首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we demonstrate the low toxicity and highly efficient and spatially improved transfection of plasmid DNA (pDNA) with liposomal nanobubbles (bubble liposomes [BLs]) using ultrasound (US) irradiation in mice. Naked pDNA with BLs was intraperitoneally injected, followed by US irradiation. The injection volume, the duration of US irradiation, and the dose of BLs were optimized. Both BLs and US irradiation were essential to achieve high transgene expression from naked pDNA. We observed transgene expression in the entire peritoneal tissues, including the peritoneal wall, liver, spleen, stomach and small and large intestines. The area of transfection could be controlled with focused US irradiation. There were few changes in the morphology of the peritoneum, the peritoneal function or serum alanine aminotransferase levels, suggesting the safety of BLs with US irradiation. Using a tissue-clearing method, the spatial distribution of transgene expression was evaluated. BLs with US irradiation delivered pDNA to the submesothelial layer in the peritoneal wall, whereas transgene expression was restricted to the surface layer in the liver and stomach. Therefore, BLs with US irradiation could be an effective and safe method of gene transfection to the peritoneum.  相似文献   

2.
Antisense oligonucleotides (AODNs) can selectively inhibit oncogene expression by Watson-Crick hybridisation to target mRNA and are being increasingly considered for use in combination with conventional drugs for potential anticancer therapy. Combination therapy of AODNs and cytotoxic agents using biodegradable polymeric delivery systems potentially offers several advantages including site-specific or organ-directed targeting, protection from digesting enzymes, and improved pharmacokinetics/pharmacodynamics resulting from sustained delivery of the entrapped drugs. Using a model AODN targeting the epidermal growth factor receptor (that is over-expressed in several cancers including breast and brain cancer) and the commonly used cytotoxic agent, 5-fluorouracil (5-FU), we have examined the use of poly (lactide-co-glycolide) (P(LA-GA)) microsphere formulations for co-delivery of these agents. Both agents were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations and release profiles determined in vitro. Using a double emulsion method for preparing the P(LA-GA) microspheres suitable entrapment and sustained release over 35 days was observed in both types of formulation. Release of AODN and 5-FU from all formulations appeared to be biphasic. However, the release rates of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Electrophoretic mobility shift assays suggested that this might be, in part, due to an interaction of 5-FU with the oligodeoxynucleotide (ODN). Further, our data suggest that by mixing individual formulations of 5-FU and ODNs at different mass ratios allowed greater flexibility in achieving the desired release profile as well as avoiding potential drug-drug interactions. Thus, co-administration of individual P(LA-GA) microsphere formulations of AODNs and 5-FU, at appropriate mass ratios, appears worthy of further investigation for the potential co-delivery of these anti-cancer agents in vivo.  相似文献   

3.
5-fluorouracil (5-FU) is a chemotherapeutic agent that has been used for the treatment of a variety of malignancies since its initial introduction to the clinic in 1957. Owing to its short biological half-life, multiple dosings are generally required to maintain effective 5-FU plasma concentrations throughout the therapeutic period. Clinical studies have shown that continuous 5-FU administration is generally superior to bolus injection as exhibited by lower toxicities and increased therapeutic efficacy. Optimal therapeutic efficacy, however, is often compromised by the limiting therapeutic index. Whilst oral formulations are also used, these suffer from the drawbacks of variable bioavailability and first-pass metabolism. As a result, sustained release formulations of 5-FU have been investigated in an effort to mimic the kinetics of continuous infusion particularly for situations where local delivery is considered appropriate. The biocompatible, biodegradable, and highly tunable synthetic polymer, poly(d,l-lactide-co-glycolide) (PLGA), is widely used as a vector for sustained drug delivery, however, issues such as insufficient loading and inappropriate burst release kinetics have dogged progress into the clinic for small hydrophilic drugs such as 5-FU. This review provides introductory information about the mechanism of action, pharmacokinetic and physicochemical properties, and clinical use of 5-FU that have contributed to the development of PLGA-based 5-FU release platforms. In addition, this review provides information on fabrication methods used for a range of 5-FU-loaded PLGA formulations and discusses factors affecting the release kinetics of 5-FU as well as the in vitro and in vivo antitumor or antiproliferative efficacy of these platforms.  相似文献   

