首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatinekinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and Huntington’s disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington’s and Parkinson’s disease but appears to be less effective for ALS and Alzheimer’s disease.  相似文献   

2.
3.
Olfactory dysfunction is present in patients diagnosed with Alzheimer's disease or idiopathic Parkinson's disease and can differentiate each of these disorders from related disorders with similar clinical presentations. The pathologic hallmarks of each disease are present in brain regions involved in processing olfactory input. Both the olfactory functional deficits and the corroborating pathologic lesions are present in asymptomatic subjects with increased risk of developing these diseases. Preclinical detection of neurodegenerative diseases is necessary to control their devastating effects on individuals and societies. We address whether olfactory dysfunction can be used to assess risk for developing Alzheimer's disease or Parkinson's disease in asymptomatic individuals. We argue that further characterization and a deeper understanding of olfactory deficits in these neurodegenerative diseases at the molecular, cellular, and systems levels will augment our acumen for preclinical detection and elucidate pathogenic mechanisms to guide the development of new therapeutic modalities.  相似文献   

4.
Olfactory dysfunction is present in patients diagnosed with Alzheimer’s disease or idiopathic Parkinson’s disease and can differentiate each of these disorders from related disorders with similar clinical presentations. The pathologic hallmarks of each disease are present in brain regions involved in processing olfactory input. Both the olfactory functional deficits and the corroborating pathologic lesions are present in asymptomatic subjects with increased risk of developing these diseases. Preclinical detection of neurodegenerative diseases is necessary to control their devastating effects on individuals and societies. We address whether olfactory dysfunction can be used to assess risk for developing Alzheimer’s disease or Parkinson’s disease in asymptomatic individuals. We argue that further characterization and a deeper understanding of olfactory deficits in these neurodegenerative diseases at the molecular, cellular, and systems levels will augment our acumen for preclinical detection and elucidate pathogenic mechanisms to guide the development of new therapeutic modalities.  相似文献   

5.
Alzheimer's disease(AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.  相似文献   

6.
7.
Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood–brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease‐specific proteins, such as α‐synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper‐zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Glutamate transporters: animal models to neurologic disease   总被引:11,自引:0,他引:11  
Glutamate is the primary excitatory amino acid neurotransmitter in the central nervous system and its activity is carefully modulated in the synaptic cleft by glutamate transporters. A number of glutamate transporters have been identified in the central nervous system and each has a unique physiologic property and distribution. Glutamate transporter dysfunction may either be an initiating event or part of a cascade leading to cellular dysfunction and ultimately cell death. Animal models of glutamate transporter dysfunction have revealed a significant role for these proteins in pathologic conditions such as neurodegenerative diseases, epilepsy, stroke, and central nervous system tumors. Recent work has focused on glutamate transporter biology in human diseases with an emphasis on how manipulation of these transporter proteins may lead to therapeutic interventions in neurologic disease.  相似文献   

9.
Although progressive neurodegenerative diseases have very different and highly specific causes, the dysfunction or loss of a vulnerable group of neurons is common to all these disorders and may allow the development of similar therapeutic approaches to the treatment of diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. When a disease is diagnosed, the first step is to instigate protective measures to prevent further degeneration. However, most patients are symptom-free until almost all of the vulnerable cells have become dysfunctional or have died. There are known molecular mechanisms and processes in stem cells and progenitor cells that may be of use in the future design and selection of cell-based replacement therapies for neurological diseases. This review provides examples of conceptual and clinical problems that have been encountered in the development of cell-based treatments, and specific criteria for the effective use of cells in the future treatment of neurodegenerative diseases.  相似文献   

10.
Many lines of independent research have provided convergent evidence regarding oxidative stress, cerebrovascular disease, dementia, and Alzheimer's disease (AD). Clinical studies spurred by these findings engage basic and clinical communities with tangible results regarding molecular targets and patient outcomes. Focusing on recent progress in characterizing age-related diseases specifically highlights oxidative stress and mechanisms for therapeutic action in AD. Oxidative stress has been investigated independently for its relationship with aging and cardiovascular and neurodegenerative diseases and provides evidence of shared pathophysiology across these conditions. The mechanisms by which oxidative stress impacts the cerebrovasculature and blood-brain barrier are of critical importance for evaluating antioxidant therapies. Clinical research has identified homocysteine as a relevant risk factor for AD and dementia; basic research into molecular mechanisms associated with homocysteine metabolism has revealed important findings. Oxidative stress has direct implications in the pathogenesis of age-related neurodegenerative diseases and careful scrutiny of oxidative stress in the CNS has therapeutic implications for future clinical trials. These mechanisms of dysfunction, acting independently or in concert, through oxidative stress may provide the research community with concise working concepts and promising new directions to yield new methods for evaluation and treatment of dementia and AD.  相似文献   

