首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A higher prevalence and incidence of Parkinson disease (PD) is observed in men and beneficial motor effects of estrogens are observed in parkinsonian women. Lesion of the dopamine (DA) nigrostriatal pathway in animals with 1-methyl 4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) provides a model of PD and this is based on its use in humans as side-product of a drug abuse. Presently treatment of PD is mainly symptomatic. The MPTP mouse is used to study the neuroprotective roles of estrogenic drugs on the DA system. Estrogens, but not androgens, are active neuroprotectants as well as progesterone and dehydroepiandrosterone. An estrogen receptor agonist PPT and the selective estrogen receptor modulator raloxifene are also neuroprotective. Striatal DA neurons of estrogen receptor alpha knockout mice are more susceptible to MPTP toxicity than wild-type mice and neuroprotection by estradiol is associated with the activation of the PI3-K pathway involving Akt, GSK3beta, Bcl2 and BAD.  相似文献   

3.
目的 研究1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)和β-淀粉样蛋白(Aβ)对小鼠或大鼠相关脑区核小体组装蛋白-1(NAP-1)基因表达的影响。方法 通过MPTP腹腔注射诱导C57BL小鼠产生类似帕金森病症状,Aβ脑室注射诱导SD大鼠产生类似阿尔茨海默病症状,利用逆转录PCR方法检测小鼠黑质与纹状体及大鼠皮质与海马NAP-1mRNA丰度的变化。结果 在小鼠中,MPTP导致黑质NAP-1基因表达显著降低,而对纹状体NAP-1的表达没有明显影响。在大鼠中,Aβ对海马与皮质NAP-1基因的表达均无明显影响。结论 NAP-1很可能参与了MPTP诱导的神经元调亡过程,但在Aβ诱发的神经元凋亡过程中可能不起作用。  相似文献   

4.
Messenger RNAs (mRNA) for two of the regulatory subunits of cAMP-dependent protein kinases (PKA), RII beta and RI alpha, are transiently (maximal levels at 6 h) stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in cultured rat Sertoli cells in a time- and concentration-dependent manner. Whereas TPA (10(-7) M) stimulated RII beta mRNA 11 +/- 2.8 fold (mean +/- SEM), mRNA levels for RI alpha increased only 2.5 +/- 0.6-fold (mean +/- SEM). No effects of TPA on the other subunits of PKA (RII alpha, C alpha) were observed. TPA-dependent accumulation of mRNAs for RII beta and RI alpha was observed to the same extent in nucleus and cytoplasm. We have previously shown that mRNA levels for all the PKA subunits are increased by cAMP, particularly that of RII beta (greater than 50-fold). TPA modulated the stimulatory effects of cAMP on RII beta and RI alpha mRNAs in opposite directions. Whereas treatment with both 8-CPTcAMP and TPA gave an additive effect on RI alpha mRNA, TPA reduced the cAMP-dependent increase in RII beta mRNA. Although the mRNA for RII beta had returned to basal levels after 24 h of incubation with TPA, the presence of TPA still inhibited cAMP-dependent induction of mRNA for RII beta. In contrast, similar TPA treatment did not influence the subsequent cAMP-dependent stimulation of RI alpha mRNA. Preincubation with 8-CPTcAMP did not influence TPA-dependent stimulation of mRNAs for either RII beta or RI alpha. TPA induction of RII beta mRNA was completely blocked by cycloheximide (an inhibitor of protein synthesis), whereas that of RI alpha was not. The inhibitory effect of TPA on cAMP stimulation of RII beta mRNA was independent of ongoing protein synthesis. These results indicate that TPA induction of mRNAs for RI alpha and RII beta involves multiple and distinct mechanisms. The stimulatory effect of TPA on RI alpha mRNA levels and the inhibitory effect of TPA on cAMP-stimulated RII beta mRNA expression are probably mediated through stable factors, whereas proteins with rapid turnover or factors induced by TPA are involved in the stimulatory effect of TPA on RII beta mRNA.  相似文献   

