首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.  相似文献   

2.
In a previous study, we found that long non-coding genes in Alzheimer’s disease (AD) are a result of endogenous gene disorders caused by the recruitment of microRNA (miRNA) and mRNA, and that miR-200a-3p and other representative miRNAs can mediate cognitive impairment and thus serve as new biomarkers for AD. In this study, we investigated the abnormal expression of miRNA and mRNA and the pathogenesis of AD at the epigenetic level. To this aim, we performed RNA sequencing and an integrative analysis of the cerebral cortex of the widely used amyloid precursor protein and presenilin-1 double transgenic mouse model of AD. Overall, 129 mRNAs and 68 miRNAs were aberrantly expressed. Among these, eight down-regulated miRNAs and seven up-regulated miRNAs appeared as promising noninvasive biomarkers and therapeutic targets. The main enriched signaling pathways involved mitogen-activated kinase protein, phosphatidylinositol 3-kinase-protein kinase B, mechanistic target of rapamycin kinase, forkhead box O, and autophagy. An miRNA-mRNA network between dysregulated miRNAs and corresponding target genes connected with AD progression was also constructed. These miRNAs and mRNAs are potential biomarkers and therapeutic targets for new treatment strategies, early diagnosis, and prevention of AD. The present results provide a novel perspective on the role of miRNAs and mRNAs in AD. This study was approved by the Experimental Animal Care and Use Committee of Institute of Medicinal Biotechnology of Beijing, China (approval No. IMB-201909-D6) on September 6, 2019.

Chinese Library Classification No. R446.1; R741.04; Q344+.13  相似文献   

3.
Inflammatory microglia modulate a host of cellular processes in the central nervous system that include neuronal survival, metabolic fluxes, foreign body exclusion, and cellular regeneration. Elucidation of the pathways that oversee microglial survival and integrity may offer new avenues for the treatment of neurodegenerative disorders. Here we demonstrate that erythropoietin (EPO), an emerging strategy for immune system modulation, prevents microglial early and late apoptotic injury during oxidant stress through Wnt1, a cysteine-rich glycosylated protein that modulates cellular development and survival. Loss of Wnt1 through blockade of Wnt1 signaling or through the gene silencing of Wnt1 eliminates the protective capacity of EPO. Furthermore, endogenous Wnt1 in microglia is vital to preserve microglial survival since loss of Wnt1 alone increases microglial injury during oxidative stress. Cellular protection by EPO and Wnt1 intersects at the level of protein kinase B (Akt1), the mammalian target of rapamycin (mTOR), and p70S6K, which are necessary to foster cytoprotection for microglia. Downstream from these pathways, EPO and Wnt1 control "anti-apoptotic" pathways of microglia through the modulation of mitochondrial membrane permeability, the release of cytochrome c, and the expression of apoptotic protease activating factor-1 (Apaf-1) and X-linked inhibitor of apoptosis protein (XIAP). These studies offer new insights for the development of innovative therapeutic strategies for neurodegenerative disorders that focus upon inflammatory microglia and novel signal transduction pathways.  相似文献   

4.
5.
6.
Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1(CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.  相似文献   

7.
8.
9.
‘Dying back’ axon degeneration is a prominent feature of many age‐related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease‐ and age‐related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age‐related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age‐related disease are inextricably linked and the term ‘healthy ageing’ downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age‐related disease we must study both processes.  相似文献   

10.
Recent advances in cell reprogramming have enabled assessment of disease‐related cellular traits in patient‐derived somatic cells, thus providing a versatile platform for disease modeling and drug development. Given the limited access to vital human brain cells, this technology is especially relevant for neurodegenerative disorders such as Parkinson's disease (PD) as a tool to decipher underlying pathomechanisms. Importantly, recent progress in genome‐editing technologies has provided an ability to analyze isogenic induced pluripotent stem cell (iPSC) pairs that differ only in a single genetic change, thus allowing a thorough assessment of the molecular and cellular phenotypes that result from monogenetic risk factors. In this review, we summarize the current state of iPSC‐based modeling of PD with a focus on leucine‐rich repeat kinase 2 (LRRK2), one of the most prominent monogenetic risk factors for PD linked to both familial and idiopathic forms. The LRRK2 protein is a primarily cytosolic multi‐domain protein contributing to regulation of several pathways including autophagy, mitochondrial function, vesicle transport, nuclear architecture and cell morphology. We summarize iPSC‐based studies that contributed to improving our understanding of the function of LRRK2 and its variants in the context of PD etiopathology. These data, along with results obtained in our own studies, underscore the multifaceted role of LRRK2 in regulating cellular homeostasis on several levels, including proteostasis, mitochondrial dynamics and regulation of the cytoskeleton. Finally, we expound advantages and limitations of reprogramming technologies for disease modeling and drug development and provide an outlook on future challenges and expectations offered by this exciting technology.  相似文献   

