首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES: To conduct a comparative fatigue analysis of several commonly used small fragment screws. DESIGN: Biomechanical laboratory study. SETTING: Research laboratory. MAIN OUTCOME MEASUREMENTS: A fatigue life analysis of seven different types of small fragment screws was conducted using a Wohler fatigue-testing machine. Four different types of 3.5-millimeter cortical screws were subjected to fatigue analysis. These included solid stainless steel screws from Synthes Ltd. (core diameter 2.4 millimeters), Zimmer Inc. (core diameter 2.4 millimeter), and Smith and Nephew Richards Inc. (core diameter 2.4 millimeters) and cannulated stainless steel screws from Synthes Ltd. (core diameter 2.5 millimeters). In addition, three types of 4.0-millimeter cancellous screws were tested. These included stainless steel screws from Synthes Ltd. (core diameter 1.9 millimeters), titanium screws from Synthes Ltd. (core diameter 2.0 millimeters), and titanium alloy screws from DePuy-Ace (core diameter 2.8 millimeters). Fatigue lives, as reflected by mean cycles to failure, were compared. RESULTS: The four types of cortical screws had longer fatigue lives than the Synthes cancellous screws did ( p < 0.001) but shorter fatigue lives than the DePuy-Ace cancellous screws did ( p < 0.0001). Among the cortical screws, the cannulated and solid Synthes screws and the solid Zimmer screws did not differ statistically. The Smith and Nephew Richards cortical screws failed at statistically fewer cycles than the Synthes solid and cannulated cortical screws did ( p < 0.003) but did not statistically differ from the Zimmer screws. The DePuy-Ace titanium alloy cancellous screw had the longest fatigue life of the tested implants by a large margin ( p < 0.0001). The Synthes pure titanium and stainless steel cancellous screws did not significantly differ. CONCLUSIONS: This analysis supports core diameter as the principal factor determining fatigue life as the results paralleled implant geometry. This design modification to improve bending and fatigue strength may come at a price to pullout strength, however, because of a decreased major-to-minor diameter and increased pitch. Cortical screws differed in fatigue performance despite identical dimensions, presumably highlighting the importance of implant processing and machining. Cannulated cortical screws performed well relative to solid screws, thereby supporting their clinical use. Pure titanium and stainless steel cancellous screws performed similarly in fatigue despite differing material properties, presumably because of geometric design differences. This report highlights some of the differences in the in vitro fatigue performance among several commonly used small fragment screws.  相似文献   

2.
The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.  相似文献   

3.
OBJECTIVES: The purpose of this study is to determine the effects of technical errors that occur during the application of small fragment screw fixation and to assess which screw holes can be salvaged. INTERVENTION: Testing of screw pullout from a bone substitute model on a universal testing instrument (Instron Corp., Canton, MA). OUTCOME MEASUREMENTS: Testing was performed on 9 sets of 12 small fragment screws applied to a bone substitute model using the instruments available in a small fragment set (Synthes, Paoli, Pa). In the first 2 sets, 3.5-mm cortical screws and 4.0-mm cancellous screws were placed using the proper instrumentation according to recommended AO/ASIF techniques. The other 7 sets were inserted using "incorrect" methods: a single step was altered intentionally to assess its influence on fixation strength. The third set of screws included 3.5-mm cortical screws placed after drilling the pilot hole with a 3.5-mm drill. For the fourth set, the 2.5-mm drill was used, but the hole was tapped using the 4.0-mm cancellous tap before insertion of a 3.5-mm cortical screw. In set five, 4.0-mm cancellous screws were placed after tapping the hole with a 3.5-mm cortical tap. Set 6 included cancellous screws placed without tapping. The seventh set included 3.5-mm cortical screws that were placed according to recommended methods, and then removed and replaced into the screw hole. Set number 8 included 3.5-mm cortical screws, which were inserted correctly and then stripped by overtightening. The ninth set included 3.5-mm cortical screws that were stripped as those in set 8; the stripped screws were removed, the holes were packed with bone material, and the screws were replaced. All screws were inserted to a thread depth of 32 mm. RESULTS: Drilling a 3.5-mm pilot hole for a 3.5-mm cortical screw and "stripping" the screw by overtightening resulted in 76% and 82% less pullout strength, respectively, than when the proper technique was used (P<0.01). Use of the wrong tap before placement of a 3.5-mm cortical or 4.0-mm cancellous screw decreased pullout strength by 12% and 11%, respectively (P<0.01). Exchanging screws of similar geometry had no significant effect on screw pullout strength (P>0.1). Inserting a 4.0-mm cancellous screw without tapping actually increased pullout strength by 4% (P<0.01). CONCLUSIONS: Alterations from recommended techniques for the placement of orthopedic screws had varying effects on screw fixation, as assessed by the pullout strength. Clinically, these findings indicate that, in some cases, a screw hole that was not initially placed according to the optimal technique may be salvaged. Finally, the authors recommend that careful vigilance be maintained at all times in surgery and that fixation be applied according to sound principles in an effort to avoid some of these problems.  相似文献   

