors are involved in the cytotoxic mechanism of action of this class of compounds. Therefore 4'-haloderivatives represent a class of compounds with promising activity, in particular regarding anthracycline-resistant cell lines.  相似文献   

8.
Multidrug resistance (MDR) represents a major problem in cancer chemotherapy. P-glycoprotein (P-gp), the drug efflux pump that mediates this resistance, can be inhibited by compounds with a variety of pharmacological functions, thus circumventing the MDR phenotype. The present study was performed to evaluate a unique MDR-reversal feature of a bisbenzylisoquinoline alkaloid tetrandrine (TET) in a P-gp expressing MOLT-4 MDR line (MOLT-4/DNR) established in our laboratory. Cell viability was determined by an MTT assay. P-gp function was characterized by determining the Rh123 accumulation/efflux capacity. P-gp overexpression in resistant MOLT-4/DNR cells was confirmed by flow cytometry analysis after staining with phycoerythrin-conjugated anti-P-gp monoclonal antibody 17F9. Compared to ciclosporin A (CsA), TET exhibited stronger activity to reverse drug resistance to daunorubicin (DNR), vinblastine (VLB) and doxorubicin (DOX) in MOLT-4/DNR cells. TET showed no cytotoxic effects on parental MOLT-4 cells lacking P-gp expression or on the resistant MOLT-4/DNR cells. TET modulated DNR cytotoxicity even after it was washed with the medium for 24 h, while CsA almost completely lost its reversal capability 24 h after washing. TET and CsA similarly increased the accumulation of Rh123 in resistant MOLT-4/DNR cells. However, TET inhibited Rh123 efflux from resistant cells even after washing with the medium, while CsA rapidly lost its ability to inhibit Rh123 efflux after washing. The current study suggests that TET enhances the cytotoxicity of anticancer drugs in the P-gp expressing MDR cell line by modulating P-gp in a different manner to the well-known P-gp inhibitor CsA.  相似文献   

9.
We investigated the effects of seven isoquinoline derivatives in overcoming resistance to vinblastine in Adriamycin-resistant mouse leukemia P388/ADR cells and human myelogeneous leukemia K562/ADR cells. N-(2-Methylpiperazyl)-5-isoquinoline-sulfonamide (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8), and N-(2-aminoethyl)-5-isoquinolinesulfonamide (H-9) did not reverse resistance to vinblastine in these resistant cells. N-[2-[N-[3-(4-Chlorophenyl)-2-propenyl]amino]ethyl]-5- isoquinolinesulfonamide (H-86) and N-[2-[N-[3-(4-chlorophenyl)-1-methyl-2-propenyl]- amino]ethyl]-5-isoquinolinesulfonamide (H-87) caused significant accumulation of intracellular vinblastine and marked reversal of the resistance to vinblastine in both resistant cell lines. Addition of a formyl group at the terminal amino group of H-86 (H-85) or addition of an aminoethyl group to the nitrogen atom at the sulfonamide group of H-86 (W-66) reduced those activities. The activity on vinblastine accumulation seems to correlated with the hydrophobicity of the compounds. The compounds that effectively reversed resistance to vinblastine inhibited [3H]vinblastine efflux and photoaffinity labeling of P-glycoprotein with a photosensitive analogue of vinblastine, N-(p-azido-(3-[125I]iodo)-salicyl)-N'-beta-aminoethylvindesine. Although these isoquinoline derivatives inhibited protein kinase A and protein kinase C with various potencies, these inhibitory activities did not correlate with the reversal of drug resistance. These results indicate that hydrophobic isoquinoline derivatives reverse multidrug resistance due to the suppression of drug binding to P-glycoprotein, without involvement of their activities on protein kinase A and protein kinase C.  相似文献   

10.
7-O-Benzoylpyripyropene A (7-O-BzP), a semi-synthetic analog of pyripyropene, was investigated for its reversing effect on multidrug-resistant (MDR) tumor cells. 7-O-BzP (6.25 microg/ml) completely reversed resistance against vincristine and adriamycin in vincristine-resistant KB cells (VJ-300) and adriamycin-resistant P388 cells (P388/ADR), respectively. 7-O-BzP alone had no effect on the growth of drug sensitive and drug-resistant cells. 7-O-BzP (6.25 microg/ml) significantly enhanced accumulation of [3H]vincristine in VJ-300 cells and completely inhibited the binding of [3H]azidopine to the P-glycoprotein in VJ-300 cells and P388/ADR cells. The result suggests that 7-O-BzP effectively reverses P-glycoprotein-related MDR by interacting directly with P-glycoprotein in drug resistant VJ-300 and P388/ADR cells.  相似文献   