11.
Autophagy is emerging as a central regulator of cellular health and disease and, in the central nervous system (CNS), this homeostatic process appears to influence synaptic growth and plasticity. Herein, we review the evidence that dysregulation of autophagy may contribute to several neurodegenerative diseases of the CNS. Up-regulation of autophagy may prevent, delay or ameliorate at least some of these disorders, and - based on recent findings from our laboratory - we speculate that this goal may be achieved using a safe, simple and inexpensive approach.  相似文献   

12.
Autophagy and neurodegeneration: when the cleaning crew goes on strike   总被引:5,自引:0,他引:5  
Intracellular accumulation of altered and misfolded proteins is the basis of most neurodegenerative disorders. Altered proteins are usually organised in the form of toxic multimeric complexes that eventually promote neuronal death. Cells rely on surveillance mechanisms that take care of the removal of these toxic products. What then goes wrong in these pathologies? Recent studies have shown that a primary failure in autophagy, a mechanism for clearance of intracellular components in lysosomes, could be responsible for the accumulation of these altered proteins inside the affected neurons. In this Review we summarise our current knowledge on the contribution of autophagy to the maintenance of normal cellular homoeostasis, its changes in neurodegenerative disorders, and the role of aggravating factors such as oxidative stress and ageing on autophagic failure in these pathologies.  相似文献   

13.
一氧化氮(nitric oxide, NO)是一类胞内信使。研究表明,神经退行性病人脑组织中催化合成NO的酶的表达水平显著提高,提示NO与神经退行性疾病密切相关。此外,在这些组织中还检测到硝化的蛋白,提示NO在这些组织中具有生物活性。在神经免疫应答中,神经元和胶质细胞(包括小胶质细胞和星形胶质细胞)内都发生了NO水平的改变。很多神经退行性疾病都伴随有神经炎症,抑制神经炎症的信号通路能延迟这些疾病的发展。因此,NO及其释放通路已逐渐成为神经退行性疾病研究领域的热点,对它们的理解能帮助我们找到合适的方案来预防、减缓或者治愈这些疾病。  相似文献   

14.
Recent developments in our understanding of events underlying neurodegeneration across the central and peripheral nervous systems have highlighted the critical role that synapses play in the initiation and progression of neuronal loss. With the development of increasingly accurate and versatile animal models of neurodegenerative disease it has become apparent that disruption of synaptic form and function occurs comparatively early, preceding the onset of degenerative changes in the neuronal cell body. Yet, despite our increasing awareness of the importance of synapses in neurodegeneration, the mechanisms governing the particular susceptibility of distal neuronal processes are only now becoming clear. In this review we bring together recent developments in our understanding of cellular and molecular mechanisms regulating synaptic vulnerability. We have placed a particular focus on three major areas of research that have gained significant interest over the last few years: (i) the contribution of synaptic mitochondria to neurodegeneration; (ii) the contribution of pathways that modulate synaptic function; and (iii) regulation of synaptic degeneration by local posttranslational modifications such as ubiquitination. We suggest that targeting these organelles and pathways may be a productive way to develop synaptoprotective strategies applicable to a range of neurodegenerative conditions.  相似文献   

15.
Rapamycin is a strong inducer of autophagy which binds with its target protein mTOR and causes inhibition of biosynthetic and mitotic cell activities. The review considers neuroprotective properties of autophagy induction by rapamycin. The most important feature of the neurodegenerative diseases is the accumulation of specific proteins, such as amyloid-β, α-synuclein, huntingtin, etc. Their accumulation is associated with the weakening of the cellular function of the protein quality control provided by the ubiquitin-proteasomal system and autophagy, including chaperone-mediated autophagy. In many cases, activation of autophagy by rapamycin is able to restore the quality control of proteins and organelles, to attenuate the accumulation of pathogenic proteins. Mechanisms of rapamycin therapeutic effects include activation of the clearance of neurons from pathogenic material and induction of both autophagosomal segregation of cellular material and the lysosomal flux by activating TFEB factor, which is the inductor of the lysosomal biogenesis. Short-term treatment with rapamycin has a positive therapeutic effect in models of acute brain injury (trauma, ischemia, hypoxia). Inhibition of neurodegeneration requires long-term therapy. Neuroprotective effect of rapamycin is higher if started at young age. Good results are achieved by prolonged treatment with rapamycin in intermittent mode.  相似文献   