4.
The indole-depleting effects of repeated subcutaneous doses of dexfenfluramine ( -F) (2.5, 5, 10, 20 and 40 mg/kg/day, for four days) in mice were examined with regard to the initial response and time-course of recovery and related to the pharmacokinetics of -F and its active metabolite dexnorfenfluramine ( -NF). Steady-state plasma and brain concentrations of -F rose dose-dependently with a metabolite-to-drug ratio averaging 0.4 in brain. This confirmed that in mice -NF contributes less than in other species to the effects of -F. Regional serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were decreased dose-dependently 4 hr after the last injection of -F. However, two weeks after -F (2.5–10 mg/kg/day) brain indoles had almost totally recovered, and the long-term effects of the 20 mg/kg/day dose were completely reversed by six weeks, when significant effects are still observable in rats. Although substantial recovery was evident even at 40 mg/kg/day, 5-HT but not 5-HIAA was still slightly reduced nine weeks later. Comparative studies in rats given 2.5–20 mg/kg/day -F indicated much more severe initial indole depletions than in mice. Brain levels of -F and -NF were much higher in rats than in mice. The total active drug brain concentration ( -F + -NF) was significantly correlated with 5-HT content in both species, with approx 20 nmol/g of total drug causing 50% reduction. These findings point to species differences in -F kinetics as a main reason for differences in the neurochemical response, supporting the view that the recovery of indoles over time is related to the extent of initial depletion, which in turn depends on critical drug brain concentrations. In view of the qualitative and quantitative species differences in the pharmacodynamics and pharmacokinetics of -F neither of these rodent species is a suitable model for predicting potential drug toxicity in humans.  相似文献   

5.
The purpose of this study was to examine the feasibility of the microdialysis sampling technique as a method to precisely and conveniently measure drug release from microcarrier systems such as liposomes and microspheres. Release of 5-fluorouracil (5-FU) from liposomes and microspheres was evaluated in vitro using microdialysis. Retrodialysis calibration using 5-chlorouracil (5-CU) was performed in conjunction with on-line HPLC analysis. At a microdialysis perfusate flow rate of 0.5 muL/min, concurrent 5-FU gain and 5-CU loss ranged from 72% to 75%, while concurrent 5-FU loss and 5-CU ranged from 69% to 71%. After calibration, simultaneous 5-FU release profiles were obtained by continuous microdialysis and discrete equilibrium dialysis sampling using a side-by-side diffusion apparatus. Release rates were characterized by a first-order release model. The release rate constants for a representative liposomal formulation were 0.30 and 1.85/h by microdialysis in the acceptor and donor compartments, respectively, and 0.39/h by equilibrium dialysis in the acceptor compartment. The calculated release rate constant determined by equilibrium dialysis in the donor compartment (1.98/h) agrees with that determined by microdialysis (1.85/h) when the resistance of the equilibrium dialysis membrane with associated first-order rate constant of transfer of 0.42/h is taken into account. Release profiles of 5-FU from a number of different liposome and microsphere formulations were determined. The results indicate that a convenient and reproducible characterization of drug release from various liposome and microsphere formulations is readily obtainable by microdialysis.  相似文献   

6.
Vaka SR  Murthy SN 《Die Pharmazie》2010,65(9):690-692
The nose-brain pathway is a potential route for drug delivery as it bypasses the brain barriers. The main objective of this study was to investigate the efficacy of peppermint oil in enhancing the bioavailability of intranasally administered neurotrophins like nerve growth factor (NGF). The effect of different concentrations of peppermint oil (PO) on the delivery of NGF across bovine olfactory epithelium was studied in vitro using Franz diffusion cells. Trans-olfactory epithelial electrical resistance (TEER) was measured to assess the permeability status of the bovine olfactory epithelium. The bioavailability of intranasally administered formulations in rat hippocampus was studied by carrying out brain microdialysis in male Sprague-Dawley rats. Peppermint oil at concentrations of 0.05, 0.1 and 0.5% v/v enhanced the in vitro transport of NGF by 5, 7 and 8 fold, respectively. In vivo studies employing brain microdialysis in rats demonstrated that intranasal administration of NGF formulation with 0.5% PO enhanced the bioavailability by approximately 8 fold compared to rats administered with NGF alone. The bioavailability of NGF in the brain could be enhanced by intranasal administration of peppermint oil.  相似文献   

