首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fondong VN  Chen K 《Virology》2011,413(2):275-282
Cassava geminiviruses occur in all cassava growing areas of Africa and are considered to be the most damaging vector-borne plant pathogens. At least seven species of these viruses have been identified. We investigated genetic variation in East African cassava mosaic cassava Cameroon virus (EACMCV) from naturally infected cassava and from experimentally infected Nicotiana benthamiana. Results showed that the populations of EACMCV in cassava and in N. benthamiana were genetically heterogeneous. Mutation frequencies in the order of 10−4, comparable to that reported for plant RNA viruses, were observed in both hosts. We also produced an EACMCV mutant that induces reversion and second site mutations, thus suggesting that a high mutation frequency facilitates the maintenance of genome structure and function. This is direct experimental evidence showing that cassava geminiviruses exhibit a high mutation frequency and that a single clone quickly transforms into a collection of mutant sequences upon introduction into the host.  相似文献   

2.
Cassava mosaic disease (CMD) caused by African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) is the major constraint to cassava production in Nigeria. Sequences of the DNA-A component of ACMV and EACMCV isolates from leguminous plant species (Senna occidentalis, Leucana leucocephala and Glycine max), castor oil plant (Ricinus communis), a weed host (Combretum confertum) and a wild species of cassava (Manihot glaziovii) were determined. All ACMV isolates from these hosts showed 96-98% nucleotide sequence identity with cassava isolates from West Africa. EACMCV was found only in four hosts (S. occidentalis, L. leucocephala, C. confertum, M. glaziovii), and sequences of these isolates showed 96-99% identity with cassava isolates from West Africa. These results provide definitive evidence for the natural occurrence of ACMV and EACMCV in plant species besides cassava.  相似文献   

3.
Perceptions in health research are a product of the circumstances within the society, where the research activities are situated. In East Africa there has been a change in conceptualization over a period of time from an elitist de-linked status to the present, which has evolved to embrace the local community. Here we trace the changes and highlight some occurrences that exerted the greatest influence in shaping the notions that currently dominate in research. We conclude that the paradigm shift is a positive development and that the present conception is suitable for heath research at this point in time.  相似文献   

4.
Summary.  Tomato yellow mosaic was first described in 1963, as a disease caused by a geminivirus transmitted by the whitefly Bemisia tabaci in Venezuela. In 1981 and 1985, Tomato yellow mosaic virus (ToYMV) was reported to occasionally infect potato plants growing in the proximity of tomato plantings affected by this virus. Despite these previous reports, a virus isolated from yellow mosaic-affected potato plants in Venezuela, was described in 1986 as a “new geminivirus” called potato yellow mosaic virus (PYMV). In recent years, different geminiviruses related to PYMV have been described from tomato fields in Venezuela and other countries in the Caribbean Basin, including Panama. Comparative nucleotide and amino acid sequence analyses of a 1698 bp fragment amplified from the common region and part of the AV1 and AC1 ORFs of ToYMV from Venezuela, yielded 95.7% sequence identity with the corresponding regions of PYMV. Nucleotide and amino acid sequence identities between ToYMV and PYMV, were 96.3% and 95.1% for AC1, and 95.7% and 100% for AV1, respectively. The identity of the nucleotide sequence for the common region of ToYMV and PYMV was 96.5%. Comparative sequence analyses conducted with ToYMV and other tomato begomoviruses present in the Caribbean region, showed only distant relationships. It is concluded here that PYMV is a synonym of ToYMV. Received February 2, 2001 Accepted February 28, 2001  相似文献   

5.
6.
A multiplex PCR was developed for simultaneous detection of African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in cassava affected with cassava mosaic disease (CMD). One set of three primers consisting of an upstream primer common for both viruses and two down stream virus-specific primers were designed for simultaneous amplification of 368 base pair (bp) and 650 bp DNA fragments specific to the replicase gene of ACMV and EACMCV, respectively. Similarly, a second set of three primers were designed for simultaneous amplification of 540 bp and 655 bp fragments specific to the coat protein gene of EACMCV and ACMV, respectively. Primers that can amplify a 171 bp fragment of the large subunit of ribulose bisphosphate carboxylase oxygenase L were included as an internal control in these assays to determine the reliability of multiplex PCR. A simplified, cost-effective and rapid sample preparation method was adapted in place of the conventional plant DNA extraction procedure for multiplex PCR detection of ACMV and EACMCV. The method was validated using CMD-infected cassava samples obtained from farmers' fields in Nigeria. The multiplex PCR is useful for reliable assessment of the prevalence of CMBs in epidemiological studies and for crop improvement and phytosanitary programs in African countries.  相似文献   