11.
We studied the accumulation of [3H]vinblastine (VLB) by lines of CCRF-CEM cultured human leukemic lymphoblasts that were either sensitive or resistant to the drug. Neither cell line metabolized VLB, nor selectively retained any radioactive impurities. There was an apparent "instantaneous" accumulation of VLB by cells of both lines, resulting in cell to medium ratios greater than 1.0 within 1 sec after drug addition. Experiments between 0 and 60 sec revealed that the presumed undirectional initial rate of VLB accumulation by resistant cells, termed CEM/VLB100, was about one-half that of sensitive CEM cells. In experiments carried out over 60 min, the VLB-resistant cells accumulated considerably less [3H]VLB than did the sensitive cells. Drug accumulation by both cell lines was temperature-sensitive, since incubation of cells at 4 degrees resulted in only minimal uptake beyond that observed at zero time. CEM/VLB100 cells retained less drug than did CEM cells, apparently because of a larger fraction of readily releasable VLB compared with CEM cells. The accumulation of VLB by either cell line was related in part to cellular levels of ATP. Although depletion of ATP was associated with decreased accumulation of VLB by CEM cells, it was related to enhanced drug accumulation by CEM/VLB100 cells. Restoration of ATP levels to near control values by addition of glucose also had opposite effects on the two cell lines, causing further accumulation of VLB by the sensitive line but leading to apparent drug efflux from the resistant line. Potentially competing substrates (VM-26, colchicine, daunorubicin, and doxorubicin) failed to block this glucose-mediated release of VLB from the CEM/VLB100 cells. In experiments with energy-depleted CEM/VLB100 cells preloaded with VLB and then incubated in drug-free medium, initial drug loss was shown to be independent of cellular metabolism, being roughly the same for both metabolically intact and metabolically depleted cells. Glucose (energy) was required only for subsequent release of what appeared to be a more tightly bound cell-associated fraction of VLB. Results of zero-time binding studies tended to confirm that VLB binding by resistant cells has two components, one requiring and the other not requiring metabolic energy. Differences in the proportions of these two components between the sensitive and resistant cells suggest a mechanism for resistance to VLB and similar compounds.  相似文献   

12.
The biochemical mechanism of anthracycline resistance was studied with an adriamycin-resistant subline of mouse lymphoblastoma L5178Y cells. Both uridine and thymidine uptakes in the resistant cells were observed more resistant to adriamycin and daunorubicin than those in the parental cells. Aclacinomycin A exhibited the same degree of inhibition of nucleic acid syntheses in the sensitive cells and in the resistant cells. The resistance pattern observed by the inhibition of RNA and DNA syntheses seemed to parallel that by growth inhibition. No significant difference was demonstrated between the parental and resistant cells in the inhibition of RNA and DNA polymerase reactions with isolated nuclei. The uptake and retention of [3H]adriamycin was observed significantly less in the resistant cells than in the sensitive cells. The results suggested that the adriamycin resistance may be due to alteration of the cytoplasmic membrane and/or cytoplasm, resulting in decreased uptake and retention of the antibiotic in the resistant cells.  相似文献   

13.
Multidrug resistance phenotype in mammalian cells is often correlated with overexpression of P-glycoprotein (P-gp) or multidrug resistance-associated protein (MRP1). Both proteins are energy-dependent drug efflux pumps that efficiently reduce the intracellular accumulation and hence the cytotoxicity of many natural cytotoxins. Thus, both P-gp and MRP1 proteins are able to transport anthracycline but the role of chirality has not, up to now, been addressed. In this study, we compared the P-gp- and MRP1-mediated efflux of daunorubicin and its enantiomer WP900 in multidrug-resistant cells overexpressing either P-gp (K562/ADR cells) or MRP1 (GLC4/ADR cells). Using fluorescence techniques, we showed that in both cell lines the presence of the pump yielded a gradient of drug concentration: the intracellular free drug concentration in the cytosol was lower than the extracellular free drug concentration. Our data showed that the gradient of concentration generated by the pump was the same whether DNR or WP900 was used. This means that P-gp on the one hand and MRP1 on the other recognise WP900 as well as DNR and that the chirality of the molecule plays no role.  相似文献   

14.
Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains.From the Clinical EditorThe authors of this study demonstrate superior treatment properties of resistant leukemia cell lines by utilizing nanodiamond vectors loaded with daunorubicin, paving the way to clinical studies in the hopefully not too distant future.  相似文献   

