首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《Genetics in medicine》2019,21(11):2496-2503
PurposeWe aimed to gain insight into frequencies of genetic variants in genes implicated in neurodevelopmental disorder with epilepsy (NDD+E) by investigating large cohorts of patients in a diagnostic setting.MethodsWe analyzed variants in NDD+E using epilepsy gene panel sequencing performed between 2013 and 2017 by two large diagnostic companies. We compared variant frequencies in 6994 panels with another 8588 recently published panels as well as exome-wide de novo variants in 1942 individuals with NDD+E and 10,937 controls.ResultsGenes with highest frequencies of ultrarare variants in NDD+E comprised SCN1A, KCNQ2, SCN2A, CDKL5, SCN8A, and STXBP1, concordant with the two other epilepsy cohorts we investigated. In only 46% of the analyzed 262 dominant and X-linked panel genes ultrarare variants in patients were reported. Among genes with contradictory evidence of association with epilepsy, CACNB4, CLCN2, EFHC1, GABRD, MAGI2, and SRPX2 showed equal frequencies in cases and controls.ConclusionWe show that improvement of panel design increased diagnostic yield over time, but panels still display genes with low or no diagnostic yield. With our data, we hope to improve current diagnostic NDD+E panel design and provide a resource of ultrarare variants in individuals with NDD+E to the community.  相似文献   

2.
Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.  相似文献   

3.
Brugada syndrome (BrS) is an inherited arrhythmogenic disease associated with sudden cardiac death. The main gene is SCN5A. Additional variants in 42 other genes have been reported as deleterious, although these variants have not yet received comprehensive pathogenic analysis. Our aim was to clarify the role of all currently reported variants in minor genes associated with BrS. We performed a comprehensive analysis according to the American College of Medical Genetics and Genomics guidelines of published clinical and basic data on all genes (other than SCN5A) related to BrS. Our results identified 133 rare variants potentially associated with BrS. After applying current recommendations, only six variants (4.51%) show a conclusive pathogenic role. All definitively pathogenic variants were located in four genes encoding sodium channels or related proteins: SLMAP, SEMA3A, SCNN1A, and SCN2B. In total, 33.83% of variants in 19 additional genes were potentially pathogenic. Beyond SCN5A, we conclude definitive pathogenic variants associated with BrS in four minor genes. The current list of genes associated with BrS, therefore, should include SCN5A, SLMAP, SEMA3A, SCNN1A, and SCN2B. Comprehensive genetic interpretation and careful clinical translation should be done for all variants currently classified as potentially deleterious for BrS.  相似文献   

4.
A phenotype‐driven approach to molecular autopsy based in a multidisciplinary team comprising clinical and laboratory genetics, forensic medicine and cardiology is described. Over a 13 year period, molecular autopsy was undertaken in 96 sudden cardiac death cases. A total of 46 cases aged 1–40 years had normal hearts and suspected arrhythmic death. Seven (15%) had likely pathogenic variants in ion channelopathy genes [KCNQ1 (1), KCNH2 (4), SCN5A (1), RyR2(1)]. Fifty cases aged between 2 and 67 had a cardiomyopathy. Twenty‐five had arrhythmogenic right ventricular cardiomyopathy (ARVC), 10 dilated cardiomyopathy (DCM) and 15 hypertrophic cardiomyopathy (HCM). Likely pathogenic variants were found in three ARVC cases (12%) in PKP2, DSC2 or DSP, two DCM cases (20%) in MYH7, and four HCM cases (27%) in MYBPC3 (3) or MYH7 (1). Uptake of cascade screening in relatives was higher when a molecular diagnosis was made at autopsy. In three families, variants previously published as pathogenic were detected, but clinical investigation revealed no abnormalities in carrier relatives. With a conservative approach to defining pathogenicity of sequence variants incorporating family phenotype information and population genomic data, a molecular diagnosis was made in 15% of sudden arrhythmic deaths and 18% of cardiomyopathy deaths.  相似文献   

5.
《Genetics in medicine》2020,22(3):511-523
PurposeFetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood.MethodsIn this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA).ResultsWe have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease–gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3,EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant inTNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis.ConclusionOur analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1,IQSEC3 and RYR3. Of those, IQSEC3, andRYR3 had been proposed as neuromuscular disease–associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.  相似文献   