7.
Six isolates of Cassava brown streak virus (CBSV, genus Ipomovirus; Potyviridae) from the Lake Victoria basin in Uganda and Tanzania were characterized. Virus particles were 650 nm long. The complete coat protein (CP)-encoding sequences (1,101 nucleotides, nt) were 90.7–99.5 and 93.7–99.5% identical at the nt and amino acid (aa) levels, respectively. The 3′ untranslated region was 225, 226 or 227 nt long. These eight isolates were only 75.8–77.5% (nt) and 87.0–89.9% (aa) identical when compared to the partial CP sequences (714 nt) of six CBSV isolates characterized previously from the costal lowlands of Tanzania and Mozambique. Hence, two genetically different and geographically separated populations of CSBV exist in East Africa.  相似文献   

8.
Carr RJ  Kim KS 《Virology》1983,124(2):338-348
Ultrastructural responses of bean leaf cells simultaneously infected with two morphologically distinct RNA viruses, cowpea mosaic virus (CPMV) and bean yellow mosaic virus (BYMV), or cowpea severe mosaic virus (CSMV) and BYMV, were studied in situ. The major effects on cells infected with two viruses included: (1) association of virus group-specific cytoplasmic inclusions characteristic of each virus; (2) close association of virions into specifically arranged aggregates in which CPMV or CSMV icosahedra were aligned along the long axes of the BYMV rods; and (3) the induced formation of intranuclear inclusions, spheres (22-26 nm in diameter) and filaments (10-14 nm wide and of variable length) in mixed infections of CSMV and BYMV. Intracellular serological testing using ferritin conjugated with CSMV antibodies revealed no relationship between the spherical intranuclear inclusions and CSMV capsids. We conclude that the ultrastructure of mixed infections could be used as another tool for identifying related plant viruses.  相似文献   

9.
Summary. The DNA A and DNA B components of a begomovirus associated with cassava mosaic disease (CMD) originating from Kerala, India, were cloned. Biolistically inoculated clones induced symptoms typical of CMD in cassava. Sequence comparisons showed the virus to be an isolate of Sri Lankan cassava mosaic virus (SLCMV). This is the first time this begomovirus species has been identified in India and only the second species shown to cause CMD in the country. The implication of these findings on our understanding of the diversity and geographic distribution of CMD-associated begomoviruses in the region and on efforts to obtain resistance to CMD are discussed.  相似文献   

10.
Jatropha curcas mosaic disease is a newly emerging disease that challenges the productivity of a prospective biofuel crop, J. curcas. The aetiology of this disease has not been resolved. Here, we report the complete nucleotide sequences of a Jatropha virus isolated from Dharwad, Southern India. Phylogenetic analysis of the virus genome suggests it is a new strain of Indian cassava mosaic virus. Agroinfiltration of the two cloned viral DNA components produced systemic infection and typical mosaic symptoms in J. curcas, thereby fulfilling Koch’s postulates. The availability of infectious clones will provide a valuable tool to screen J. curcas cultivars for disease resistance and facilitate the generation of virus-resistant J. curcas plants by transgenic technology.  相似文献   

11.
Cucumber mosaic virus (CMV) causes a serious disease of narrow-leafed lupin (Lupinus angustifolius). It is seed-borne in lupin and seed-infected plants act as the primary virus source for secondary spread by aphid vectors within crops. Infection with CMV causes yield losses of up to 60% in epidemic years, but has little impact on yield in years when spread is limited. Aphids also cause sporadic yield losses due to direct feeding damage. A simulation model was developed to forecast aphid outbreaks and epidemics of CMV in lupin crops growing in the 'grainbelt' of south-west Australia, which has a Mediterranean-type climate. The model uses rainfall during summer and early autumn to calculate an index of aphid build-up on weeds, crop volunteers and self-regenerating annual pastures in each 'grainbelt' locality before the growing season commences in late autumn. The index is used to forecast the timing of aphid immigration into crops. The subsequent aphid build-up and movement within the crop, spread of CMV from virus-infected source plants within the crop, yield losses and percentage of harvested seed-infected are then calculated. The model evaluates the effects of different sowing dates, percentages of CMV infection in seed sown and plant population densities on virus spread. The model simulations were validated with 14 years' field data from six different sites in the 'grainbelt', representing a wide range of pre-growing season rainfall scenarios, sowing dates, percentages of infection in seed sown and plant population densities. The model was incorporated into a decision support system (DSS) for use by lupin farmers and agricultural consultants in planning CMV management and targeting sprays against aphids to prevent direct feeding damage. The inputs required from the user are lupin cultivar, anticipated emergence date, percentage CMV infection in seed sown, plant density and location. The output consists of a personalised risk forecast for the user and includes predictions for date of first aphid arrival, aphid numbers, CMV spread, final virus incidence, yield loss due to infection and percentage infection in harvested seed. Predictions from the DSS are accessible via an Internet site and from other information sources. The model can serve as a template for modelling similar virus/aphid vector pathosystems in other regions of the world, especially those with Mediterranean-type climates.  相似文献   

