首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.  相似文献   

2.
We developed a novel vector, electrostatically coated poly(ethylenimine) (PEI)/pDNA complexes with folic acid (FA). Without covalent binding, the FA molecules could coat the PEI/pDNA complexes, and stable anionic nanoparticles were formed at a charge ratio greater than 60. The addition of FA markedly decreased the cytotoxicity of the cationic PEI/pDNA complexes to the melanoma cell line, B16-F10 cells, which regularly expressed FA-specific receptor (FR). Furthermore, the anionic FA60/PEI/pDNA complexes showed high transgene efficiency via the FR-mediated pathway in B16-F10 cells. The FA60/PEI/pDNA complexes did not show agglutination with erythrocytes. After the intravenous injection of FA60/PEI/pDNA complexes into mice, a higher transgene efficiency than PEI/pDNA complexes was observed in the liver, kidney, spleen, and lung with FR. The gene expressions of FA60/PEI/pDNA complexes were significantly inhibited by preadministration of FA. Thus, the FA60/PEI/pDNA complexes were useful for effective gene therapy.  相似文献   

3.
Safe and efficient systems capable of specifically targeting brain tumour cells represent a promising approach for the treatment glioblastoma multiforme. Neuropilin-1 (NRP-1) is over-expressed in U87 glioma cells. In the current study, the tumour specific peptide RGERPPR, which binds specifically to NRP-1, was used as a targeting ligand in a gene delivery strategy for glioblastoma. The RGERPPR peptide was coupled to branched polyethylenimine (PEI, 25 kDa) using heterobifunctional Mal–PEG–NHS, resulting in a novel gene delivery polymer. Polymer/plasmid DNA (pDNA) complexes were formed and their sizes and zeta potentials were measured. Compared with the unmodified mPEG–PEI/pDNA complexes, the RGERPPR–PEG–PEI/pDNA complex led to a significant enhancement in intracellular gene uptake and tumour spheroid penetration. Furthermore, the RGERPPR–PEG–PEI/pDNA complex facilitated enhanced transfection efficiency levels, as well as a reduction in cytotoxicity when tested in U87 glioma cells in vitro. Most significantly of all, when complexes formed with pDsRED-N1 were injected into the tail vein of intracranial U87 tumour-bearing nude mice, the RGERPPR–PEG–PEI complexes led to improved levels of red fluorescence protein expression in the brain tissue. Taken together, the results show that RGERPPR–PEG–PEI could be used as a safe and efficient gene delivery vehicle with potential applications in glioblastoma gene delivery.  相似文献   

4.
Effective delivery of DNA encoding antigen into the dendritic cells (DCs), which are non-dividing cells, is very important for the development of DNA vaccines. In a previous study, we developed the PLGA nanospheres that contained a cationic nanomaterial and showed high transfection efficiency in COS7 cells, which divide. In the present study, to produce an effective vector for the DNA vaccines, the gene expression and intracellular trafficking of pDNA complexed with PLGA/PEI nanospheres, in combination with an NF-κB analog as a nuclear localization signal (NLS) and electroporation were evaluated in human monocyte-derived DCs (hMoDCs). Cellular uptake of pDNA both in COS7 cells and hMoDCs was enhanced using the PLGA/PEI nanospheres. On the other hand, the PLGA/PEI nanospheres significantly promoted the transfection in COS7 cells, but had almost no effect on transfection in hMoDCs. The intranuclear transport of pDNA by PLGA/PEI nanospheres in COS7 cells was significantly higher than that in hMoDCs. These results indicate that pDNA complexed with PLGA/PEI nanospheres cannot enter into the nuclei of non-dividing cells. However, PLGA/PEI nanospheres combinated with NLS and electroporation (experimental permeation enhancer) greatly elevated the transfection efficiency by improvement of not only intracellular uptake but also intranuclear transport of pDNA in the hMoDCs. Thus, this delivery system using nanospheres combined with synthesized NLS might be applicable to DC-based gene vaccines when much non-invasive application such as needle-free injector should be required.  相似文献   

