首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effect of endogenous nitric oxide synthase (NOS) on cardiac contractility and architecture has been a matter of debate. A role for NOS in cardiac hypertrophy has recently been demonstrated by studies which have shown hypertrophic cardiomyopathy (HCM) with altered contractility in constitutive NOS (cNOS) knockout mice. Caveolin-3, a strong inhibitor of all NOS isoforms, is expressed in sarcolemmal caveolae microdomains and binds to cNOS in vivo: endothelial nitric oxide synthase (eNOS) in cardiac myocytes and neuronal nitric oxide synthase (nNOS) in skeletal myocytes. The current study characterized the biochemical and cardiac parameters of P104L mutant caveolin-3 transgenic mice, a model of an autosomal dominant limb-girdle muscular dystrophy (LGMD1C). Transgenic mouse hearts demonstrated HCM, enhanced basal contractility, decreased left ventricular end diastolic diameter, and loss and cytoplasmic mislocalization of caveolin-3 protein. Surprisingly, cardiac muscle showed activation of eNOS catalytic activity without increased expression of all NOS isoforms. These data suggest that a moderate increase in eNOS activity associated with loss of caveolin-3 results in HCM.  相似文献   

4.
In muscle tissue the protein caveolin-3 forms caveolae – flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations.  相似文献   

5.
Caveolin-3 deficiency causes muscle degeneration in mice   总被引:8,自引:0,他引:8  
Caveolin-3 is a muscle-specific protein integrated in the caveolae, which are small invaginations of the plasma membrane. Mutations of the caveolin-3 gene, localized at 3p25, have been reported to be involved in the pathogenesis of limb-girdle muscular dystrophy (LGMD1C or caveolinopathy) with mild clinical symptoms, inherited through an autosomal dominant form of genetic transmission. To elucidate the pathogenetic mechanism, we developed caveolin-3-deficient mice for use as animal models of caveolinopathy. Caveolin-3 mRNA and its protein were absent in homozygous mutant mice. In heterozygous mutant mice, both the mRNA and its protein were normal in size, but their amounts were reduced by about half. The density of caveolae in skeletal muscle plasma membrane was roughly proportional to the amount of caveolin-3. In homozygous mutant mice, muscle degeneration was recognized in soleus muscle at 8 weeks of age and in the diaphragm from 8 to 30 weeks, although there was no difference in growth and movement between wild-type and mutant mice. No apparent muscle degeneration was observed in heterozygous mutant mice, indicating that pathological changes caused by caveolin-3 gene disruption were inherited through the recessive form of genetic transmission.  相似文献   

6.
Caveolin-3, a muscle specific caveolin-related protein, is the principal structural protein of caveolar membranes. We have recently identified an autosomal dominant form of limb girdle muscular dystrophy (LGMD-1C) that is due to caveolin-3 deficiency and caveolin-3 gene mutations. Here, we studied by electron microscopy, including freeze-fracture and lanthanum staining, the distribution of caveolae and the organization of the T-tubule system in caveolin-3 deficient human muscle fibers. We found a severe impairment of caveolae formation at the muscle cell surface, demonstrating that caveolin-3 is essential for the formation and organization of caveolae in muscle fibers. In addition, we also detected a striking disorganization of the T-system openings at the sub-sarcolemmal level in LGMD-1C muscle fibers. These observations provide new perspectives in our understanding of the role of caveolin-3 in muscle and of the pathogenesis of muscle weakness in caveolin-3 deficient muscle.  相似文献   

7.
Skeletal muscle expressing Pro104Leu mutant caveolin 3 (CAV3(P104L)) in mouse becomes atrophied and serves as a model of autosomal dominant limb-girdle muscular dystrophy 1C. We previously found that caveolin 3-deficient muscles showed activated intramuscular transforming growth factor beta (TGF-β) signals. However, the cellular mechanism by which loss of caveolin 3 leads to muscle atrophy is unknown. Recently, several small-molecule inhibitors of TGF-β type I receptor (TβRI) kinase have been developed as molecular-targeting drugs for cancer therapy by suppressing intracellular TGF-β1, -β2, and -β3 signaling. Here, we show that a TβRI kinase inhibitor, Ki26894, restores impaired myoblast differentiation in vitro caused by activin, myostatin, and TGF-β1, as well as CAV3(P104L). Oral administration of Ki26894 increased muscle mass and strength in vivo in wild-type mice, and improved muscle atrophy and weakness in the CAV3(P104L) mice. The inhibitor restored the number of satellite cells, the resident stem cells of adult skeletal muscle, with suppression of the increased phosphorylation of Smad2, an effector, and the upregulation of p21 (also known as Cdkn1a), a target gene of the TGF-β family members in muscle. These data indicate that both TGF-β-dependent reduction in satellite cells and impairment of myoblast differentiation contribute to the cellular mechanism underlying caveolin 3-deficient muscle atrophy. TβRI kinase inhibitors could antagonize the activation of intramuscular anti-myogenic TGF-β signals, thereby providing a novel therapeutic rationale for the alternative use of this type of anticancer drug in reversing muscle atrophy in various clinical settings.  相似文献   

