首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder caused by the defective CYP21A2 gene that leads to various degrees of impaired secretion of both cortisol and aldosterone. In the present study, we analyzed the CYP21A2 gene in a Japanese male patient with 21-OHD and functionally characterized the mutant CYP21A2 gene. The patient presented with hypoglycemia and a salt-losing crisis during the neonatal period, and was diagnosed as having the salt-wasting form of 21-OHD based on the clinical and laboratory findings. Analysis of the CYP21A2 gene revealed that the patient is homozygous for a novel C to A conversion at −9 position of intron 9 (IVS9-9C>A) and that his parents are heterozygous for the IVS9-9C>A mutation. Transient expression of the IVS9-9C>A mutant CYP21A2 gene in COS-1 cells demonstrated that the mutation creates an aberrant splice acceptor site at −7 position of intron 9 and totally inactivates the authentic splice acceptor site of intron 9, which results in complete deficiency of 21-hydroxylase activity and loss of immunoreactive 21-hydroxylase protein. Clinical presentations of the patient as the severe salt-wasting form of 21-OHD are in good agreement with these results of the expression study. In conclusion, the patient is a homozygote for the novel intronic IVS9-9C>A mutation, which affects messenger RNA splicing and totally inactivates 21-hydroxylase to give rise to clinically manifest classic salt-wasting 21-OHD.  相似文献   

3.
4.
We have identified two novel RNA-splicing mutations affecting a critical nucleotide (nt) in the acceptor consensus sequences at both the IVS-1/exon 2 and IVS-2/exon 3 junctions of the human beta-globin gene. Both mutations are single nt substitutions, T to G and C to A, at position -3 adjacent to the invariant AG dinucleotide. For the IVS- 2/exon 3 mutation abnormal splicing into the cryptic splice site at IVS- 2 nt 579 is documented. Identification of these two mutations provides further support for the importance of the location of specific nucleotides within the consensus sequences in splice site selection and RNA processing.  相似文献   

5.
21-Hydroxylase (21-OH) genotyping was performed in clinically unaffected family members of a congenital adrenal hyperplasia (CAH) index patient (Prader stage 3), who is a compound heterozygous carrier of the I172N (exon 4) and the intron2 splicing mutations. Whereas the latter mutation could be traced to the father, the exon 4 aberration represents a de novo mutation (accounting for 1% of CAH alleles) harbored on an unaffected allele, which was inherited from the mother. Although clinically and biochemically unaffected, the patient's brother was found to be compound heterozygous for intron2splice (paternal allele) and Q318X in exon 8 (maternal allele). As shown by PCR-based sequence and Southern blot analysis, the maternal haplotype, inherited by the brother, has a duplicated CYP21B (functional) gene, one of which carries a Q318X mutation. This duplicated Q318X-affected haplotype is the first of its kind among 800 alleles screened for 21-OH deficiency in our laboratory and has to date been reported only in three Swedish CAH patients, all of them bearing an intron2splice and a Q318X mutation. This family analysis highlights the complexity of the CYP21/CYP21P(pseudogene) loci and the difficulties of 21-OH genotyping.  相似文献   

6.
In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human beta-globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and beta-globin sequences, we show that the NS1 5' splice site was effectively utilized by the beta-globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the beta-globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from beta-globin. With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.  相似文献   

7.
8.
Inverse splicing of a group II intron.   总被引:2,自引:2,他引:2       下载免费PDF全文
I describe the self-splicing of an RNA that consists of exon sequences flanked by group II intron sequences. I find that this RNA undergoes accurate splicing in vitro, yielding an excised exon circle. This splicing reaction involves the joining of the 5' splice site at the end of an exon to the 3' splice site at the beginning of the same exon; thus, I term it inverse splicing. Inverse splicing provides a potential mechanism for exon scrambling, for exon deletion in alternative splicing pathways, and for exon shuffling in gene evolution.  相似文献   