4.
Over the past 2 decades, an increased number of diabetic Charcot neuroarthropathy reconstructions have been performed. Despite advances in implant technology, arthrodesis complication rates remain high. This study examined the biomechanical properties (4-point bending, cantilever bending, and thread pullout resistance) of intramedullary implants designed for midfoot reconstruction. Large implants included A1 (7.4 mm cannulated stainless steel beam), B1 (6.5 mm solid titanium bolt), and C1 (7.0 mm cannulated titanium beam). Smaller implants included A2 (5.4 mm cannulated stainless steel beam) and C2 (5.0 mm solid titanium bolt). Four-point bending testing compared flexural properties of the body of the implants. Cantilever-bending testing was performed with the maximum bending moment being applied off the main thread of the implant to assess the thread portion. Thread pullout strength was tested by fixing the implants to a Sawbone block on a platform, and the distal portion of the implant in a clamp connected to loading actuator. Implant A1 demonstrated higher stiffness, force to failure, and fatigue compared to implants B1 and C1 (p < .05). Pullout strength of implant A1 was higher than implant B1 (p < .05). Thread fatigue strength of implant A1 was higher than implant C1 (p < .05). Implant A2 demonstrated higher stiffness, force to failure, tip fatigue strength, and thread pullout strength compared to implant C2 (p < .05), while implant C2 demonstrated higher body fatigue failure than implant A2 (p < .05). Alteration of beam/bolt parameters influences the biomechanical performance of implants used in Charcot reconstruction. Greater stiffness resists deformation, providing improved stability. Greater static failure load and fatigue limit improves the implant's ability to withstand higher and repetitive loads before failing This study should stimulate further clinical research to determine if these biomechanical properties translate into reduced implant failure rates and improved clinical outcomes in patients with diabetic Charcot neuroarthropathy.  相似文献   

5.
OBJECTIVE: To evaluate whether coating AO/ASIF screws with osteoconductive materials can improve bone-screw fixation. DESIGN: Ninety-six AO/ASIF 4.5-millimeter cortical screws were divided into four paired groups and implanted in the femurs and tibiae of six sheep: Group A = standard stainless steel screws; Group B = stainless steel screws coated with highly crystalline hydroxyapatite; Group C = stainless steel screws coated with low crystalline hydroxyapatite; Group D = titanium screws coated with titanium. The screws were implanted according to the standard AO technique to an insertion torque of 2,000 Newton-millimeters. Sheep were killed at one, three, and twelve months after surgery. MAIN OUTCOME MEASURES: Extraction torque was measured on six screws from each group selected at random at time of each euthanization. Morphologic analysis of the bone-screw interface was performed on the remaining screws. RESULTS: At each euthanization the extraction torque of Group A was lower than that of the other groups (p < 0.0001). At three and twelve months the extraction torque of Group B was higher than that of Group D (p = 0.002). Morphologic results showed extensive bone-screw gap in Group A. Optimal osteointegration was observed in Groups B and C. Osteointegration of Group D was higher than that of Group A and lower than that of Groups B and C. CONCLUSIONS: It was demonstrated that AO/ASIF screws coated with osteoconductive materials achieve optimal fixation strength, even in the early phase. This fixation strength was significantly higher than that of the standard screws.  相似文献   