16.
‘Brain and cognitive reserve’ (BCR) refers here to the accumulated neuroprotective reserve and capacity for functional compensation induced by the chronic enhancement of mental and physical activity. BCR is thought to protect against, and compensate for, a range of different neurodegenerative diseases, as well as other neurological and psychiatric disorders. In this review we will discuss BCR, and its potential mechanisms, in neurodegenerative disorders, with a focus on Huntington's disease (HD) and Alzheimer's disease (AD). Epidemiological studies of AD, and other forms of dementia, provided early evidence for BCR. The first evidence for the beneficial effects of enhanced mental and physical activity, and associated mechanistic insights, in an animal model of neurodegenerative disease was provided by experiments using HD transgenic mice. More recently, experiments on animal models of HD, AD and various other brain disorders have suggested potential molecular and cellular mechanisms underpinning BCR. We propose that sophisticated insight into the processes underlying BCR, and identification of key molecules mediating these beneficial effects, will pave the way for therapeutic advances targeting these currently incurable neurodegenerative diseases.  相似文献   

17.
A novel and integral approach to the understanding of human neurodegenerative diseases (HNDDs) and cancer based upon the disruption of the intracellular dynamics of the hydrogen ion (H+) and its physiopathology, is advanced. From an etiopathological perspective, the activity and/or deficiency of different growth factors (GFs) in these pathologies are studied, and their relationships to intracellular acid-base homeostasis reviewed. Growth and trophic factor withdrawal in HNDDs indicate the need to further investigate the potential utilization of certain GFs in the treatment of Alzheimer disease and other neurodegenerative diseases. Platelet abnormalities and the therapeutic potential of platelet-derived growth factors in these pathologies, either through platelet transfusions or other clinical methods, are considered. Finally, the etiopathogenic mechanisms of apoptosis and antiapoptosis in HNDDs and cancer are viewed as opposite biochemical and biological disorders of cellular acid-base balance and their secondary effects on intracellular signaling pathways and aberrant cell metabolism are considered in the light of the both the seminal and most recent data available. The “trophic factor withdrawal syndrome” is described for the first time in English-speaking medical literature, as well as a Darwinian-like interpretation of cellular behavior related to specific and nonspecific aspects of cell biology.  相似文献   

18.
Apoptosis has been well documented to play a significant role in cell loss during neurodegenerative disorders, such as stroke, Parkinson disease, and Alzheimer's disease. In addition, reactive oxygen species (ROS) has been implicated in the cellular damage during these neurodegenerative disorders. These ROS can react with cellular macromolecular through oxidation and cause the cells undergo necrosis or apoptosis. The control of the redox environment of the cell provides addition regulation in the signal transduction pathways which are redox sensitive. Recently, many researches focus on the relationship between apoptosis and oxidative stress. However, till now, there is no clear and defined mechanisms that how oxidative stress could contribute to the apoptosis. This review hopes to make clear that generation of ROS during brain injury, particularly in ischemic stroke and Alzheimer's Disease, and the fact that oxidative state plays a key role in the regulation and control of the cell survival and cell death through its interaction with cellular macromolecules and signal transduction pathway, and ultimately helps in developing an unique therapy for the treatment of these neurodegenerative disorders.  相似文献   

19.
Dementia is a major health problem in developed countries with over 25 million people affected worldwide and probably over 75 million people at risk during the next 20 years. Alzheimer's disease (AD) is the most frequent cause of dementia (50-70%), followed by vascular dementia (30-40%), and mixed dementia (15-20%). AD pathogenesis is still to be elucidated but it is believed to be the complex interaction between genetic and environmental factors in later life. Three causative genes for familial AD have been identified: amyloid precursor protein, presenilin-1, and presenilin-2. There are 150 genes involved with increased neuronal vulnerability to premature death in the AD brain. Among these susceptibility genes, the apolipoprotein E (ApoE) gene is the most prevalent as a risk for AD pathogenic process in which complex interactions between genetic and environmental factors are involved, leading to a cascade of pathogenic events converging in final pathways to premature neuronal death. Some of these mechanisms are common to several neurodegenerative disorders that differ depending upon the genes affected and the involvement of environmental conditions. ApoE is a key lipoprotein in lipid and cholesterol metabolism and it is also the major risk gene for AD and many other central nervous system disorders. The pathogenic role of ApoE-4 is still to be clarified; however, diverse evidence suggests that ApoE may play pleiotropic functions in dementia and central nervous system disorders.  相似文献   

20.
Autophagy is a highly conserved intracellular pathway involved in the elimination of proteins and organelles by lysosomes. Known originally as an adaptive response to nutrient deprivation in mitotic cells, autophagy is now recognized as an arbiter of neuronal survival and death decisions in neurodegenerative diseases. Studies using postmortem human tissue, genetic and toxin-induced animal and cellular models indicate that many of the etiological factors associated with neurodegenerative disorders can perturb the autophagy process. Emerging data support the view that dysregulation of autophagy might play a critical role in the pathogenesis of neurodegenerative disorders. In this review, we highlight the pathophysiological roles of autophagy and its potential therapeutic implications in debilitating neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's, Parkinson's and Huntington's diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号