12.
13.
Summary.  The complete sequence of 8159 nucleotides of the double stranded DNA genome of cassava vein mosaic virus (CsVMV) was determined (# U59751) and revealed a significant difference in genome organization when compared with a previous report (# U20341). When transferred to cassava plants by microbombardment, the full length CsVMV clone was infectious, confirming the genome organization here described. Sequence comparisons between CsVMV and members of the genera Caulimovirus and Badnavirus revealed high homologies between consensus sequences of several proteins that are indispensable for virus replication, including a potential transactivator factor not reported previously. The presence of a sequence complementary to a plant Met tRNA confirms that CsVMV is a plant pararetrovirus and is most closely related to members of the genus Caulimovirus as previously assessed. However, differences in genome organization, number and size of the ORFs, in addition to sequence comparisons with other plant pararetroviruses, shows that either the genetic variability of caulimoviruses is much greater than previously thought, or that CsVMV is the unique representative of a new genus within the Caulimoviridae family. On the basis of this study, it is proposed to upgrade the floating genus Caulimovirus to the family level and to divide the Caulimoviridae family into at least three genera with CsVMV being the type member of a new genus. Accepted December 16, 1997 Received July 31, 1997  相似文献   

14.
The human population has slowly transformed from the "hunter-gatherer" period to the current environment of high energy consumption, minimal physical activity and a lifestyle that includes stress and anxiety. Modeling the current environment in the laboratory can help to elucidate mechanisms responsible for the development of obesity, diabetes and, ultimately, the metabolic syndrome. Using the visible burrow system (VBS) model of social stress we have begun to examine the short- and long-term consequences of chronic social stress on energy homeostasis. We demonstrated that social stress has significant effects on body weight and body composition such that subordinate rats progressively develop characteristics of obesity and have additionally determined that this occurs, in part, through changes in food intake amount and behavior. Changes in body weight and body composition are similar or greater when animals are maintained on a high fat diet. These data suggest that consumption of a high-fat diet during social stress in the VBS, while it does not appear to affect development of a social hierarchy, enhances the effect that chronic stress has on body composition and may be more representative of what happens in humans in modern society where the typical diet has progressively moved toward higher calorie, high-fat foods.  相似文献   

15.
To avoid marginalization and an attendant decline in the quality of care delivered, dermatologists must take the lead in defining those services that can be delivered remotely and move aggressively to create standards of nomenclature, protocols for imaging, and methods of care delivery that can be implemented in a primary-care setting. Because of the rigorous training of its practitioners in visual analysis, it may be possible for dermatology to shift from its traditional face-to-face model to an image-based, remotely practiced one. Transition to remote practice may even be critical to the survival of the specialty. Chief among the issues in the implementation of teledermatology is whether the use of video conferencing or store-and-forward technology provides the most efficient, high-quality remote diagnosis. Ancillary issues, including image protocols, bandwidth requirements, reimbursement, licensing, liability, and patient and provider satisfaction, are important as well. These issues are discussed in a framework of capitated payment in urban, integrated delivery systems. Teledermatology has many challenges to meet before competing with face-to-face delivery of dermatologic care.  相似文献   