6.
STUDY DESIGN: Comparative in vitro biomechanical study and finite element analysis. OBJECTIVES: To investigate the bending strength and pullout strength of conical pedicle screws, as compared with conventional cylindrical screws. SUMMARY OF BACKGROUND DATA: Transpedicle screw fixation, the gold standard of spinal fixation, is threatened by screw failure. Conical screws can resist screw breakage and loosening. However, biomechanical studies of bending strength have been lacking, and the results of pullout studies have varied widely. METHODS: Ten types of pedicle screws with different patterns of core tapering and core diameter were specially manufactured with good control of all other design factors. The stiffness, yielding strength, and fatigue life of the pedicle screws were assessed by cantilever bending tests using high-molecular-weight polyethylene. The pullout strength was assessed by pullout tests using polyurethane foam. Concurrently, 3-dimensional finite element models simulating these mechanical tests were created, and the results were correlated to those of the mechanical tests. RESULTS: In bending tests, conical screws had substantially higher stiffness, yielding strength, and fatigue life than cylindrical screws (P<0.01), especially when there was no step at the thread-shank junction. In pullout tests, pullout strength was higher in screws with a conical core and smaller core diameter and also in situations with higher foam density (P<0.01). In finite element analysis, the maximal deflection and maximal tensile stress were closely related to yielding strength (r=-0.91) and fatigue life (r=-0.95), respectively, in the bending analyses. The total reaction force was closely related to the pullout strength in pullout analyses (r=0.84 and 0.91 for different foam densities). CONCLUSIONS: Conical screws effectively increased the bending strength and pullout strength simultaneously. The finite element analyses reliably predicted the results of the mechanical tests.  相似文献   

7.
The purpose of this study is to evaluate the biomechanical properties of stainless steel and bioabsorbable screw fixation of the clavicle to the base of the coracoid. Seven matched pairs of fresh frozen shoulders were prepared by removing all soft tissue except the acromioclavicular and coracoclavicular ligament complexes. The shoulders were randomly selected and fixed with 4.5-mm stainless steel (SS) screws, while contralateral shoulders were fixed with 4.5-mm poly L-lactic acid polymer (PLLA) screws. Pullout strength, stiffness, and elongation to failure were measured using an Instron Mechanical Tester (Model 4202). The average pullout strength of 720.6 +/- 244.9 N of the metal screws was not statistically different (p = 0.089) from that of the biodegradable screws of 580.4 +/- 188.6 N. The pullout strengths exerted by both these screws exceeded the reported strength (500 N) of the intact coracoclavicular complex indicating adequate initial pullout strength for coracoclavicular fixation.  相似文献   

8.
Internal fixators are a new class of implants designed to preserve the periosteal blood supply of the bone. In contrast to conventional plate fixation in which the screws have spherical heads and are loaded mainly by axial pullout forces, screws in internal fixators are “locked” within the plate and therefore subjected to axial as well as bending loads. In this study the ultimate loads of screws of a commercially available internal fixator system were tested in a pullout (n = 72) and cantilever bending mode (n = 72) in metaphyseal and diaphyseal regions of four pairs of human tibiae with different bone qualities. Cortical thickness and cancellous bone density were determined at the screw insertion sites. Stepwise multiple linear regression revealed that cortical thickness and cancellous density can explain 93% and 98% of the variance of the ultimate load of the screws in an axial pullout and cantilever bending mode. Screws in internal fixators are better suited to transmit shear forces and thereby make better use of the strength potential of bone than screws used in conventional plate fixation: this is especially advantageous when bone strength is reduced, e.g. due to osteoporosis. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.  相似文献   