5.
AIM: To study the serum concentration of IL-1beta, IL-1 receptor antagonist (IL-1Ra) and IL-18 in Galphai2-deficient mice at the age of 6 (healthy), 12 (pre-colitic) and 24 wk (colitic) and in healthy control mice. METHODS: At the time of killing, serum samples were collected and IL-1beta, IL-1Ra and IL-18 levels were measured using enzyme-linked immunosorbent assays. RESULTS: Serum concentration of IL-1Ra was significantly increased in pre-colitic (median: 524 ng/L; P=0.02) and colitic (450 ng/L; P=0.01), but not in healthy (196 ng/L) Galphai2-deficient mice as compared with controls (217 ng/L). Serum concentrations of IL-1beta did not differ between Galphai2-deficient mice and their controls, irrespective of age, IL-18 was significantly increased in colitic, but not in pre-colitic mice compared with controls (510 ng/L vs 190 ng/L; P=0.05). CONCLUSION: The increased serum concentrations of IL-18 and IL-1Ra in established diseases are suggested as markers of ongoing colitis. Interestingly, the significantly increased serum concentration of IL-1Ra in pre-colitic mice is found to be an early marker of disease progression.  相似文献   

6.
We investigated the alterations of dopamine transporter (DAT)-immunopositive cells against MPTP neurotoxicity, in comparison with tyrosine hydroxylase (TH)- immunopositive neurons and glial fibrillary acidic protein (GFAP)-immunopositive cells. This study showed that DAT and TH immunoreactivity was decreased gradually in the striatum and substantia nigra of mice after MPTP treatment. The patterns of the intense TH-immunoreactive fibers and cell bodies were similar to those of DAT-immunoreactive fibers and cell bodies in the striatum and substantia nigra of mice after MPTP treatment. In contrast, GFAP immunoreactivity was increased gradually in the striatum and substantia nigra after MPTP treatment. In our double-labeled immunostaining with anti-DAT and anti-GFAP antibodies, DAT immunoreactivity was observed only in the nigral dopaminergic neurons, but not in the reactive astrocytes. The present results provide further evidence that the functional damage of DAT may precede dopaminergic neuronal death after MPTP treatment, although the decrease in the number of TH-immunopositive neurons was more pronounced than that in the number of DAT-immunopositive neurons. Furthermore, our findings demonstrate that MPTP can selectively injure the dopaminergic neurons which DAT proteins are predominantly distributed on the striatum and substantia nigra. The results provide beneficial information for MPTP-induced neurodegeneration of the nigrostriatal dopaminergic neuronal pathway.  相似文献   

7.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic pathway damage similar to that observed in Parkinson disease (PD). To study the role of NO radical in MPTP-induced neurotoxicity, we injected MPTP into mice in which nitric oxide synthase (NOS) was inhibited by 7-nitroindazole (7-NI) in a time- and dose-dependent fashion. 7-NI dramatically protected MPTP-injected mice against indices of severe injury to the nigrostriatal dopaminergic pathway, including reduction in striatal dopamine contents, decreases in numbers of nigral tyrosine hydroxylase-positive neurons, and numerous silver-stained degenerating nigral neurons. The resistance of 7-NI-injected mice to MPTP is not due to alterations in striatal pharmacokinetics or content of 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP. To study specifically the role of neuronal NOS (nNOS), MPTP was administered to mutant mice lacking the nNOS gene. Mutant mice are significantly more resistant to MPTP-induced neurotoxicity compared with wild-type littermates. These results indicate that neuronally derived NO mediates, in part, MPTP-induced neurotoxicity. The similarity between the MPTP model and PD raises the possibility that NO may play a significant role in the etiology of PD.  相似文献   

8.
Parkin-deficient mice are not a robust model of parkinsonism   总被引:1,自引:0,他引:1       下载免费PDF全文
Mutations in the human parkin gene cause autosomal recessive juvenile parkinsonism, a heritable form of Parkinson's disease (PD). To determine whether mutations in the mouse parkin gene (Park2) also result in a parkinsonian phenotype, we generated mice with a targeted deletion of parkin exon 2. Using an extensive behavioral screen, we evaluated neurological function, motor ability, emotionality, learning, and memory in aged Parkin-deficient mice. The behavioral profile of Parkin-deficient mice on a B6;129S4 genetic background was strikingly similar to that of control mice, and most differences were not reproducible by using coisogenic mice on a 129S4 genetic background. Moreover, catecholamine levels in the striatum, olfactory bulb, and spinal cord of Parkin-deficient mice were normal. In contrast to previous studies using independently generated Parkin-deficient mice, we found no evidence for nigrostriatal, cognitive, or noradrenergic dysfunction. Understanding why Parkin-deficient mice do not exhibit robust signs of parkinsonism could advance knowledge and treatment of PD.  相似文献   