8.
Duchenne muscular dystrophy is caused by dystrophin mutations that lead to structural instability of the sarcolemma membrane, myofiber degeneration/regeneration and progressive muscle wasting. Here we show that myogenic Akt signaling in mouse models of dystrophy promotes increased expression of utrophin, which replaces the function of dystrophin thereby preventing sarcolemma damage and muscle wasting. In contrast to previous suggestions that increased Akt in dystrophy was a secondary consequence of pathology, our findings demonstrate a pivotal role for this signaling pathway such that modulation of Akt can significantly affect disease outcome by amplification of existing, physiological compensatory mechanisms.  相似文献   

9.
Filamin C (encoded by the FLNC gene) is a large actin‐cross‐linking protein involved in shaping the actin cytoskeleton in response to signaling events both at the sarcolemma and at myofibrillar Z‐discs of cross‐striated muscle cells. Multiple mutations in FLNC are associated with myofibrillar myopathies of autosomal‐dominant inheritance. Here, we describe for the first time a boy with congenital onset of generalized muscular hypotonia and muscular weakness, delayed motor development but no cardiac involvement associated with a homozygous FLNC mutation c.1325C>G (p.Pro442Arg). We performed ultramorphological, proteomic, and functional investigations as well as immunological studies of known marker proteins for dominant filaminopathies. We show that the mutant protein is expressed in similar quantities as the wild‐type variant in control skeletal muscle fibers. The proteomic signature of quadriceps muscle is altered and ultrastructural perturbations are evident. Moreover, filaminopathy marker proteins are comparable both in our homozygous and a dominant control case (c.5161delG). Biochemical investigations demonstrate that the recombinant mutant protein is less stable and more prone to degradation by proteolytic enzymes than the wild‐type variant. The unusual congenital presentation of the disease clearly demonstrates that homozygosity for mutations in FLNC severely aggravates the phenotype.  相似文献   

10.
11.
Mutations in the caveolin-3 gene (CAV3) cause limb girdle muscular dystrophy (LGMD) type 1C (LGMD1C) and other muscle phenotypes. We screened 663 patients with various phenotypes of unknown etiology, for caveolin-3 protein deficiency, and we identified eight unreported caveolin-deficient patients (from seven families) in whom four CAV3 mutations had been detected (two are unreported). Following our wide screening, we estimated that caveolinopathies are 1% of both unclassified LGMD and other phenotypes, and demonstrated that caveolin-3 protein deficiency is a highly sensitive and specific marker of primary caveolinopathy. This is the largest series of caveolinopathy families in whom the effect of gene mutations has been analyzed for protein level and phenotype. We showed that the same mutation could lead to heterogeneous clinical phenotypes and muscle histopathological changes. To study the role of the Golgi complex in the pathological pathway of misfolded caveolin-3 oligomers, we performed a histopathological study on muscle biopsies from caveolinopathy patients. We documented normal caveolin-3 immunolabeling at the plasmalemma in some regenerating fibers showing a proliferation of the Golgi complex. It is likely that caveolin-3 overexpression occurring in regenerating fibers (compared with caveolin-deficient adult fibers) may lead to an accumulation of misfolded oligomers in the Golgi and to its consequent proliferation.  相似文献   