6.
《Genetics in medicine》2018,20(4):403-410
PurposeMosaicism probably represents an underreported cause of genetic disorders due to detection challenges during routine molecular diagnostics. The purpose of this study was to evaluate the frequency of mosaicism detected by next-generation sequencing in genes associated with epilepsy-related neurodevelopmental disorders.MethodsWe conducted a retrospective analysis of 893 probands with epilepsy who had a multigene epilepsy panel or whole-exome sequencing performed in a clinical diagnostic laboratory and were positive for a pathogenic or likely pathogenic variant in one of nine genes (CDKL5, GABRA1, GABRG2, GRIN2B, KCNQ2, MECP2, PCDH19, SCN1A, or SCN2A). Parental results were available for 395 of these probands.ResultsMosaicism was most common in the CDKL5, PCDH19, SCN2A, and SCN1A genes. Mosaicism was observed in GABRA1, GABRG2, and GRIN2B, which previously have not been reported to have mosaicism, and also in KCNQ2 and MECP2. Parental mosaicism was observed for pathogenic variants in multiple genes including KCNQ2, MECP2, SCN1A, and SCN2A.ConclusionMosaic pathogenic variants were identified frequently in nine genes associated with various neurological conditions. Given the potential clinical ramifications, our findings suggest that next-generation sequencing diagnostic methods may be utilized when testing these genes in a diagnostic laboratory.  相似文献   

7.
《Genetics in medicine》2018,20(2):275-281
PurposeAs part of the Epilepsy Genetics Initiative, we re-evaluated clinically generated exome sequence data from 54 epilepsy patients and their unaffected parents to identify molecular diagnoses not provided in the initial diagnostic interpretation.MethodsWe compiled and analyzed exome sequence data from 54 genetically undiagnosed trios using a validated analysis pipeline. We evaluated the significance of the genetic findings by reanalyzing sequence data generated at Ambry Genetics, and from a number of additional case and control cohorts.ResultsIn 54 previously undiagnosed trios, we identified two de novo missense variants in SCN8A in the highly expressed alternative exon 5 A—an exon only recently added to the Consensus Coding Sequence database. One additional undiagnosed epilepsy patient harboring a de novo variant in exon 5 A was found in the Ambry Genetics cohort. Missense variants in SCN8A exon 5 A are extremely rare in the population, further supporting the pathogenicity of the de novo alterations identified.ConclusionThese results expand the range of SCN8A variants in epileptic encephalopathy patients and illustrate the necessity of ongoing reanalysis of negative exome sequences, as advances in the knowledge of disease genes and their annotations will permit new diagnoses to be made.  相似文献   

8.
PurposeBRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity.MethodsWe retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes.ResultsWe identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene–disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1.ConclusionWe report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.  相似文献   

9.
10.
《Genetics in medicine》2016,18(7):746-749
PurposeAn emerging approach in medical genetics is to identify de novo mutations in patients with severe early-onset genetic disease that are absent in population controls and in the patient’s parents. This approach, however, frequently misses post-zygotic “mosaic” mutations that are present in only a portion of the healthy parents’ cells and are transmitted to offspring.MethodsWe constructed a mosaic transmission screen for variants that have an ~50% alternative allele ratio in the proband but are significantly less than 50% in the transmitting parent. We applied it to two family-based genetic disease cohorts consisting of 9 cases of sudden unexplained death in childhood (SUDC) and 338 previously published cases of epileptic encephalopathy.ResultsThe screen identified six parental-mosaic transmissions across the two cohorts. The resultant rate of ~0.02 identified transmissions per trio is far lower than that of de novo mutations. Among these transmissions were two likely disease-causing mutations: an SCN1A mutation transmitted to an SUDC proband and her sibling with Dravet syndrome, as well as an SLC6A1 mutation in a proband with epileptic encephalopathy.ConclusionThese results highlight explicit screening for mosaic mutations as an important complement to the established approach of screening for de novo mutations.  相似文献   

11.
Sudden Unexplained Death in Childhood (SUDC), the death of a child that remains unexplained after a complete autopsy and investigation, is a rare and poorly understood entity. This case report describes a 3-year-old boy with history of language delay and ptosis, who died suddenly in his sleep without known cause. A pathogenic de novo frameshift mutation in BRPF1, a gene which has been associated with the syndrome of Intellectual Developmental Disorder with Dysmorphic Facies and Ptosis (IDDDFP), was identified during a post-mortem evaluation. The finding of a pathogenic variant in BRPF1, which has not previously been associated with sudden death, in an SUDC case has implications for this child's family and contributes to the broader field of SUDC research. This case demonstrates the utility of post-mortem genetic testing in SUDC.  相似文献   