9.
10.
In the present study we have examined the effects of FSH, forskolin, and (Bu)2cAMP on messenger RNA (mRNA) levels for all known subunits of cAMP-dependent protein kinase in rat Sertoli cells, using newly developed complementary DNA (cDNA) probes. mRNAs for the three regulatory subunits [RI alpha, RII51, (RII beta), and RII54 (RII alpha)] and the catalytic subunit C alpha were shown to be present in cultured rat Sertoli cells, whereas mRNAs for the subunits designated RI beta and C beta were below the level of detection. A high-levelled, concentration-dependent increase in a 3.2 kilobase mRNA for RII51 was observed when cultured immature Sertoli cells were incubated with increasing concentrations of (Bu)2cAMP (10(-6) to 5 X 10(-3) M) for 16 h. Densitometric scanning indicated a maximal stimulation by (Bu)2cAMP of 30- to 40-fold. Incubation with forskolin (100 microM) and FSH (200 ng/ml) gave rise to a smaller but significant increase in mRNA for RII51. When cultured Sertoli cells were incubated in the presence of 10(-4) M (Bu)2cAMP for varying time periods, there was a biphasic regulation of mRNA for RII51. (Bu)2cAMP caused an initial increase in mRNA for RII51 with maximal levels obtained after 10-16 h, after which a time-dependent decrease was observed. For the other three subunits present in Sertoli cells (RI alpha, RII54, and C alpha) a smaller but significant stimulation by (Bu)2cAMP and forskolin (2-4 fold) was seen. The functional implications of these changes in mRNA levels for the different subunits of cAMP-dependent protein kinase have not yet been revealed. However, our data clearly demonstrate differential regulation of the various subunits of cAMP-dependent protein kinase in Sertoli cells. Furthermore, these results document the presence of distinct adaptational changes taking place at the level of cAMP-dependent protein kinase in response to long term elevation of cAMP.  相似文献   

11.
Cytokines like interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha), released during the inflammatory process, play important roles in the development of airway hyperresponsiveness. The effects of these cytokines are mediated by cell surface receptors, specific for each cytokine. The expression of cytokine receptors is a dynamic process, where receptors can be up- or down-regulated in response to changes in the environment. One such environmental factor is the presence of cytokines per se. The present study was designed to evaluate the effects of IL-1beta on the expression of its corresponding receptor IL-1 RI, as well as on the closely related TNFalpha receptors TNF RI and TNF RII in airways using a mouse organ culture assay and intranasal inoculation model. Immunohistochemical staining was used to quantify expressional differences between fresh and cultured tracheal segments. In the fresh, uncultured, segments, IL-1 RI and TNF RI were seen in the epithelial layer and TNF RI in the smooth muscle layer. After 4 days of culture, the expression of TNF RI decreased in the epithelial layer, whereas the corresponding expression of IL-1 RI and TNF RI in the smooth muscle remained unchanged. When culture was performed in the presence of IL-1beta, the expression of IL-1 RI and TNF RI in the epithelial cells and TNF RI in the smooth muscle cells increased. TNF RII was not detected in either fresh or cultured trachea, but after treatment with IL-1beta an expression was found in both the epithelial layer and in the smooth muscle cells. The IL-1beta-induced increased expression, on TNF RI and TNF RII in the smooth muscle ex vivo and in the lung parenchyma after intranasal challenge in vivo, was verified at the mRNA level using real-time RT PCR. To summarize, presence of IL-1beta increases the expression of IL-1 R1 and TNF RI and induces expression of TNF RII in the airway wall. It is not inconceivable that these alterations of the IL-1 and TNF receptors may have important functional implications for the development of hyperresponsiveness in inflammatory airway diseases like asthma.  相似文献   