12.
Caveolin-3 is an important scaffold protein of cholesterol-rich caveolae. Mutations of caveolin-3 cause hereditary myopathies that comprise remarkably different pathologies. Growth factor signaling plays an important role in muscle physiology; it is influenced by caveolins and cholesterol-rich rafts and might thus be affected by caveolin-3 dysfunction. Prompted by the observation of a marked chronic peripheral neuropathy in a patient suffering from rippling muscle disease due to the R26Q caveolin-3 mutation and because TrkA is expressed by neuronal cells and skeletal muscle fibers, we performed a detailed comparative study on the effect of pathogenic caveolin-3 mutants on the signaling and trafficking of the TrkA nerve growth factor receptor and, for comparison, of the epidermal growth factor receptor. We found that the R26Q mutant slightly and the P28L strongly reduced nerve growth factor signaling in TrkA-transfected cells. Surface biotinylation experiments revealed that the R26Q caveolin-3 mutation markedly reduced the internalization of TrkA, whereas the P28L did not. Moreover, P28L expression led to increased, whereas R26Q expression decreased, epidermal growth factor signaling. Taken together, we found differential effects of the R26Q and P28L caveolin-3 mutants on growth factor signaling. Our findings are of clinical interest because they might help explain the remarkable differences in the degree of muscle lesions caused by caveolin-3 mutations and also the co-occurrence of peripheral neuropathy in the R26Q caveolinopathy case presented.Caveolae are flask-shaped invaginations of the plasma membrane implicated in membrane-trafficking and signal transduction. Caveolins are major scaffolding proteins of caveolae and lipid rafts. In these structures, cholesterol and lipid-modified signaling molecules such as Src-like kinases, H-Ras, and G-proteins accumulate.1 Caveolin-3 (M-Caveolin) is one of three members of the caveolin protein family.2 In contrast to caveolin-1 and caveolin-2, which are ubiquitously expressed, caveolin-3 is predominantly expressed in muscle fibers. The caveolin-3 proteins form homomeric complexes that are transported to the plasma membrane where they are associated with the dystrophin glycoprotein complex.3 Point mutations in caveolin-3 lead to a dissociation of the assembly process4 and a decrease of sarcolemmal caveolin-3 levels. The caveolin-3 mutant R26Q has been shown to accumulate in the Golgi complex,5 which decreases the half-life of both the mutated and the wild-type-caveolin-3 protein. Interestingly, the different caveolin-3 mutations lead to a wide spectrum of phenotypes ranging from clinically asymptomatic hyperCKemia to rippling muscle disease, distal myopathy, and limb girdle muscular dystrophy type 1C. For instance, the point mutation R26Q can cause heterogeneous disease patterns encompassing this whole spectrum of disorders.3 In contrast, the mutation P28L, which is located in close proximity to mutation R26Q, causes persistent elevated serum levels of creatine kinase only, without overt clinical symptoms.6 The caveolin-3 mutation A45T leads to the same heterogeneous phenotype as R26Q except for distal myopathy, whereas the G55S mutation is associated with the limb girdle muscular dystrophy type 1C phenotype.7Growth factors that signal through cell surface receptors are concentrated in caveolae and lipid rafts.8 Therefore, mutations in caveolin-3 might lead to alterations in signaling and trafficking of these factors and their receptors. In line with this hypothesis, Parton and co-workers9 showed in BHK fibroblasts and PC12 cells that the C71W caveolin-3 mutant strongly diminished signaling of H-Ras, an important downstream signal transducer of receptor tyrosine kinases. However, the consequences of caveolin-3 mutations on growth factor receptor activation at the cell surface are so far largely unexplored. Moreover, it is unclear how the different known caveolin-3 mutations trigger markedly different clinical phenotypes even when comparing cases with very similar mutations. This was recently exemplified by Minetti and co-workers,10 who showed that caveolin-3 T78M and T78K mutations lead to different phenotypes.In the present study we describe muscle and nerve biopsy findings of a patient who suffered from both rippling muscle disease due to the R26Q caveolin-3 mutation and chronic peripheral neuropathy. We found differential effects of the R26Q and the P28L caveolin-3 point mutants on nerve growth factor (NGF) versus epidermal growth factor (EGF) signaling in our in vitro experiments. Our results give rise to the intriguing hypothesis that differential effects of caveolin-3 mutants on various growth factor signaling pathways are causally related to the so far unexplained differences in clinical phenotypes.  相似文献   

13.
14.
15.
Marinesco-Sj?gren syndrome (MSS) is a rare autosomal recessively inherited neurodegenerative disorder characterized by cerebellar ataxia, cataracts, mental retardation, and progressive myopathy. Recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum (ER) resident cochaperone, were identified as a major cause of MSS. We here report four novel mutations in SIL1, including the first missense substitution p.Leu457Pro described in MSS. In addition, we excluded three functional candidate genes, HSPA5, HYOU1, and AARS, as causative genes in SIL1 mutation-negative patients. To understand the mechanisms of disturbed SIL1 function, we studied the subcellular localization of the missense mutant Leu457Pro protein in COS-1 cells. Moreover, we studied a mutant protein lacking the putative C-terminal ER retrieval signal. In contrast to the wild-type protein's localization to ER and Golgi apparatus, both mutant proteins formed aggregates within the ER depending on the expression level. These data imply that aggregation of mutant proteins may contribute to MSS pathogenesis. The genetic background of a subgroup of patients with MSS remains uncovered.  相似文献   