7.
When used at a high dose, many anticancer drugs produce undesirable side effects including hepatotoxicity. Transdermal delivery bypasses first-pass metabolism, allowing the use of a lower dose of drug while decreasing systemic toxicity. In this review, we summarize various advanced technologies for improving anticancer drug delivery via the skin. This technology is discussed in the context of three anticancer drugs, 5-fluorouracil (5-FU), methotrexate (MTX) and 5-aminolevulinic acid (5-ALA). The use of a erbium:YAG (Er:YAG) laser for transdermal delivery of anticancer drugs is specifically highlighted in this review.  相似文献   

8.
Introduction: Sixty years since its introduction, 5-FU still forms the core of chemotherapy regimens for many types of malignancies. 5-FU is a time-dependent drug but is rapidly degraded in plasma by dihydropyrimidine dehydrogenase (DPD). Although originally developed in an intravenous form, 5-FU oral prodrugs were developed with the goal of improving efficacy and minimizing toxicity as well as to capitalize on the advantages of oral drug administration. The inactive 5-FU prodrug is gradually converted into the active form in the systemic circulation. UFT, S-1, and capecitabine are oral 5-FU prodrugs currently in clinical use. However, the efficacy of 5-FU can be further improved by its combination with DPD inhibitors and biochemical modulators, such as uracil and leucovorin, in addition to modifying administration schedules.

Areas covered: We focused on the drug delivery of oral 5-FU prodrugs, their pharmacokinetics, and the development of DPD inhibitors. Since oral 5-FU prodrugs have been formulated into combination drugs, we also discussed the regulatory approval of combination drugs.

Expert opinion: Many regimens that include intravenously administered 5-FU can be replaced by oral 5-FU prodrugs. Patients would benefit from development of combination 5-FU oral prodrug formulations and its associated path through the combination drug regulatory approval process.  相似文献   


9.
Although drug delivery with nanovectors is regarded as one of the paradigm-shifting advances in modern medicine, the compatibility and performance of drug–vector formulations have not been systematically studied in terms of their physicochemistry and pharmacokinetics (PKs). The drug delivery systems (DDSs), currently available in clinics or trials, were analyzed based on hydrophobicity and anatomical therapeutic chemical (ATC) classification of drug payloads. Four major types of DDSs differentiated based on DDS structure and drug hydrophobicity, where payload hydrophobicity decreased: micelles, serum albumin, liposome membrane, and liposome interior. A strong relationship between the increase in half-life in DDS formulation and drug hydrophobicity was found with up to 200-fold greater increase for hydrophilic drugs. The analysis results seemingly integrated PKs, ATC, and hydrophobicity to reinforce the development or optimization of drug delivery vectors and their formulations.  相似文献   

10.
The intracerebral microdialysis technique represents an important tool for monitoring free drug concentrations in brain extracellular fluid (brain(EcF)) as a function of time. With knowledge of associated free plasma concentrations, it provides information on blood-brain barrier (BBB) drug transport. However, as the implantation of the microdialysis probe evokes tissue reactions, it should be established if the BBB characteristics are maintained under particular microdialysis experimental conditions. Several studies have been performed to evaluate the use of intracerebral microdialysis as a technique to measure drug transport across the BBB and to measure regional pharmacokinetics of drugs in the brain. Under carefully controlled conditions, the intracerebral microdialysis data did reflect passive BBB transport under normal conditions, as well as changes induced by hyperosmolar opening or by the presence of a tumor in the brain. Studies on active BBB transport by the mdr1a-encoded P-glycoprotein (Pgp) were performed, comparing mdr1a(-/-) with wild-type mice. Microdialysis surgery and experimental procedures did not affect Pgp functionality, but the latter did influence in vivo concentration recovery, which was in line with theoretical predictions. It is concluded that intracerebral microdialysis provides meaningful data on drug transport to the brain, only if appropriate methods are applied to determine in vivo concentration recovery.  相似文献   