5.
Our previous studies demonstrated that cationic nanoparticles composed of well-defined poly(methyl methacrylate) (PMMA) cores surrounded by a hairly poly(ethyleneimine) (PEI) shells have comparative advantages over the PEI system for gene delivery. In this study, we focused on the intracellular uptake and release of PEI-PMMA nanoparticle/pDNA complexes. The behavior of the nanoparticle/pDNA complexes in recipient cells was monitored by using confocal laser scanning microscopy. We found that the nanoparticle/pDNA complexes were internalized very effectively by endocytosis. In the recipient cells the nanoparticles were found localized in the cytoplasm. At the same time, the pDNA carried by the nanoparticles successfully detached from the nanoparticles and localized in the nucleus of the HeLa cells.  相似文献   

6.
The purpose of this study was to develop a ternary complex of plasmid DNA (pDNA) electrostatically assembled with dendrigraft poly-l-lysine (DGL) and biodegradable glycosaminoglycan for effective and secure gene delivery. High gene expression of pDNA/DGL complex was confirmed with slight cytotoxicity and erythrocyte agglutination. Anionic ternary complexes of 55.4–223.8?nm were formed by the addition of a glycosaminoglycan such as chondroitin sulfate A (CS-A), chondroitin sulfate B (CS-B), chondroitin sulfate C (CS-C) or hyaluronic acid (HA). Using the cell line B16-F10, most of the ternary complexes showed only weak gene expression and little cytotoxicity, although the pDNA/DGL/CS-A complexes maintained a certain level of gene expression. In particular, the pDNA/DGL/CS-A8 complexes showed significantly higher gene expression than pDNA/DGL complexes in the presence of fetal bovine serum. Gene expression from the pDNA/DGL/CS-A8 complex was inhibited by a high concentration of CS-A and endocytosis inhibitors. After intravenous administration of the pDNA/DGL/CS-A8 complex and the pDNA/DGL complex into ddY mice, high gene expression was observed in the reticuloendothelial systems, the pDNA/DGL/CS-A complex is expected to be useful for gene therapy.  相似文献   

7.
Purpose  To improve the gene delivery efficiency and safety of non-viral vector in liver cells, avidin, which exhibited good biocompatibility and remarkable accumulation in liver, was bioconjugated with biotinylated polyethylenimine to obtain a novel gene vector. Materials and methods  Biotinylated polyethyleneimine/avidin bioconjugate (ABP) was synthesized through grafting biotin to high molecular weight branched polyethylenimine (PEI, 25 kDa) and then bioconjugating with avidin by the biotin-avidin interaction. Physiochemical characteristics of ABP/pDNA complexes were analyzed, and in vitro cytotoxicity and transfection of ABP were also evaluated in HepG2, Hela and 293 T cells by using 25 kDa PEI as the control. Results  It was found that ABP was able to condense pDNA efficiently at N/P ratio of 4. The particle sizes of ABP/pDNA complexes were less than 220 nm, and the average surface charges were around 27 mV at the N/P ratio ranging from 2 to 60. Among three different cell lines, ABP and its DNA complexes demonstrated much lower cytotoxicity and higher transfection efficacy in HepG2 cells as compared with 25 kDa PEI. Conclusion  ABP presented higher transfection efficacy and safety in HepG2 cells due to the biocompatibility of avidin and the specific interactions between avidin and HepG2 cells.  相似文献   

8.
We investigated the influence of murine hepatitis induced by D-(+)-galactosamine and lipopolysaccharide (D-GalN/LPS) on polyethylenimine (PEI)-mediated plasmid DNA (pDNA) delivery. pDNA encoding firefly luciferase was used as the model reporter gene. PEI was used as the non-viral vector because of its high gene expression and low toxicity. The activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mice indicated the highest peaks at 12 h after D-GalN/LPS injection, then the activities of serum ALT and AST rapidly decreased. We determined luciferase activity in various organs of D-GalN/LPS-treated mice and control mice after an intravenous administration of PEI/pDNA complexes. High transgene expression was observed in the liver, spleen, and lung of both mice. Compared to the control mice, a significant increase of transgene expression was observed in the liver of D-GalN/LPS-treated mice after D-GalN/LPS injection. The transgene expression in the spleen and lung decreased at 6 and 12 h after D-GalN/LPS injection. In conclusion, we found that murine hepatitis induced by D-GalN/LPS injection can influence PEI-mediated pDNA delivery and its influence was different from that induced by CCl(4) injection which was reported previously. These results demonstrated the necessity of considering the timing and dose of gene therapy according to the disease and its stage.  相似文献   