16.
Mutations in potassium voltage‐gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to nonsyndromic hearing loss (NSHL), deafness nonsyndromic autosomal dominant 2 (DFNA2). To identify causative mutations of hearing loss in 98 Korean families, we performed whole exome sequencing. In four independent families with NSHL, we identified a cosegregating heterozygous missense mutation, c.140T>C (p.Leu47Pro), in KCNQ4. Individuals with the c.140T>C KCNQ4 mutation shared a haplotype flanking the mutated nucleotide, suggesting that this mutation may have arisen from a common ancestor in Korea. The mutant KCNQ4 protein could reach the plasma membrane and interact with wild‐type (WT) KCNQ4, excluding a trafficking defect; however, it exhibited significantly decreased voltage‐gated potassium channel activity and fast deactivation kinetics compared with WT KCNQ4. In addition, when co‐expressed with WT KCNQ4, mutant KCNQ4 protein exerted a dominant‐negative effect. Interestingly, the channel activity of the p.Leu47Pro KCNQ4 protein was rescued by the KCNQ activators MaxiPost and zinc pyrithione. The c.140T>C (p.Leu47Pro) mutation in KCNQ4 causes progressive NSHL; however, the defective channel activity of the mutant protein can be rescued using channel activators. Hence, in individuals with the c.140T>C mutation, NSHL is potentially treatable, or its progression may be delayed by KCNQ activators.  相似文献   

17.
Systemic primary carnitine deficiency (CDSP, OMIM 212140) is an autosomal recessive disease characterized by low serum and intracellular concentrations of carnitine. CDSP may present with acute metabolic derangement simulating Reye's syndrome within the first 2 years of life. After 3 years of age, patients with CDSP may present with cardiomyopathy and muscle weakness. A linkage with D5S436 in 5q was reported in a family. A recently cloned homologue of the organic cation transporter, OCTN2, which has sodium-dependent carnitine uptake properties, was also mapped to the same locus. We screened for mutation in OCTN2 in a confirmed CDSP family. One truncating mutation (Trp132Stop) and one missense mutation (Pro478Leu) of OCTN2 were identified together with two silent polymorphisms. Expression of the mutant cDNAs revealed virtually no uptake activity for both mutations. Our data indicate that mutations in OCTN2 are responsible for CDSP. Identification of the underlying gene in this disease will allow rapid detection of carriers and postnatal diagnosis of affected patients.  相似文献   

18.
Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.  相似文献   

19.
Pyruvate kinase (PK) deficiency is a rare disease but an important cause of hereditary nonspherocytic hemolytic anemia. The disease is caused by mutations in the PKLR gene and shows a marked variability in clinical expression. We report on the molecular characterization of 38 PK‐deficient patients from 35 unrelated families. Twenty‐nine different PKLR mutations were detected, of which 15 are reported here for the first time. Two novel deletions are reported: c.142_159del18 is the largest in‐frame deletion described thus far and predicts the loss of six consecutive amino acids (p.Thr48_Thr53del) in the N‐terminal domain of red blood cell PK. The other deletion removes nearly 1.5 kb of genomic DNA sequence (c.1618+37_2064del1477) and is one of a few large deletional mutants in PKLR. In addition, 13 novel point mutations were identified: one nonsense mutant, p.Arg488X, and 12 missense mutations, predicting the substitution of a single amino acid: p.Arg40Trp, p.Leu73Pro, p.Ile90Asn, p.Gly111Arg, p.Ala154Thr, p.Arg163Leu, p.Gly165Val, p.Leu272Val, p.Ile310Asn, p.Val320Leu, p.Gly358Glu, and p.Leu374Pro. We used the three‐dimensional (3D) structure of recombinant human tetrameric PK to evaluate the protein structural context of the affected residues. In addition, in selected patients red blood cell PK antigen levels were measured by enzyme‐linked immunosorbent assay (ELISA). Collectively, the results provided us with a rationale for the observed enzyme deficiency and contribute to both a better understanding of the genotype‐to‐phenotype correlation in PK deficiency as well as the enzyme's structure and function. Hum Mutat 0, 1–8, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Limb girdle muscular dystrophy is a group of clinically and genetically heterogeneous disorders inherited in an autosomal recessive or dominant mode. Caveolin-3, the muscle-specific member of the caveolin gene family, is implicated in the pathogenesis of autosomal dominant limb girdle muscular dystrophy 1C. Here we report on a 4-year-old girl presenting with myalgia and muscle cramps due to a caveolin-3 deficiency in her dystrophic skeletal muscle as a result of a heterozygous 136G-->A substitution in the caveolin-3 gene. The novel sporadic missense mutation in the caveolin signature sequence of the caveolin-3 gene changes an alanine to a threonine (A46T) and prevents the localization of caveolin-3 to the plasma membrane in a dominant negative fashion. Caveolin-3 has been suggested to interact with the dystrophin-glycoprotein complex, which in striated muscle fibers links the cytoskeleton to the extracellular matrix and with neuronal nitric oxide synthase. Similar to dystrophin-deficient Duchenne muscular dystrophy, a secondary decrease in neuronal nitric oxide synthase and alpha-dystroglycan expression was detected in the caveolin-3-deficient patient. These results implicate an important function of the caveolin signature sequence and common mechanisms in the pathogenesis of dystrophin-glycoprotein complex-associated muscular dystrophies with caveolin-3-deficient limb girdle muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号