11.
Microdialysis in mice for drug delivery research   总被引:3,自引:0,他引:3  
Intracerebral microdialysis was first performed in the mouse at the end of the 1980s. Most microdialysis studies on mice were confined to neuropharmacology and changes in neurotransmitter concentrations up to 1995, although pharmacological studies were done on other tissues like the skin, kidney and implanted tumors. The use of microdialysis in mice for pharmacokinetic and drug delivery studies owes much to the recent availability of genetically engineered mice, such as mice in which the genes encoding multiple drug resistance have been knocked out. The quantitative microdialysis of blood and various tissue fluids of the mouse is now feasible and the recent development of specific microdialysis devices for use in mice should facilitate its use in these small animals. This review covers the technical aspects of microdialysis in the mouse and includes references to many of the published studies on pharmacokinetics and drug delivery.  相似文献   

12.
Microdialysis Sampling for the Investigation of Dermal Drug Transport   总被引:2,自引:0,他引:2  
Microdialysis perfusion in vivo has the potential to be a powerful sampling technique in dermal and transdermal drug delivery studies. Characterization of a commercially available microdialysis probe in vitro considering relevant physiological parameters is a vital first step in the evaluation of microdialysis as a dermal sampling technique. In previous microdialysis studies, analyte concentration and neutrality have been implicated in altering microdialysis recovery. The recovery of a model compound 5-fluorouracil (5-FU) was investigated at several pH values and donor concentrations. The relative recovery of 5-FU by the microdialysis probe was affected by pH but not by donor concentration. To confirm further that the changing concentration and pH profile presented by the flux of 5-FU was not significantly altering microdialysis recovery, an experiment comparing direct and microdialysis sampling of a Franz diffusion cell receptor compartment was performed. Although the 5-FU concentration (0-686 ng/ml) and pH (7.40-7.24) changed substantially, the recovery of 5-FU was not adversely affected. To demonstrate the feasibility of dermal microdialysis, the flux of a commercial preparation of 5-fluorouracil was monitored utilizing a microdialysis probe implanted in excised rat skin in vitro. The results from the dermally implanted probe demonstrate the potential of the technique while establishing the limitations of the current microdialysis system.  相似文献   

13.
This study was designed to investigate the precipitation of a lipophilic drug following dispersion of lipid formulations in water. The model drug fenofibrate was formulated in representative lipid delivery systems designed for oral administration, using medium chain glycerides, polysorbates, and propylene glycol as excipients. Aqueous dispersion of water-insoluble self-emulsifying lipid formulations resulted in turbid emulsions, followed subsequently by very slow precipitation of 3–7% of the dose of fenofibrate. Self-emulsifying formulations that included water-soluble surfactants, which dissolved a lower mass of drug in solution at equilibrium, nevertheless typically maintained drugs in a metastable state, following dilution with water, for several hours or even days. Formulations with higher contents of hydrophilic materials resulted in more rapid precipitation. Extensive precipitation of fenofibrate from oil-free formulations, comprising of only surfactants and cosolvents, took place within 30 min. The results indicated that most of the lipid systems were supersaturated with respect to the drug on dilution, but the extent of precipitation varied significantly between formulations and was influenced by the extent of supersaturation after dilution. The study suggests that the use of hydrophilic formulations for delivery of lipophilic drugs may result in a greater extent of drug precipitation in the stomach. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3582–3595, 2009  相似文献   