12.
13.
Walch L  Clavarino E  Morris PL 《Endocrinology》2003,144(4):1284-1291
Prostaglandins (PG) mediate IL-1beta regulation of several interleukin mRNAs in progenitor Leydig cells. PGE(2) and PGF(2alpha) potently reverse indomethacin (INDO; a cyclooxygenase inhibitor) inhibition of IL-1beta autoinduction. IL-1beta increases PGE(2) and PGF(2alpha) production. To determine the PG receptors involved in this regulation, this study established by RT-PCR and Western analyses which specific receptors for PGE(2) (EP receptors) and PGF(2alpha) (FP receptors) are expressed in progenitors. Pharmacological characterization of receptors involved in PGE(2) and PGF(2alpha) regulation of IL-1beta mRNA levels was ascertained using real-time PCR analyses. FP, EP(1), EP(2), and EP(4) receptor mRNAs and proteins, and an EP(3) receptor subtype were detected. IL-1beta treatment (24-h) significantly decreased EP(1) receptor levels; INDO abrogated this down-regulation. FP, EP(2), and EP(4) receptor levels increased after IL-1beta and IL-1beta + INDO. A selective FP agonist, cloprostenol (0.1 micro M), and PGF(2alpha) (10 micro M) had similar effects on IL-1beta mRNA levels in progenitors treated with IL-1beta + INDO. None of the EP(2)/EP(4) agonists [butaprost, misoprostol, or 11-deoxy PGE(1) (10 micro M)] affected IL-1beta mRNA levels. In contrast, EP(1)/EP(3) agonists (17-phenyl trinor PGE(2) and sulprostone) increased IL-1beta mRNAs in a dose-dependent manner. EP(1) receptor subtype-selective antagonist, SC-51322, blocked IL-1beta-induced and [IL-1beta + INDO + 17-phenyl trinor PGE(2)]-induced increases in IL-1beta mRNAs. Taken together, our data demonstrate that FP and EP(1) receptors mediate PGF(2alpha) and PGE(2) induction of progenitor IL-1beta expression.  相似文献   

14.
15.
Interleukin-1 (IL-1) is a potent regulator of cardiovascular proliferation, apoptosis, contraction or production of inflammatory mediators. Thus, we investigated expression and function of IL-1 in cultured neonatal rat heart cells upon endotoxin stimulation. We show that cultured neonatal rat cardiomyocytes expressed IL-1alpha and IL-1beta mRNA. The cells expressed functional cell-associated IL-1 activity and a specific anti-IL-1alpha-antibody inhibited the activity. Biologically active IL-1alpha was present at the cell surface of the cardiomyocytes, as indicated in co-culture experiments. Immunohistochemistry showed IL-1alpha-staining of the neonatal cardiomyocytes. Although the cells also expressed IL-1beta mRNA, we did not detect IL-1beta in the supernatants of cultured cardiomyocytes by ELISA or in immunohistochemical staining. Furthermore, neonatal and adult rat heart tissues expressed IL-1alpha mRNA, whereas fetal, but not adult, human cardiac tissues expressed detectable IL-1alpha mRNA. In contrast, IL-1beta mRNA was present in rat and human fetal and adult samples. Furthermore, in patients with dilated or ischemic cardiomyopathy, we measured IL-1beta, but not IL-1alpha, mRNA. These results provide evidence for the presence of functionally active IL-1alpha on the cell surface of neonatal rat cardiomyocytes and may suggest a differential role of IL-1alpha in regulation of cellular functions during development, aging and disease in rat and human heart cells.  相似文献   

16.
17.
We have reported that interleukin-1 beta (IL-1 beta) upregulates cardiac expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2), raising the possibility that IL-1 beta plays an important role in VEGF-mediated neovascularization. In this study, we examined the cellular mechanism for ischemia-induced neovascularization using IL-1 beta knock-out (-/-) mice. Recovery of blood perfusion in ischemic hindlimb in IL-1 beta-/- mice was markedly (43% decrease) impaired as compared with the wild-type mice. CD31(+) vessel numbers and Ki-67(+) neo-capillaries were significantly (P < 0.01) decreased 44% and 68%, respectively. IL-1 beta expression was localized in the capillary vessels in ischemic limb muscles. Ischemia-induced expressions of hypoxia-inducible factor 1 alpha (HIF-1 alpha), VEGF, its receptor VEGFR-2 and vascular cell adhesion molecule-1 (VCAM-1) were markedly inhibited in the IL-1 beta-/- mice. Hindlimb ischemia-induced an increase (1.22% out of total nuclear cell) in CD34(-)/B220(-)/CD3(-)/Flk-1(+) hematopoietic stem cell population in peripheral blood in the wild-type mice, whereas in the IL-1 beta-/- mice such increase was only 0.09%. Injection of IL-1 beta protein into the wild-type mice markedly increased the ratio of the CD34(-)/B220(-)/CD3(-)/Flk-1(+) cell population (from 0.03% to 0.7%) in the peripheral blood associated with an increase in the number of endothelial cells. Such IL-1 beta-mediated increases in cell numbers were blocked by co-injection of anti-VEGF antibody. CD34(-)/B220(-)CD3(-)Flk-1(+) cells trans-differentiated into eNOS- and CD31-expressing endothelial cells in vivo and in vitro. This study demonstrates that IL-1 beta plays a key role in ischemia-induced neovascularization by mobilizing CD34(-)/B220(-)CD3(-)Flk-1(+) endothelial precursor cells in a VEGF-dependent manner as well as by upregulating expressions of VEGF, VEGFR-2 and adhesion molecules on endothelial cells.  相似文献   