9.
10.
11.
Mutations in the human ether-a-go-go-related gene (hERG) cause type 2 long QT syndrome. In this study, we investigated the pathogenic mechanism of the hERG splice site mutation 2398+1G>C and the genotype-phenotype relationship of mutation carriers in three unrelated kindreds with long QT syndrome. The effect of 2398+1G>C on mRNA splicing was studied by analysis of RNA isolated from lymphocytes of index patients and using minigenes expressed in HEK293 cells and neonatal rat ventricular myocytes. RT-PCR analysis revealed that the 2398+1G>C mutation disrupted the normal splicing and activated a cryptic splice donor site in intron 9, leading to the inclusion of 54 nt of the intron 9 sequence in hERG mRNA. The cryptic splicing resulted in an in-frame insertion of 18 amino acids in the middle of the cyclic nucleotide binding domain. In patch clamp experiments the splice mutant did not generate hERG current. Western blot and immunostaining studies showed that the mutant expressed an immature form of hERG protein that failed to reach the plasma membrane. Coexpression of the mutant and wild-type channels led to a dominant negative suppression of wild-type channel function by intracellular retention of heteromeric channels. Our results demonstrate that 2398+1G>C activates a cryptic site and generates a full-length hERG protein with an insertion of 18 amino acids, which leads to a trafficking defect of the mutant channel.  相似文献   

12.
13.
14.
To date, only two among 46 mutations in the CYP17 gene cause 17-hydroxylase deficiency (17OHD) by disrupting mRNA splice donor sites. We studied two subjects with intronic CYP17 mutations: a compound heterozygote for Y329D plus an AG to CG substitution at the 3' end of intron 2, and a homozygote for a TTTT deletion near the 3' end of intron 3. We hypothesized that both mutations caused 17OHD by disrupting splice acceptor sites. To prove this mechanism, the entire CYP17 genes (wild type and both mutations) were amplified, subcloned into pcDNA3, and expressed in HEK-293 cells. The mRNA derived from the wild-type CYP17 gene was correctly spliced and translated into active enzyme, as shown by the correct sequence in the RT-PCR products and by the 17-hydroxylation of progesterone. In contrast, cells expressing the mutant genes had no 17-hydroxylase activity. The mRNA derived from the AG to CG mutation used the first AG in exon 3 as the splice acceptor site, shifting the reading frame and introducing a stop codon. RNA derived from the TTTT deletion skipped exon 4 entirely, deleting 29 amino acids in-frame. Our data show that these are the first two 17OHD cases resulting from mutations that alter splice acceptor sites. These studies also demonstrate the feasibility of expressing the entire CYP17 gene, with simultaneous protein and RNA analysis, as a general methodology for characterizing how intronic CYP17 mutations cause 17OHD.  相似文献   

15.
16.
17.
18.
19.
The inclusion of exon 16 in the mature protein 4.1R messenger RNA (mRNA) is a critical event in red blood cell membrane biogenesis. It occurs during late erythroid development and results in inclusion of the 10-kd domain needed for stabilization of the spectrin/actin lattice. In this study, an experimental model was established in murine erythroleukemia cells that reproduces the endogenous exon 16 splicing patterns from a transfected minigene. Exon 16 was excluded in predifferentiated and predominantly included after induction. This suggests that the minigene contained exon and abutting intronic sequences sufficient for splicing regulation. A systematic analysis of the cis-acting regulatory sequences that reside within the exon and flanking introns was performed. Results showed that (1) the upstream intron of 4.1R pre-mRNA is required for exon recognition and it displays 2 enhancer elements, a distal element acting in differentiating cells and a proximal constitutive enhancer that resides within the 25 nucleotides preceding the acceptor site; (2) the exon itself contains a strong constitutive splicing silencer; (3) the exon has a weak 5' splice site; and (4) the downstream intron contains at least 2 splicing enhancer elements acting in differentiating cells, a proximal element at the vicinity of the 5' splice site, and a distal element containing 3 copies of the UGCAUG motif. These results suggest that the interplay between negative and positive elements may determine the inclusion or exclusion of exon 16. The activation of the enhancer elements in late erythroid differentiation may play an important role in the retention of exon 16.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号