9.
Screw loosening can threaten pedicle screw fixation of the spine. Conical screws can improve the bending strength, but studies of their pullout strength as compared with that of cylindrical screws have shown wide variation. In the present study, polyurethane foam with two different densities (0.32 and 0.16 gm/cm3) was used to compare the pullout strength and stripping torque among three kinds of pedicle screws with different degrees of core tapering. Three-dimensional finite element models were also developed to compare the structural performance of these screws and to predict their pullout strength. In the mechanical tests, pullout strength was consistently higher in the higher density foam and was closely related to screw insertion torque (r=0.87 and 0.81 for the high and low density foam, respectively) and stripping torque (r=0.92 and 0.78, respectively). Conical core screws with effective foam compaction had significantly higher pullout strength and insertion torque than cylindrical core screws (p<0.05). The results of finite element analyses were closely related to those of the mechanical tests in both situations with or without foam compaction. This study led to three conclusions: polyurethane foam bone yielded consistent experimental results; screws with a conical core could significantly increase pullout strength and insertion torque over cylindrical; and finite element models could reliably reflect the results of mechanical tests.  相似文献   

10.
OBJECTIVE: To determine the effect of the number and length of cutting flutes on the insertion torque and pullout strength for self-tapping 4.5-millimeter cortical bone screws. DESIGN: Screws were self-tapped in the diaphysis of human cadaver femurs. Each of the six screw types studied had different designs with varying cutting flute lengths and numbers. Bone mineral density, insertion torque, and pullout strength were measured. SETTING: The study was conducted at an experimental biomechanics laboratory associated with a university medical center. OUTCOME MEASUREMENTS: Insertion torque and pullout strength were normalized by the local bone mineral density. RESULTS: The mean normalized insertion torque of the design with four full-length cutting flutes was less than the design with three full-length flutes and the two designs with one-third length flutes (p < 0.05). The mean normalized pullout strength of the screw with four full-length flutes was significantly greater than that of all screws with fewer than three flutes (p < 0.05). CONCLUSIONS: Priorities for a cutting flute design should ideally include ease of screw insertion, minimal soft tissue irritation, and maximal screw holding power. Screws with more than two flutes were easier to insert and did not cause cortical damage during insertion. The screw with four full-length flutes showed a trend toward being the easiest to insert and having the greatest holding strength.  相似文献   

11.
Lawson KJ  Brems J 《Orthopedics》2001,24(5):451-454
The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.  相似文献   

12.
OBJECTIVE: To evaluate a new method of small fragment fixation in a medial malleolus fracture model. DESIGN/METHODS: The authors measured the pullout strength, resistance to shear stress, and speed of insertion of 4.0-millimeter partially threaded cancellous screws, 2.4-millimeter smooth K-wires, and a small fragment fixation system with 2.2-millimeter threaded K-wires. Pullout strength was tested in eighty-one synthetic foam blocks and resistance to shear stress in thirty synthetic tibias by use of a servohydraulic testing machine. Six randomized time trials with the threaded K-wires and cancellous screws were also conducted. RESULTS: Pullout strength increased with increasing foam density, increasing insertion depth, and varied with fixation method (p < 0.05). Maximum pullout strengths were as follows: partially threaded cancellous screws, 730+/-4 Newtons; threaded K-wires, 316+/-12 Newtons; and smooth K-wires, 172 +/-5 Newtons. Percent difference in pullout strength between the partially threaded cancellous screw and threaded K-wire diminished with increased depth of insertion and increased foam density. Offset axial load to initiate fracture displacement in a synthetic tibia model averaged 1540+/-138 Newtons for the partially threaded cancellous screws, 1,318+/-117 Newtons for the threaded K-wires, and 1,287+/-121 Newtons for the smooth K-wires (p > 0.05). Average time of fixation of a medial malleolar fragment by orthopedic surgeons with a variety of experience levels in a synthetic tibia with two threaded K-wires (114+/-8 seconds) was significantly faster (p < 0.05) than with two partially threaded cancellous screws (207+/-20 seconds). CONCLUSIONS: Threaded K-wires show substantial pullout strength and similar resistance to offset axial load when compared with partially threaded cancellous screws. These threaded K-wires offer an alternative for the internal fixation of medial malleolus fractures.  相似文献   