12.
《Genetics in medicine》2017,19(10):1127-1133
PurposeSudden death in the young is a devastating complication of inherited heart disorders. Finding the precise cause of death is important, but it is often unresolved after postmortem investigation. The addition of postmortem genetic testing, i.e., the molecular autopsy, can identify additional causes of death. We evaluated DNA extracted from formalin-fixed paraffin-embedded postmortem tissue for exome sequencing–based molecular autopsy after sudden death in the young.MethodsWe collected clinical and postmortem information from patients with sudden death. Exome sequencing was performed on DNA extracted from fixed postmortem tissue. Variants relevant to the cause of death were sought.ResultsFive patients with genetically unresolved sudden death were recruited. DNA extracted from fixed postmortem tissue was degraded. Exome sequencing achieved 20-fold coverage of at least 82% of coding regions. A threefold excess of singleton variants was found in the exome sequencing data of one patient. We found a de novo SCN1A frameshift variant in a patient with sudden unexpected death in epilepsy and a LMNA nonsense variant in a patient with dilated cardiomyopathy.ConclusionDNA extracted from fixed postmortem tissue is applicable to exome sequencing–based molecular autopsy. Fixed postmortem tissues are an untapped resource for exome-based studies of rare causes of sudden death.Genet Med advance online publication 23 March 2017  相似文献   

13.
《Genetics in medicine》2019,21(3):641-649
PurposeSudden infant death syndrome (SIDS) is the commonest cause of sudden death of an infant; however, the genetic basis remains poorly understood. We aimed to identify noncardiac genes underpinning SIDS and determine their prevalence compared with ethnically matched controls.MethodsUsing exome sequencing we assessed the yield of ultrarare nonsynonymous variants (minor allele frequency [MAF] ≤0.00005, dominant model; MAF ≤0.01, recessive model) in 278 European SIDS cases (62% male; average age =2.7 ± 2 months) versus 973 European controls across 61 noncardiac SIDS-susceptibility genes. The variants were classified according to American College of Medical Genetics and Genomics criteria. Case-control, gene-collapsing analysis was performed in eight candidate biological pathways previously implicated in SIDS pathogenesis.ResultsOverall 43/278 SIDS cases harbored an ultrarare single-nucleotide variant compared with 114/973 controls (15.5 vs. 11.7%, p=0.10). Only 2/61 noncardiac genes were significantly overrepresented in cases compared with controls (ECE1, 3/278 [1%] vs. 1/973 [0.1%] p=0.036; SLC6A4, 2/278 [0.7%] vs. 1/973 [0.1%] p=0.049). There was no difference in yield of pathogenic or likely pathogenic variants between cases and controls (1/278 [0.36%] vs. 4/973 [0.41%]; p=1.0). Gene-collapsing analysis did not identify any specific biological pathways to be significantly associated with SIDS.ConclusionsA monogenic basis for SIDS amongst the previously implicated noncardiac genes and their encoded biological pathways is negligible.  相似文献   

14.
《Genetics in medicine》2020,22(11):1759-1767
PurposeCongenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes.MethodsWe evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues.ResultsAmong the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism—two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature.ConclusionsWe identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.  相似文献   

15.
《Genetics in medicine》2020,22(2):427-431
PurposeMoyamoya angiopathy (MMA) is a cerebrovascular disease characterized by occlusion of large arteries, which leads to strokes starting in childhood. Twelve altered genes predispose to MMA but the majority of cases of European descent do not have an identified genetic trigger.MethodsExome sequencing from 39 trios were analyzed.ResultsWe identified four de novo variants in three genes not previously associated with MMA: CHD4, CNOT3, and SETD5. Identification of additional rare variants in these genes in 158 unrelated MMA probands provided further support that rare pathogenic variants in CHD4 and CNOT3 predispose to MMA. Previous studies identified de novo variants in these genes in children with developmental disorders (DD), intellectual disability, and congenital heart disease.ConclusionThese genes encode proteins involved in chromatin remodeling, and taken together with previously reported genes leading to MMA-like cerebrovascular occlusive disease (YY1AP1, SMARCAL1), implicate disrupted chromatin remodeling as a molecular pathway predisposing to early onset, large artery occlusive cerebrovascular disease. Furthermore, these data expand the spectrum of phenotypic pleiotropy due to alterations of CHD4, CNOT3, and SETD5 beyond DD to later onset disease in the cerebrovascular arteries and emphasize the need to assess clinical complications into adulthood for genes associated with DD.  相似文献   