9.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 ~ 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

10.
Polyethylenimine (PEI), a cationic polymer, was used to develop a non-viral vector for gene delivery. A simple, reproducible process is described with which to condense plasmid DNA with PEI. When prepared at the optimum charge ratio of 6.3 ( ± ; PEI:DNA, 5:1 w/w), PEI–DNA complexes were 30–60 nm in diameter and excluded intercalating dyes from the plasmid DNA. The particles were stable for more than one month at 4°C with respect to size and transfection activity. PEI–condensed DNA transfected a broad range of murine and human tumor cell lines (B16, Lewis Lung, SK-OV-3 and LS180) in vitro in the presence of fetal calf serum. Intraperitoneal administration of PEI–condensed DNA resulted in significant gene expression in a human ovarian cancer peritoneal xenograft model.  相似文献   

11.
Dual imaging of lung deposition and gene expression following the pulmonary delivery of a gene formulation is useful for a precise analysis of gene transfection efficiency in vivo. As a novel probe for evaluating lung deposition, in this study, a poly(ethylene glycol)-conjugated near-infrared fluorescent probe (PEG-NIRF) was newly synthesized, and compared with indocyanine green (ICG), for application to pDNA/polyethyleneimine (PEI) complex. PEG-NIRF had superior characteristics including a larger Stokes shift (absorption maximum, 662?nm; emission maximum, 772?nm) and relatively equivalent fluorescence intensity compared with ICG. ICG affected the physicochemical properties of pDNA/PEI complex with a loss of fluorescence intensity, while PEG-NIRF did not. Experiments in mice demonstrated that PEG-NIRF showed greater lung localization than ICG following pulmonary co-delivery with pDNA/PEI complex, indicating the possibility of accurately evaluating lung deposition. Moreover, it was clarified that the evaluation of lung deposition by PEG-NIRF even at 60?min could be significantly correlated with gene expression in each mouse following pulmonary co-delivery with pDNA/PEI complex. These results suggest that PEG-NIRF is widely applicable to the dual imaging of the lung deposition and gene expression of inhaled gene formulations.  相似文献   

12.
藻酸盐/PEI/DNA复合载体作为一种新型基因递送系统   总被引:4,自引:0,他引:4  
目的克服多聚乙烯亚胺(PEI,polyethlenimine)/DNA载体对细胞的毒性以及在含血清培养基里对癌细胞基因的转移率低的问题。方法利用具有水溶性、可生物降解的、并带有负电的藻酸盐(alginate)对PEI/DNA载体进行包衣,制备出复合载体,并在体外含50%血清培养基里,与PEI/DNA载体比较对C3癌细胞转染率。结果 在含50%血清的培养基里,藻酸盐包衣制备的复合体载体[alginate:DNA,0.15 (w/w);PEI:DNA,N:P=10]与PEI/DNA载体相比,对C3癌细胞基因转染率高出10~30倍,而且其表面正电荷数比PEI/DNA载体减少了一半,颗粒较小,并降低对细胞毒性和红血球集聚反应。结论作为新型的藻酸盐包衣制备的复合载体能提高在体外含高浓度血清培养基里对C3癌细胞的转染率,并能减少其对细胞毒性。  相似文献   

13.
We developed novel gene vectors composed of dendrigraft poly-l-lysine (DGL). The transgene expression efficiency of the pDNA/DGL complexes (DGL complexes) was markedly higher than that of the control pDNA/poly-l-lysine complex. However, the DGL complexes caused cytotoxicity and erythrocyte agglutination at high doses. Therefore, γ-polyglutamic acid (γ-PGA), which is a biodegradable anionic polymer, was added to the DGL complexes to decrease their toxicity. The resultant ternary complexes (DGL/γ-PGA complexes) were shown to be stable nanoparticles, and those with γ-PGA to pDNA charge ratios of >8 had anionic surface charges. The transgene expression efficiency of the DGL/γ-PGA complexes was similar to that of the DGL complexes; however, they exhibited lower cytotoxicity and did not induce erythrocyte agglutination at high doses. After being intravenously administered to mice, the DGL6 complex demonstrated high transfection efficiency in the liver, lungs, and spleen, whereas the DGL6/γ-PGA8 complex only displayed high transfection efficiency in the spleen. Future studies should examine the utility of DGL and DGL/γ-PGA complexes for clinical gene therapy.  相似文献   