13.
Background contextNovel dual-threaded screws are configured with overlapping (doubled) threads only in the proximal shaft to improve proximal cortical fixation.PurposeTests were run to determine whether dual-threaded pedicle screws improve pullout resistance and increase fatigue endurance compared with standard pedicle screws.Study design/settingIn vitro strength and fatigue tests were performed in human cadaveric vertebrae and in polyurethane foam test blocks.Patient sampleSeventeen cadaveric lumbar vertebrae (14 pedicles) and 40 test sites in foam blocks were tested.Outcome measuresMeasures for comparison between standard and dual-threaded screws were bone mineral density (BMD), screw insertion torque, ultimate pullout force, peak load at cyclic failure, and pedicular side of first cyclic failure.MethodsFor each vertebral sample, dual-threaded screws were inserted in one pedicle and single-threaded screws were inserted in the opposite pedicle while recording insertion torque. In seven vertebrae, axial pullout tests were performed. In 10 vertebrae, orthogonal loads were cycled at increasing peak values until toggle exceeded threshold for failure. Insertion torque and pullout force were also recorded for screws placed in foam blocks representing healthy or osteoporotic bone porosity.ResultsIn bone, screw insertion torque was 183% greater with dual-threaded than with standard screws (p<.001). Standard screws pulled out at 93% of the force required to pull out dual-threaded screws (p=.42). Of 10 screws, five reached toggle failure first on the standard screw side, two screws failed first on the dual-threaded side, and three screws failed on both sides during the same round of cycling. In the high-porosity foam, screw insertion torque was 60% greater with the dual-threaded screw than with the standard screw (p=.005), but 14% less with the low-porosity foam (p=.07). Pullout force was 19% less with the dual-threaded screw than with the standard screw in the high-porosity foam (p=.115), but 6% greater with the dual-threaded screw in the low-porosity foam (p=.156).ConclusionsAlthough dual-threaded screws required higher insertion torque than standard screws in bone and low density foam, dual-threaded and standard pedicle screws exhibited equivalent axial pullout and cyclic fatigue endurance. Unlike single-threaded screws, the mechanical performance of dual-threaded screws in bone was relatively independent of BMD. In foam, the mechanical performance of both types of screws was highly dependent on porosity.  相似文献   

14.
Displaced medial malleolus fractures are considered unstable and typically require open reduction and internal fixation for anatomic reduction and early joint range of motion. These fractures are usually fixated with either compression lag screws or tension band wiring depending on the fracture pattern, size of the distal fragment, and bone quality. When fracture fixation fails, it is typically in pullout strength. Failure of primary bone healing can result in nonunion, malunion, and need for revision surgery. The current study wished to explore a potentially stronger fixation technique in regard to pullout strength for medial malleolar fractures compared with traditional cancellous screws. This was a comparative study of the relative pullout strength of 2 fully threaded 3.5-mm bicortical screws versus 2 partially threaded 4.0-mm cancellous screws for the fixation of medial malleolar fractures. Ten fresh-frozen limbs from 5 cadavers, mean age 79 years (range of 65–97 years), were tested using the Instron 8500 Plus system. The median force recorded at 2 mm of distraction using unicortical partially threaded cancellous screws was 116.2 N (range 70.2 to 355.5N) compared with 327.6 N (range 117.5 to 804.3 N) in the fully threaded bicortical screw (P = .04). The unicortical screw fixation displayed only 64.53% of the median strength noted with the bicortical screw fixation at clinical failure. The current study demonstrated statistically significantly greater pullout strength for 3.5-mm bicortical screws when compared with 4.0-mm partially threaded cancellous screws used to fixate medial malleolar fractures in a cadaveric model.  相似文献   

15.
Adla DN  Kitsis C  Miles AW 《Injury》2005,36(1):65-70
The compressive forces generated by the AO/ASIF 3.0 mm cannulated cancellous and 2.0 mm cortical screws, Mini-Acutrak and Herbert/Whipple small bone cannulated screws were measured in the laboratory with the use of simulated cancellous bone and a load cell washer as a means of quantifying their fixation capabilities. The Herbert/Whipple screw and the Mini-Acutrak screw were found to have nearly identical compression capabilities and provided more compression than the cortical screw. The AO/ASIF cannulated screw when used with a support screw demonstrated a compressive capacity twice that of the 2.0 mm cortical screw and higher than the headless Mini-Acutrak and Herbert/Whipple screws. The Mini-Acutrak screw produced about 70% of compression of the cancellous screw in spite of having a diameter almost half that of the cancellous screw. The Herbert/Whipple screw in spite of its larger size compared to the Mini-Acutrak produced almost the same amount of compression.  相似文献   