15.
Administration in vivo of 5-azacytidine (5-aza-CR) caused suppression of [3H]thymidine ([3H]TdR) incorporation into DNA of bone marrow and gastrointestinal mucosa of mice and a more prolonged suppression of L1210 ascites tumor. Single doses of 5-aza-CR caused a modest and short-lived suppression of incorporation of [3H]uridine ([3H]UR) into nuclear RNA of L1210 ascites tumor cells. No suppression of [3H]UR incorporation into RNA of bone marrow or gastrointestinal mucosa was observed. L1210 tumor cells resistant to the other active cytidine analogue, cytosine arabinoside, demonstrated less disruption of [3H]TdR incorporation after exposure to 5-aza-CR, suggesting some cross resistance in the effects of these two drugs on DNA synthesis. Survival studies carried out in mice bearing both the sensitive and resistant L1210 tumor cell lines confirmed cross resistance of the anti-tumor effects of the two cytidine analogues. Second doses of 5-aza-CR, with the timing og administration based upon the differing patterns of recovery of [3H]TdR incorporation between normal tissues and tumor cells, led to a prolongation of survival in mice bearing the sensitive L1210 ascites tumor.  相似文献   

16.
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppressor in both animals and plants. We examined the effect of doxorubicin (DXR) and daunorubicin (DNR), which are clinically important anthracycline compounds, on the functional regulation of BI-1 reconstituted into membranes. DXR and DNR inhibited the proton-induced efflux of encapsulated Ca(2+) from membranes in a drug concentration-dependent manner. Both compounds also reduced the H(+) influx activity of BI-1. The proteoliposomes containing BI-1 increased the quenching of DXR fluorescence by Cu(2+), and the fluorescence energy transfer between pyrene-labeled BI-1 and DXR was enhanced with increasing DXR concentrations. The dissociation constants and the number of binding sites for both drugs in BI-1 were determined to be in the range of 3.7-4.5 × 10(-6) m and approximately 4-5/BI-1 molecule, respectively, using a proteomicelle system. DXR also induced secondary structural changes in reconstituted BI-1 and abolished the ability of BI-1-overexpressing cells to protect against endoplasmic reticulum stress-induced cell death. However, when mitoxantrone was used instead of DNR and DXR as an anthracycline analog, no significant effects were observed. These results suggest that BI-1 can be considered to be a new cancer therapeutic target by anthracyclines because of its stimulatory effects in cancer/tumor progression.  相似文献   

17.
A series of aza-5[H]-phenanthridin-6-ones were synthesized and evaluated as inhibitors of poly ADP-ribose polymerase-1 (PARP-1). Inhibitory potency of the unsubstituted aza-5[H]-phenanthridin-6-ones (i.e., benzonaphthyridones) was dependent on the position of the nitrogen atom within the core structure. The A ring nitrogen analogues (7-, 8-, and 10-aza-5[H]-phenanthridin-6-ones) were an order of magnitude less potent than C ring nitrogen analogues (1-, 2-, 3-, and 4-aza-5[H]-phenanthridin-6-ones). Preliminary stroke results from 1- and 2-aza-5[H]-phenanthridin-6-one prompted structure-activity relationships to be established for several 2- and 3-substituted 1-aza-5[H]-phenanthridin-6-ones. The 2-substituted 1-aza-5[H]-phenanthridin-6-ones were designed to improve the solubility and pharmacokinetic profiles for this series of PARP-1 inhibitors. Most importantly, three compounds from this series demonstrated statistically significant protective effects in rat models of stroke and heart ischemia.  相似文献   

18.
Overexpression of P-glycoprotein (P-gp) by tumours results in multidrug resistance (MDR) to structurally and functionally unrelated chemotherapeutic drugs. Combined therapy with MDR-related cytotoxins and MDR modulators is a promising strategy to overcome clinical MDR. This study was performed to explore the MDR reversal activity of a novel compound 2-[4-(2-pyridin-2-yl-vinyl) phenyl]-4,5-bis-(4-N,N-diethylaminophenyl)-1(H)-imidazole (FG020318) in-vitro and in-vivo. Tetrazolium (MTT) assay was used to evaluate the ability of FG020318 to reverse drug resistance in two P-gp-expressing tumour cell lines, KBv200 and MCF-7/adr. Intracellular doxorubicin accumulation was determined by fluorescence spectrophotometry in MCF-7/adr cell line. The effect of FG020318 on P-gp function was demonstrated by rhodamine 123 (Rh123) accumulation in KBv200 cells. KBv200 cell xenograft models were established to study the in-vivo effect of FG020318 on reversing MDR. FG020318 was not cytotoxic by itself against P-gp expressing KBv200 cells and MCF-7/adr cells and their parental drug-sensitive KB cells and MCF-7 cells. FG020318 could significantly increase the sensitivity of MDR cells to antitumour drugs including doxorubicin and vincristine in MCF-7/adr cells and KBv200 cells, respectively. It was much stronger than the positive control verapamil in reversal of MDR. FG020318 also increased the intracellular accumulation of doxorubicin in a concentration-dependent manner in MCF-7/adr cells, but did not affect the accumulation of doxorubicin in drug-sensitive MCF-7 cells. The Rh123 accumulation in resistant KBv200 cells was also increased by the addition of FG020318, but Rh123 accumulation was not affected by FG020318 in drug-sensitive KB cells. FG020318 potentiated the antitumour activity of vincristine to KBv200 xenografts and was an efficacious modulator in-vivo. Our results suggested that FG020318 was a highly potent, efficacious MDR modulator not only in-vitro but also in-vivo. The reversal of drug resistance by FG020318 was probably related to the increased anticancer drug accumulation and its inhibition of P-gp function of MDR tumour cells.  相似文献   