14.
The effect of the neutron activation factors, i.e., admixture of samarium oxide (Sm2O3) and irradiation time, on the physico-chemical properties of the raw materials and the in vitro dissolution and disintegration of hydrophilic and lipophilic suppositories was investigated. It was possible to expose the pure bases and the model drugs (5-aminosalicylic acid [5-ASA] and ropivacaine hydrochloride) to 1 min of neutron irradiation in a flux of 1.1.1013 n cm-2s-1. The dissolution and disintegration of the corresponding suppositories showed that the physico-chemical properties and the fraction of incorporated drug together with the lipophilic/hydrophilic nature of the base were important factors. Sm2O3 increased the disintegration time of hydrophilic suppositories containing 5-ASA, while the dissolution of both drugs from these formulations remained unchanged. Sm2O3 did not alter the disintegration time of the lipophilic formulations, but it reduced the dissolution of both drugs from these suppositories. Irradiation induced different behaviour in the different bases.  相似文献   

15.
During the last decade microdialysis has been successfully applied to assess cutaneous drug delivery of numerous substances, indicating the large potential for bioequivalence/bioavailability evaluation of topical formulations. The technique has been shown to be minimally invasive and supply pharmacokinetic information directly in the target organ for cutaneous drug delivery with high temporal resolution without further intervention with the tissue after implantation. However, there are a few challenges that need to be addressed before microdialysis can be regarded as a generally applicable routine technique for cutaneous drug delivery assessments. Firstly, the technique is currently not suitable for sampling of highly lipophilic compounds and, secondly, more studies are desirable for elucidation of the variables associated with the technique to increase reproducibility. The present literature indicates that the condition of the skin at the individual assessment sites is the main variable, but also variables associated with relative recovery, differentiation between the pharmacokinetic parameters (i.e., lag time, distribution, absorption and elimination rate) can influences the reproducibility of the technique. Furthermore, it has been indicated that cutaneous microdialysis in rats may be useful for prediction of dermal pharmacokinetic properties of novel drugs/topical formulations in man.  相似文献   

16.
Hesperidin, a flavanone glycoside, and its aglycone hesperetin are potential candidates for the treatment of diabetic retinopathy and macular edema. The objective of this study was to delineate vitreal pharmacokinetics of hesperidin and hesperetin and the hydrophilic derivative glucosyl hesperidin (hesperidin G) following intravitreal administration in anaesthetized rabbits. Concentration changes in vitreous humor were monitored using microdialysis sampling procedure. All three molecules were administered intravitreally at three dose levels (50 μL injection volume containing 1.5, 4.5, and 15 μg of the drug, resulting in a final vitreal concentration of 1, 3, and 10 μg/mL). Vitreal microdialysis samples were collected every 20 min over a period of 10 h. All three molecules exhibited linear pharmacokinetics within the dose range tested because area under the curve and maximum concentration (C(max) ) increased linearly with increasing dose and a significant difference in the elimination parameters such as clearance or half-life was not observed. The vitreal elimination half-life of these three compounds was observed to correlate with the molecular weight and lipophilicity of the molecules. The findings from this study provide practical information that will be useful in the future design of ocular drug delivery strategies for bioflavonoids.  相似文献   

17.
Purpose Based on adherence to intestinal mucosa, intralumenally administered liposomal formulations of 5-aminosalicylate (5-ASA) and 6-mercaptopurine (6-MP) were studied for their potential to enhance local drug delivery to intestinal tissue for the treatment of inflammatory bowel disease.Methods 5-ASA was encapsulated in standard phospholipid liposomes while 6-MP required encapsulation in nonphospholipid liposomes to obtain equivalent drug loading. Encapsulation efficiency was measured by size-exclusion chromatography/high-performance liquid chromatogtaphy (HPLC). Liposomal formulations or solution of the drugs were injected into unligated jejunum to compare pharmacokinetics and into ligated loops of rat ileum and colon to evaluate local delivery. Dextran sulfate and acetic acid induced colitis were used as models of lower intestinal inflammation. Plasma, tissue and luminal drug and metabolite levels were measured by liquid scintillation counting or HPLC.Results Encapsulation efficiency of 6-MP was dependent on lipid content and composition. While liposomal encapsulation significantly reduced systemic absorption of 5-ASA this was not the case for 6-MP. Liposomal adherence to intestinal tissue resulted in increased tissue levels for 5-ASA; however, 6-MP local tissue levels were not improved compared to solution drug.Conclusions Nonphospholipid liposomes optimize encapsulation of 6-MP. While liposomal formulations show potential for local drug delivery to diseased bowel, drug physicochemical properties, absorption, and metabolic profiles dictate tissue-targeting potential. Liposomes reduce systemic availability from paracellular absorption of hydrophilic 5-ASA, but fail to improve local tissue delivery of 6-MP, a molecule absorbed by passive membrane permeation that undergoes extensive first- pass metabolism.  相似文献   