11.
Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the central nervous system, often associated with cytoskeletal protein aggregates forming intracytoplasmic and/or intranuclear inclusions in neurons and/or glial cells. Most neurodegenerative disorders are now classified either according to the hitherto known genetic mechanisms or to the major components of their cellular protein inclusions. The major basic processes inducing neurodegeneration are considered multifactorial ones caused by genetic, environmental, and endogenous factors. They include abnormal protein dynamics with defective protein degradation and aggregation, many of them related to the ubiquitin-proteasomal system, oxidative stress and free radical formation, impaired bioenergetics and mitochondrial dysfunctions, and "neuroinflammatory" processes. These mechanisms that are usually interrelated in complex vitious circles finally leading to programmed cell death cascades are briefly discussed with reference to their pathogenetic role in many, albeit diverse neurodegenerative diseases, like Alzheimer disease, synucleinopathies, tauopathies, and polyglutamine disorders. The impact of protein inclusions on cell dysfunction, activation or prevention of cell death cascades are discussed, but the molecular basis for the underlying disease mechanisms remains to be elucidated.  相似文献   

12.
Following the identification of mutations in alpha-synuclein as the cause of some rare forms of familial Parkinson's disease (PD), genetic research has uncovered numerous gene loci of PD. Meanwhile, several neurodegenerative diseases have been shown to accumulate a-synuclein in neuronal and glial cells summarizing this group of diseases as synucleinopathies. All currently known gene defects causing PD alter the ubiquitin-proteasomal pathway of protein degradation. Identification of these disease mutations allows studying the functional consequences which lead to cellular dysfunction and cell death in cell culture and transgenic animal models, to identify therapeutic targets and to test potential protective strategies in these models.  相似文献   

13.
The incidence of mitochondrial diseases has been estimated at 11.5/100,000 (1:8500) worldwide. In the USA up to 4000 newborns annually are expected to develop a mitochondrial disease. More than 50 million adults in the USA also suffer from diseases in which primary or secondary mitochondrial dysfunction is involved. Mitochondrial dysfunction has been identified in cancer, infertility, diabetes, heart diseases, blindness, deafness, kidney disease, liver disease, stroke, migraine, dwarfism, and resulting from numerous medication toxicities. Mitochondrial dysfunction is also involved in normal aging and age-related neurodegenerative diseases, such as Parkinson and Alzheimer diseases. Yet most treatments available are based on empiric data and clinician experience because of the lack of randomized controlled clinical trials to provide evidence-based treatments for these disorders. Here we explore the current state of research for the treatment of mitochondrial disorders.  相似文献   

14.
Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.  相似文献   

15.
16.
Inflammation-mediated mechanisms for human neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) have evolved from being on the fringe of medical hypotheses to mainstream thinking. Pioneering immunopathology studies with human brain tissues identified microglia associated with neuropathologic hallmarks of these diseases. As activated macrophages were known to produce many potential toxic products, this gave rise to the hypothesis that activated microglia (brain resident macrophages) could be contributing to the degeneration of key target neurons in these diseases, as well as potential vascular dysfunction. Studies with microglia derived from different sources, including human brains, have confirmed that activated microglia can mediate neuronal cell death. Based on these theories, a number of human clinical trials with antiinflammatory agents have been carried out on AD patients. Results to date have indicated a lack of effectiveness at slowing disease progression and have begun to cast doubt on the significance of inflammation in AD. It has been shown recently that activating microglia through immunization of amyloid plaque-developing mice with amyloid beta peptide (Abeta) has promise as a therapeutic strategy and despite some setbacks, has potential as a treatment for AD patients. This article will consider experimental data with microglia to determine whether the additional targets need to be investigated. The use of human microglia cultures, in particular those derived from elderly diseased human brains, offers an experimental system that can closely model the cell type activated in human neurodegenerative diseases. Experimental data produced by our laboratory and others is reviewed to determine the contribution of this unique experimental model to understanding disease mechanisms and possibly discovering new therapeutic targets.  相似文献   