16.
17.
E J Anderson  S G Qui  J E Schoelz 《Virology》1991,181(2):647-655
Cauliflower mosaic virus (CaMV) strains CM1841 and W260 produced markedly different symptoms when inoculated onto turnips (Brassica campestris L. 'Just Right'). The CM1841 strain induced a mild degree of stunting of infected plants while strain W260 caused moderate to severe stunting. Although CM1841 was significantly milder than W260, it accumulated to a significantly higher concentration than W260 in systemically infected leaves. We constructed a series of hybrid viruses in order to map regions of W260 responsible for enhanced disease severity relative to CM1841 and to map regions of CM1841 responsible for higher virus accumulation. We found that the characteristic degree of stunting caused by a CaMV isolate is determined in a complex manner by viral genes that influence viral gene expression and viral genes that disrupt host metabolism. Genes I and VI influenced both virus concentration and stunting severity, suggesting that these regions affected disease severity primarily through their effect on gene expression. In addition, an interaction between genes IV and VI was observed which further indicated that stunting severity was influenced by differential accumulation of virus. In contrast, three regions of W260 influenced the stunting phenotype but had no effect, or a negative effect, on virus concentration. The three regions contained (1) portions of genes II and III, (2) gene IV, independent of gene VI, and (3) the 3' half of gene V and the 19 S promoter. These regions may influence stunting severity primarily by disrupting host metabolism. Additionally, some of the chimeric viruses induced systemic necrosis on leaves, a symptom that is not characteristic of either CM1841 or W260. The necrotic flecking symptom was caused by an interaction between a W260 DNA segment containing gene I and the 5' half of gene II and a CM1841 DNA segment containing the 3' half of gene II, gene III, and gene IV.  相似文献   

18.
19.
Sweet potato virus disease (SPVD), caused by dual infection with the whitefly-borne Sweet potato chlorotic stunt virus (SPCSV) and the aphid-borne Sweet potato feathery mottle virus (SPFMV), is the most serious disease of sweet potato in Africa. SPVD has been known there since at least the 1940s, although it took several decades to elucidate its aetiology. It occurs throughout Africa and is particularly prevalent in the Great Lakes region. Production of sweet potato is largely by resource-poor farmers, growing mostly local landraces and for home consumption and so control strategies need to be appropriate to these circumstances. Most high yielding and/or early maturing landraces in Uganda are susceptible to SPVD and most resistant landraces are low-yielding, forcing farmers to compromise between the conflicting requirements of large and/or early yields, and food security. Accordingly, two strategies were tested to avoid the disadvantages associated with such compromises. These were deploying high-yielding SPVD-resistant cultivars and phytosanitation practices to enable susceptible landraces to be grown successfully. In on-farm trials in Masaka and Rakai Districts of Uganda, some SPVD-resistant cultivars bred at Namulonge Agricultural and Animal Research Station (NAARI), in Wakiso District, out-yielded local landraces. Other trials at NAARI and at nearby farms showed that roguing diseased cuttings within 1 month of planting and isolation from diseased crops, even by as little as 15m, can considerably decrease spread of SPVD to susceptible cultivars. This indicates that phytosanitation can protect desirable susceptible cultivars, even if adopted only locally. A dual approach of deploying both resistant varieties and phytosanitation provides farmers with a valuable increase in their choice of control strategies for SPVD.  相似文献   

20.
Environmental hazards occurring as an undesirable consequence of economic progress, urbanization and pollution have become a worldwide concern. In the US, this is evident from the campaign against smoking which has focused attention on the lung in part because the lung as a target organ is constantly exposed to many visible environmental hazards. On the other hand, environmental hazards which are not lethal, but cause their effects in an insidious fashion, may be difficult to study and identify. Among the disciplines available to assess adverse health consequences of xenobiotics ('strange' substances in our environment), application of modern immunological methods in concert with traditional toxicologic studies have to date demonstrated significant progress in drug allergy, food allergy, environmentally induced lung diseases and autoimmunity. These successes have come from the collaboration of immunologists, allergologists, pulmonologists, pharmacologists and toxicologists. In fact, a newer discipline of immunotoxicology has emerged in order to deal with these complex issues. The National Institutes of Health, through a series of workshops and research initiatives, and in collaboration with other US government agencies, including the Environmental Protection Agency, the National Institute of Environmental Health Sciences, and the National Academy of Sciences, is attempting to foster research aimed at enhancing progress in the field of immunotoxicology. The overall aim is to encourage the use of modern immunologic approaches to the study of the alleged harmful effects of xenobiotics on the immune system. Success will permit the development of improved diagnostic tools followed by initiatives concerned with prevention. Apart from their scientific implications the results are expected to have an impact on social, legal and economic issues within society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号