18.
Rationale Non-adherence with medication remains the major correctable cause of poor outcome in schizophrenia. However, few treatments have addressed this major determinant of outcome with novel long-term delivery systems. Objectives The aim of this study was to provide biological proof of concept for a long-term implantable antipsychotic delivery system in rodents and rabbits. Materials and methods Implantable formulations of haloperidol were created using biodegradable polymers. Implants were characterized for in vitro release and in vivo behavior using prepulse inhibition of startle in rats and mice, as well as pharmacokinetics in rabbits. Results Behavioral measures demonstrate the effectiveness of haloperidol implants delivering 1 mg/kg in mice and 0.6 mg/kg in rats to block amphetamine (10 mg/kg) in mice or apomorphine (0.5 mg/kg) in rats. Additionally, we demonstrate the pattern of release from single polymer implants for 1 year in rabbits. Conclusions The current study suggests that implantable formulations are a viable approach to providing long-term delivery of antipsychotic medications in vivo using animal models of behavior and pharmacokinetics. In contrast to depot formulations, implantable formulations could last 6 months or longer. Additionally, implants can be removed throughout the delivery interval, offering a degree of reversibility not available with depot formulations.  相似文献   

19.
Abstract

Partly due to poor blood–brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration. Although the appearance of liposomes in the circulation was much slower after intraperitoneal administration, comparable maximum levels of long circulating liposomes were found between 4 and 24?h after injection. Furthermore, 24?h after injection a similar tissue distribution was found. To investigate the effect of GSH coating on brain delivery in vitro uptake studies in rat brain endothelial cells (RBE4) and an in vivo brain microdialysis study in rats were used. Significantly more fluorescent tracer was found in RBE4 cell homogenates incubated with GSH-PEG liposomes compared to non-targeted PEG liposomes (1.8-fold, p?<?0.001). In the microdialysis study 4-fold higher (p?<?0.001) brain levels of fluorescent tracer were found after intravenous injection of GSH-PEG liposomes compared with PEG control liposomes. The results support further investigation into the versatility of GSH-PEG liposomes for enhanced drug delivery to the brain within a tolerable therapeutic window.  相似文献   

20.
In recent years thiolated polymers (thiomers) have appeared as a promising new tool in oral drug delivery. Thiomers are obtained by the immobilisation of thio-bearing ligands to mucoadhesive polymeric excipients. By the formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of thiomers are up to 130-fold improved compared with the corresponding unmodified polymers. Owing to the formation of inter- and intramolecular disulfide bonds within the thiomer itself, matrix tablets and particulate delivery systems show strong cohesive properties, resulting in comparatively higher stability, prolonged disintegration times and a more controlled drug release. The permeation of hydrophilic macromolecular drugs through the gastrointestinal (GI) mucosa can be improved by the use of thiomers. Furthermore, some thiomers exhibit improved inhibitory properties towards GI peptidases. The efficacy of thiomers in oral drug delivery has been demonstrated by various in vivo studies. A pharmacological efficacy of 1%, for example, was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Furthermore, tablets comprising a thiomer and pegylated insulin resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Low-molecular-weight heparin embedded in thiolated polycarbophil led to an absolute bioavailability of ≥ 20% after oral administration to rats. In these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. These results indicate drug carrier systems based on thiomers appear to be a promising tool for oral delivery of hydrophilic macromolecular drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号