17.
Mitochondria are key cytoplasmic organelles, responsible for generating cellular energy, regulating intracellular calcium levels, altering the reduction-oxidation potential of cells, and regulating cell death. Increasing evidence suggests that mitochondria play a central role in aging and in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and Freidriech ataxia. Further, several lines of evidence suggest that mitochondrial dysfunction is an early event in most late-onset neurodegenerative diseases. Biochemical and animal model studies of inherited neurodegenerative diseases have revealed that mutant proteins of these diseases are associated with mitochondria. Mutant proteins are reported to block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins and disrupt the electron transport chain, induce free radicals, cause mitochondrial dysfunction, and, ultimately, damage neurons. This article discusses critical issues of mitochondria causing dysfunction in aging and neurodegenerative diseases, and discusses the potential of developing mitochondrial medicine, particularly mitochondrially targeted antioxidants, to treat aging and neurodegenerative diseases.  相似文献   

18.
Oxidative stress, bioenergetic failure and mitochondrial dysfunction are all implicated in the etiology of neurodegenerative diseases such as Alzheimer's disease (AD). The mitochondrial involvement in neurodegenerative diseases reflects the regulatory role mitochondrial failure plays in both necrotic cell death and apoptosis. The potent feminizing hormone, 17 β-estradiol (E2), is neuroprotective in a host of cell and animal models of stroke and neurodegenerative diseases. The discovery that 17-estradiol, an isomer of E2, is equally as neuroprotective as E2 yet is > 200-fold less active as a hormone, has permitted development of novel, more potent analogs where neuroprotection is independent of hormonal potency. Studies of structure–activity relationships and mitochondrial function have led to a mechanistic model in which these steroidal phenols intercalate into cell membranes where they block lipid peroxidation reactions, and are in turn recycled. Indeed, the parental estrogens and novel analogs stabilize mitochondria under Ca2+ loading otherwise sufficient to collapse membrane potential. The neuroprotective and mitoprotective potencies for a series of estrogen analogs are significantly correlated, suggesting that these compounds prevent cell death in large measure by maintaining functionally intact mitochondria. This therapeutic strategy is germane not only to sudden mitochondrial failure in acute circumstances, such as during a stroke or myocardial infarction, but also to gradual mitochondrial dysfunction associated with chronic degenerative disorders such as AD.  相似文献   

19.
Energetics in the pathogenesis of neurodegenerative diseases   总被引:28,自引:0,他引:28  
Mitochondria have been linked to both necrotic and apoptotic cell death, which are thought to have a major role in the pathogenesis of neurodegenerative diseases. Recent evidence shows that nuclear gene defects affecting mitochondrial function have a role in the pathogenesis of Friedreich's ataxia, Wilson's disease and hereditary spastic paraplegia. There is also accumulating evidence that mitochondrial dysfunction might have a role in the pathogenesis of amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and Alzheimer's disease. If this is so, a number of therapeutic targets are implicated that might result in novel treatments for neurodegenerative diseases.  相似文献   

20.
For many genetic diseases, clinical phenotypes arise through the dysfunction of the gene products encoded by mutant genes. Effective treatment entails providing a source of the gene product in the diet or circulation, as has been achieved for type I diabetes and hemophilia, or in cases of enzyme deficiency by supplementation with metabolites synthesized by the defective protein, as in adrenoleukodystrophy. However, a growing list of diseases do not appear to be amenable to such treatment strategies. In these instances, defective gene products acquire novel properties that disrupt normal cell function, even in the presence of proteins encoded by the normal allele. One class of such diseases, collectively termed “conformational diseases,” is composed of clinically unrelated disorders that share a common pathophysiology because the mutant proteins cannot adopt stable three-dimensional conformations. These mutant proteins aggregate in various subcellular compartments and may even cause cell death. Some of these diseases are associated with inclusion bodies containing the aggregating proteins whereas others do not exhibit such pathology; however, all appear to activate cell stress signaling pathways. Herein, we highlight one such disorder, Pelizaeus-Merzbacher disease, that disrupts formation of whiter matter in the brain. Accumulation of the mutant protein in oligodendrocytes activates the unfolded protein response. The well-characterized genetics and large number of animal models available for Pelizaeus-Merzbacher disease enables this disease to serve as an important model for conformational diseases, both in terms of defining molecular components of the unfolded protein response signaling pathway as well as testing therapeutic approaches to ameliorate disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号