16.
The purpose of this study was to determine the difference in pullout strength between cannulated and solid-core small-diameter bone screws. Cannulated screws from different manufacturers were compared against solid-core screws with 2.0-mm, 2.4-/2.5-mm, and 3.0-mm diameters. A synthetic material made to simulate bicortical bone was used as the test medium. The screws were extracted under servohydraulic control. There was no statistically significant difference between any of the cannulated and solid-core 2.0-mm screws used in this study (P < .05). In the 2.4-/2.5-mm screw tests, both of the cannulated screw designs had a significantly higher pullout strength when compared with the solid-core screw (P < .05). In the testing of 3.0-mm screw test, 1 of the cannulated screw designs showed a significantly higher pullout strength than the other cannulated and solid-core screws that were tested (P < .05). The results of this study suggest that small-diameter cannulated bone screws are similar in mechanical pullout strength to solid-core screws.  相似文献   

17.
Background contextCurrently, pedicle screw segmental fixation of the spine is considered a standard of care for a number of conditions. Most surgeons employ a free-hand technique using various intraoperative modalities to improve pedicle screw accuracy. Despite continued improvements in technique, pedicle breach remains a frequent occurrence. Once a breach is detected intraoperatively, the most common corrective maneuver is to medially redirect the pedicle screw into the pedicle. To our knowledge, the biomechanical impact of medially redirecting a pedicle screw after a lateral pedicle breach has not been examined.PurposeTo compare the fixation strength of perfectly placed pedicle screws to the fixation strength of pedicle screws that were correctly placed after having been redirected (RD) following a lateral pedicle breach.Study design/settingA biomechanical study using human lumbar vertebrae.MethodsTen fresh human lumbar vertebrae were isolated from five donors. Each vertebra was instrumented with a monoaxial pedicle screw into each pedicle using two different techniques. On one side, a perfect center-center (CC) screw path was created using direct visualization and fluoroscopy. A 6.0-mm-diameter cannulated tap and a pedicle probe were used to develop the pedicle for the 7.0-mm-diameter by 45-mm-long cannulated pedicle screw, which was placed using a digital torque driver. On the contralateral side, an intentional lateral pedicle wall breach was created at the pedicle-vertebral body junction using a guide wire, a 6.0-mm-diameter cannulated tap, and a pedicle probe. This path was then redirected into a CC position, developed, and instrumented with a 7.0-mm-diameter by 45-mm-long cannulated pedicle screw: the RD screw. For each pedicle screw, we assessed four outcome measures: maximal torque, seating torque, screw loosening, and post-loosening axial pullout. Screw loosening and axial pullout were assessed using an MTS machine.ResultsThe biomechanical cost of a lateral pedicle breach and the requirement to redirect the pedicle screw are as follows: an overall drop of 28% (p<.002) in maximal insertion torque and 25% (p<.049) in seating torque, a drop of 25% (p<.040) in resistance to screw loosening, and a drop in axial pullout force of 11% (p<.047).ConclusionsCompared with a CC lumbar pedicle screw, an RD lumbar pedicle screw placed after a lateral wall breach is significantly weaker in terms of maximal insertional torque, seating torque, screw loosening force, and axial pullout strength. These significant decreases in biomechanical properties are clearly important when RD pedicle screws are placed at the cephalad or caudal end of a long construct. In this situation, augmentation of the RD screw is an option.  相似文献   