18.
19.
OBJECTIVE: To correlate the increased collagenase production previously seen in chondrocytes isolated from osteoarthritic (OA) lesions and the expression of cytokines and cytokine receptors. METHODS: Chondrocytes were isolated from OA cartilage and characterized for synthesis of collagenases, cytokines, and cytokine receptors by Northern and Western blot analyses, RNA protection assay, and flow cytometry. RESULTS: Chondrocytes located in cartilage proximal to the macroscopic OA lesions bound more tumor necrosis factor alpha (TNFalpha) and interleukin-1beta (IL-1beta) compared with chondrocytes isolated from morphologically normal cartilage from the same joint. In response to TNFalpha stimulation, messenger RNA (mRNA) levels for the IL-1 receptor I (IL-1RI), IL-1RII, TNF receptor II (TNFR II), and IL-6 receptor as well as the level of proinflammatory cytokines, such as IL-1alpha, IL-1beta, lymphotoxin beta, TNFalpha, and IL-6, also increased. In contrast, treatment with transforming growth factor beta1 (TGFbeta1) resulted in down-regulation of matrix metalloproteinase 1 (MMP-1) and MMP-13 concomitant with a reduction in the levels of mRNA for IL-1RI, IL-1RII, TNFRI, and TNFRII and proinflammatory cytokine levels. In contrast, the levels of mRNA for TGFbeta receptor I, TGFbeta1, and TGFbeta3 were up-regulated. CONCLUSION: These data show that TGFbeta1 has antagonistic effects upon OA chondrocytes, in contrast to the effects seen with TNFalpha. The cyclical course of OA, where a period of active disease is followed by a period of remission, can be explained by a sequential pattern of cytokine stimulation followed by a feedback inhibition of autocrine cytokine production and cytokine receptor expression, thus affecting collagenase synthesis.  相似文献   

20.
OBJECTIVE: Interleukin-1 (IL-1) acts via its receptors to induce gene expression that mediates protein synthesis involved in inflammation. Increased expression of IL-1alpha and IL-1beta in muscle tissue from patients with polymyositis and dermatomyositis has been demonstrated. It is not known whether the reciprocal IL-1 receptors are expressed in human muscle tissue. The purpose of this study was to investigate the expression of IL-1 receptors and their ligands in muscle tissue from patients with myositis and from healthy controls. METHODS: Muscle biopsy tissues from 10 patients with polymyositis or dermatomyositis and 7 healthy control subjects were investigated by immunohistochemistry using antibodies against IL-1 receptor type I (IL-1RI), IL-1RII, IL-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1Ra). Quantification was performed by computerized image analysis, and localization of expression was determined by double staining using immunofluorescence and confocal microscopy. RESULTS: In tissue samples from the patients, IL-1RI and IL-1RII were expressed in muscle fibers, inflammatory cells, and endothelial cells. Expression in muscle fibers was localized to the sarcolemma and nuclei. IL-1alpha was expressed in endothelial cells and inflammatory cells, whereas IL-1beta and IL-1Ra were expressed only in inflammatory cells. Expression of the two IL-1 receptors and their ligands was significantly higher in patients than in controls. IL-1 receptor expression on muscle fibers was most pronounced in the vicinity of cells expressing IL-1alpha and IL-1beta. CONCLUSION: The increased expression of IL-1 receptor and the colocalization with reciprocal ligands in patients with myositis but not in healthy controls support the hypothesis of a crucial role of IL-1 in the pathogenesis of polymyositis and dermatomyositis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号