16.
《Genetics in medicine》2019,21(7):1611-1620
PurposeTo maximize the discovery of potentially pathogenic variants to better understand the diagnostic utility of genome sequencing (GS) and to assess how the presence of multiple risk events might affect the phenotypic severity in autism spectrum disorders (ASD).MethodsGS was applied to 180 simplex and multiplex ASD families (578 individuals, 213 patients) with exome sequencing and array comparative genomic hybridization further applied to a subset for validation and cross-platform comparisons.ResultsWe found that 40.8% of patients carried variants with evidence of disease risk, including a de novo frameshift variant in NR4A2 and two de novo missense variants in SYNCRIP, while 21.1% carried clinically relevant pathogenic or likely pathogenic variants. Patients with more than one risk variant (9.9%) were more severely affected with respect to cognitive ability compared with patients with a single or no-risk variant. We observed no instance among the 27 multiplex families where a pathogenic or likely pathogenic variant was transmitted to all affected members in the family.ConclusionThe study demonstrates the diagnostic utility of GS, especially for multiple risk variants that contribute to the phenotypic severity, shows the genetic heterogeneity in multiplex families, and provides evidence for new genes for follow up.  相似文献   

17.
《Genetics in medicine》2019,21(7):1568-1575
PurposeVascular Ehlers–Danlos syndrome (vEDS) is a rare inherited autosomal dominant disorder caused by COL3A1 pathogenic variants. A high percentage of de novo cases has been suggested. Part of it could be due to parental mosaicism, but its frequency is unknown.MethodsThis retrospective study included a large series of COL3A1-confirmed vEDS probands with family information. The frequency of de novo cases was evaluated and the distribution of the type of variants was compared according to the mode of inheritance. The COL3A1 mosaicism was studied by deep targeted next- generation sequencing (NGS) from parental blood DNA.ResultsOut of 177 vEDS probands, 90 had a negative family history, suggesting a high rate (50.8%) of de novo pathogenic variants, enriched in the more severe COL3A1 variants (no null variant). Among those, both parental DNA were available in 36 cases and one parental DNA in 18 cases. NGS detected only one mosaicism from maternal blood DNA (allelic ratio 18%), which was confirmed in saliva (allelic ratio 22%).ConclusionvEDS is characterized by a high frequency of de novo pathogenic variants. Parental mosaicism is rare (2–3%), but should be systematically searched with targeted NGS, taking into account its importance in genetic counseling.  相似文献   

18.
《Genetics in medicine》2019,21(12):2755-2764
PurposeHaploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants.MethodsA large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a’s role in renal development.ResultsPhenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant inDYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies inXenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not withDYRK1AR205* or DYRK1AL245R RNA.ConclusionEvidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.  相似文献   

19.
Brugada syndrome is an inherited arrhythmogenic disorder leading to sudden death predominantly in the 3–4 decade. To date the only reliable treatment is the implantation of a cardioverter defibrillator; however, better criteria for risk stratification are needed, especially for asymptomatic subjects. Brugada syndrome genetic bases have been only partially understood, accounting for <30% of patients, and have been poorly correlated with prognosis, preventing inclusion of genetic data in current guidelines. We designed an observational study to identify genetic markers for risk stratification of Brugada patients by exploratory statistical analysis. The presence of genetic variants, identified by SCN5A gene analysis and genotyping of 73 candidate polymorphisms, was correlated with the occurrence of major arrhythmic events in a cohort of 92 Brugada patients by allelic association and survival analysis. In all, 18 mutations were identified in the SCN5A gene, including 5 novel, and statistical analysis indicated that mutation carriers had a significantly increased risk of major arrhythmic events (P=0.024). In addition, we established association of five polymorphisms with major arrhythmic events occurrence and consequently elaborated a pilot risk stratification algorithm by calculating a weighted genetic risk score, including the associated polymorphisms and the presence of SCN5A mutation as function of their odds ratio. This study correlates for the first time the presence of genetic variants with increased arrhythmic risk in Brugada patients, representing a first step towards the design of a new risk stratification model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号