18.
Kroeber MW  Rovinsky D  Haskell A  Heilmann M  Llotz J  Otsuka N 《Orthopedics》2002,25(6):659-62; discussion 663
This study compared cannulated 4.5-mm bioabsorbable screws made of self-reinforced poly-levolactic acid to cannulated 4.5-mm steel and titanium screws for resistance to shear stress and ability to generate compression in a polyurethane foam model of slipped capital femoral epiphysis fixation. The maximum shear stress resisted by the three screw types was similar (self-reinforced poly-levolactic acid 371 +/- 146 MPa, steel 442 +/- 43 MPa, and titanium 470 +/- 91 MPa). The maximum compression generated by both the self-reinforced poly-levolactic acid screw (68.5 +/- 3.3 N) and the steel screw (63.3 +/- 5.9 N) was greater than that for the titanium screw (3 +/- 1.4 N, P <.05). These data suggest cannulated self-reinforced poly-levolactic acid screws can be used in the treatment of slipped capital femoral epiphysis because of their sufficient biomechanical strength.  相似文献   

19.
OBJECTIVE: The purpose of this study was to examine the effects of resorbable bone cement on screw and plate-screw fracture fixation in a porous osteoporotic bone model. METHODS: Experiment 1: Screw pullout strength was assessed for 4 sets of 4.5-mm cortical screws inserted into a synthetic osteoporotic cancellous bone model, including screws inserted without cement augmentation (control), screws augmented with tricalcium phosphate (TCP) bone cement (Norian SRS; Synthes USA, Paoli, PA), and screws augmented with polymethylmethacrylate. Experiment 2: The effects of cement augmentation on plate-screw fixation strength were examined by performing cantilever bending tests on 4 sets of 8 plate-screw constructions, including nonaugmented and TCP-augmented standard and locked screw-plate constructions in a similar bone model. RESULTS: Experiment 1: Cement augmentation with both TCP and polymethylmethacrylate increased screw pullout strength from a porous osteoporotic cancellous bone model by about 4-fold (P < 0.05), and there was no significant difference between the 2 cements (P > 0.1). Experiment 2: Fixation strength was 1.5 times higher for locked plates compared with standard plates when neither was augmented with cement (P = 0.07). Cement augmentation with TCP improved fixation strength by 3.6 times for a standard plate-screw construction (P < 0.05) and 3.3 times for a locked plate-screw construction (P < 0.05). The most stable construction was the TCP-augmented locked plate, in which a 5-fold increase was observed compared with that of standard plates without TCP (P < 0.05). CONCLUSIONS: This study indicates augmenting screws with TCP cement during osteosynthesis improves fixation strength in an osteoporotic cancellous bone model. CLINICAL RELEVANCE:: In fracture situations in which osteoporotic bone makes screw and screw-plate fixation tenuous, screw augmentation with TCP cement should be considered as adjunct treatment.  相似文献   

20.
The mechanical performance of bone screws is determined by their pull-out strength (holding power), compressive force, stripping torque, yield bending moment, ultimate bending moment, and fatigue strength. These parameters are related to the parameters of the screw design, including major thread diameter, minor thread diameter, thread length, pitch, shaft diameter, cannulation diameter, and material properties. The goal of the study was to theoretically predict the static performance of five 4.0-mm, 45-46-mm-long, cancellous, partially threaded standard and cannulated bone screws and compare the predictions with experimental measurements. A secondary goal was to determine if cannulation of the bone screw diminished its mechanical performance. The predicted values for pull-out force, compressive force, and stripping torque were determined by the thread length, major thread diameter, and thread shape factor. The screws with the largest major thread diameter and longest thread length had the greatest pull-out force, compressive strength, and stripping torque. However, when correcting for the thread length, a higher thread shape factor compensated for a smaller major diameter. The coefficient of determination (r2) for the correlation between the predicted and measured pull-out force improved from 0.75 to 0.90 when the theoretical model included the thread shape factor. The yield and ultimate bending moments are a function of the section modulus and material properties of the screw. The Ace solid screw had the greatest section modulus and yield and ultimate bending moments. The experimental data support the theoretical models for predicting the mechanical performance of bone screws. The design of the bone screws can be optimized on the basis of theoretical modeling. The strong correlation between the predicted and measured parameters allows comparison between bone screws without repeated experimental tests. Theoretical and experimental results show that cannulation of the bone screw did not inherently diminish its mechanical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号