19.
Chinese hamster ovary PyrR100 cells display more than 1000-fold resistance to pyrimethamine (Pyr), a lipophilic antifolate inhibitor of dihydrofolate reductase. PyrR100 cells had wild-type DHFR activity, lost folate exporter activity, and had a 4-fold increased activity of a low pH folic acid transporter. Here we report on the marked alterations identified in PyrR100 cells compared with parental cells: 1) approximately 100-fold decreased folic acid growth requirement; 2) a 25-fold higher glucose growth requirement in Pyr-containing medium; 3) a 2.5- to 4.1-fold increase in folylpolyglutamate synthetase activity; 4) a 3-fold increase in the accumulation of [3H]folic acid and a 3-fold expansion of the intracellular folate pools; 5) a 4-fold increase in the activity of the lysosomal marker beta-hexoseaminidase, suggesting an increased lysosome number/PyrR100 cell; and 6) a small reduction in the steady-state accumulation of [3H]Pyr and no evidence of catabolism or modification of cellular [3H]Pyr. Consequently, PyrR100 cells were markedly resistant to the lipophilic antifolates trimetrexate (40-fold) and AG377 (30-fold) and to the polyglutamatable antifolates 5,10-Dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF) (26-fold) and AG2034 (14-fold). Resistance to these drugs was reversed in PyrR100 cells transferred into folate-depleted medium. In conclusion, these multiple resistance factors collectively result in a prominent increase in folate accumulation, an expansion of the intracellular folylpolyglutamate pool, and abolishment of the cytotoxic activity of polyglutamatable and lipophilic antifolates. The role of increased lysosome number per cell in sequestration of hydrophobic weak base drugs such as Pyr is also discussed as a novel mechanism of drug resistance.  相似文献   

20.
The possible role of intracellular calcium on daunorubicin (DNR) accumulation in wild-type (EHR2) and multi-drug resistant (MDR) Ehrlich ascites tumor cell subline was investigated. DNR accumulation was not enhanced either by increasing the concentration of cellular calcium with the calcium ionophore ionomycin nor by chelating the cytosolic free Ca2+ by the membrane permeable Ca2(+)-buffering agents BAPTA or MAPTAM. No effect was observed in the presence of extremely low extracellular calcium concentration that prevent transmembrane calcium influx or when the cells were calcium depleted using EGTA and ionomycin. Using the fluorescent Ca2+ indicator fura-2 it is further shown that both drug-resistant daunorubicin (EHR2/DNR+) and vincristine (EHR/VCR+) sublines had lower (50-80 nM) concentration of cytosolic free calcium ([Ca2+]i) compared to their corresponding wild-type parenteral tumors (140-180 nM). In calcium free medium, however, no significant difference was found, all cell lines having a [Ca2+]i of 60-80 nM. Furthermore, the total amount of Ca2+ released to the cytosol with 10 microM ionomycin and 5 mM EGTA was 3-4-fold higher in EHR2 than in EHR2/DNR+ or EHR2/VCR+. Mobilization of Ca2+ with 1 microM ionomycin was almost identical in the presence and absence of Ca2+ in the extracellular medium in EHR2 as well as in EHR2/DNR+ suggesting that the increase in [Ca2+]i is mainly due to discharge of Ca2+ from intracellular stores. Furthermore, the total cell calcium [Ca2+]t concentration was slightly higher in EHR2/DNR+ and EHR2/VCR+ cells compared to EHR2. Incubation of the cells with the Ca2(+)-channel blocker verapamil or the intracellular Ca2(+)-antagonist TMB-8 causes depression of the Ca2(+)-response in terms of rise in [Ca2+]i caused by ionomycin. Sorcin, a major calcium-binding protein (Mr 22 kDa), is shown to be overproduced in EHR2/DNR+ cells. The overproduction of this protein in resistant cells may be related to the difference in the intracellular calcium observed in this study. Thus, though handling of Ca2+ is different in wild-type and MDR cell lines, our data suggest that calcium is not involved directly in drug transport processes and the level of Ca2+ per se have no influence on drug accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号