14.
Intracellular nature and diversified locations of infectious and parasitic diseases such as leishmaniasis, trypanosomiasis, tuberculosis and hepatitis B and C pose a significant global burden and challenge to the scientists working in the area of drug discovery and drug delivery. The macrophages and hepatocytes are considered as potential target sites as they together play an important role in various infectious diseases. The present study scrutinizes the applicability of a natural biopolymer-based chemical vectors, capable of targeting both macrophages and hepatocytes, that can form a complex with plasmid and administer it into cells to produce a desired protein. The investigations were made to develop a novel series of gene carriers by conjugating depolymerized galactomannan (guar gum), a biocompatible polysaccharide with low molecular weight branched PEI (LMWP). A series of conjugates were developed and characterized using physicochemical techniques. All the GP/pDNA complexes showed significantly higher transfection efficiency with GP-3/pDNA, one of the best formulations, showed ∼2.0–7.7-folds higher transfection efficacy when compared with the standard transfection reagents. Further, GP-3/pDNA displayed significantly higher target specific transfection efficiency under both in vitro and in vivo conditions. The data demonstrate the potential of GP vectors to deliver nucleic acids simultaneously to macrophages and hepatocytes in gene delivery applications.  相似文献   

15.
Reversibly stabilized DNA nanoparticles (rSDN) were prepared by coating reducible polycation/DNA complexes with multivalent N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. RGD-targeted rSDN were formulated by linking cyclic c(RGDyK) to the surface layer of rSDN. Cellular uptake in B16F10 mouse melanoma cells, human umbilical vein endothelial cells (HUVEC), and THLE immortalized hepatic cells was quantified by real-time PCR. RGD-targeted rSDN exhibited approximately twofold higher cell uptake in integrin-positive cells: B16F10 and HUVEC compared to THLE cells with low integrin content. RGD-targeting mediated increased transfection activity in B16F10 cells but not in THLE cells. Overall, the studies show that rSDN can be effectively targeted with RGD while exhibiting reduced nonspecific cell interactions and favorable stability. As such, these gene delivery vectors have the potential to permit targeting therapeutic genes to tumors by systemic delivery. In addition, the study shows that real-time PCR could be used effectively for the quantification of cellular uptake of gene delivery vectors.  相似文献   

16.
Polymer nanoparticles have been used as non-viral gene delivery systems and drug delivery systems. In this study, biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) and poly(D,L-lactide-co-glycolide) (PLGA)/PEI nanoparticles were prepared and characterized as gene delivery systems. The PLA/PEI and PLGA/PEI nanoparticles, which were prepared by a diafiltration method, had spherical shapes and smooth surface characteristics. The size of nanoparticles was controlled by the amount of PEI, which acted as a hydrophilic moiety, which effectively reduced the interfacial energy between the particle surface and the aqueous media. The nanoparticles showed an excellent dispersive stability under storage in a phosphate-buffered saline solution for 12 days. The positive zeta-potentials for the nanoparticles decreased and changed to negative values with increasing plasmid DNA (pDNA) content. Agarose gel electrophoresis showed that the complex formation between the nanoparticles and the pDNA coincided with the zeta-potential results. The results of in vitro transfection and cell viability on HEK 293 cells indicated that the nanoparticles could be used as gene delivery carriers.  相似文献   

17.
Non-viral vectors such as liposomes, polycations, and nanoparticles have been used as gene delivery systems. In this study, we prepared and characterized biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) nanoparticles as gene carriers. pCMV/β-gal and pEGFP-C1 were utilized as model plasmid DNAs (pDNA). Nanoparticles were prepared using a double emulsion-solvent evaporation technique, and their pDNA binding capacity was assessed by agarose gel electrophoresis. Transfection was studied in HEK 293 and HeLa cell lines, and the transfection efficiencies were determined by β-galactosidase assay or flow cytometry. Three kinds of PLA/PEI systems were studied by varying the molecular weight of PEI. The PLA/PEI 25K system had a higher transfection efficiency than the PLA/PEI 0.8K or PLA/PEI 750K systems. The transfection efficiency was found to be dependent on the ratio of PLA/PEI nanoparticles to pDNA with an optimum ratio of 60:1 (w/w). The cytotoxicity was dependent on the quantity of PLA/PEI nanoparticles used, but it was comparable to that of commercial Lipofectin™. These results demonstrate the potential of PLA/PEI nanoparticles as gene carriers.  相似文献   

18.
Carboxymethyl poly( l-histidine) (CM-PLH) as a new pH-sensitive polypeptide has enhanced polyplex gene delivery. Agarose gel retardation assay and zeta potential measurement proved that the anionic CM-PLH at physiological pH coated the PEI/DNA binary complexes. The resulting CM-PLH/PEI/DNA ternary complexes showed the gene expression value 300 times higher than that of the PEI/DNA binary complexes. These results suggest that the synergistic effect of the pH-sensitive imidazole groups at endosomal pH and the anionic carboxymethyl groups at physiological pH in the CM-PLH enhanced polyplex gene delivery.  相似文献   

19.
The impetus to develop non-viral gene delivery vectors has led to examination of synthetic polycationic polymers as plasmid DNA (pDNA) condensing agents. Previous reports have highlighted superiority (up to x 10-fold) in the in-vitro transfection of pDNA complexes formed by poly-(L)-ornithine (PLO) compared to those formed with poly-(L)-lysine (PLL). The apparent basis for this consistent superiority of PLO complexes remains to be established. This comparative study investigates whether physico chemical differences in the supramolecular properties of polycation:pDNA complexes provide a basis for their observed differential gene transfection. Specifically, particle size distribution and zeta potential of the above complexes formulated over a wide range of polycation:pDNA ratios were found to be consistent with a condensed (150-200 nm) cationic ( + 30-40 mV) system but not influenced by the type of cationic polymer used. A spectrofluorimetric EtBr exclusion assay showed that polycation:pDNA complexes display different pDNA condensation behaviour, with PLO able to condense pDNA at a lower polycation mass compared to both polylysine isomers, and form complexes that were more resistant to disruption following challenge with anionic counter species, i.e. poly-(L)-aspartic acid and the glycosaminoglycan molecule. heparin. We conclude that particle size and surface potential as gross supramolecular properties of these complexes do not represent, at least in a non-biological system, the basis for the differential transfection behaviour observed between these condensing polymers. However, differences in the ability of the polylysine and polyornithine polymers to interact with pDNA and to stabilise the polymer-pDNA assembly could have profound effects upon the cellular and sub-cellular biological processing of pDNA molecules and contribute to the disparity in cell transfection efficiency observed between these complexes.  相似文献   

20.
Oral delivery of gene therapeutics would facilitate treatment of local intestinal disease, including colon cancer and inflammatory bowel disease, thus avoiding invasive surgery. The aims of this study were to investigate; if the orientation of the lipid tail on the cyclodextrin (CD) influenced the efficacy of a novel poly-6-cationic amphiphilic CD to transfect intestinal enterocytes; the endocytotic uptake pathway(s), and, the intracellular trafficking of the CD·DNA complexes. Inhibitors of clathrin- and caveolae-mediated endocytosis and macropinocytosis were used to determine the mechanism(s) of CD·DNA uptake by both undifferentiated and differentiated Caco-2 cells. Cell surface heparan sulphate proteoglycans were involved in the association of CD·DNA complexes with undifferentiated Caco-2 cells. Complexation of pDNA with CD facilitated significant levels of pDNA uptake and gene expression (comparable to PEI) in both undifferentiated and differentiated Caco-2 cells. Disruption of intracellular vesicular trafficking reduced transfection activity. CD was also capable of transfecting the more physiologically relevant differentiated Caco-2 model. Macropinocytosis was responsible for the uptake of CD·DNA transfection complexes by both undifferentiated and differentiated Caco-2 cells. The ability of this novel CD to transfect differentiated intestinal cells indicates the potential of this vector for oral gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号