共查询到20条相似文献,搜索用时 11 毫秒
1.
Heng Wang M.D. Ph.D. Alicia Bright Baozhong Xin J.R. Bockoven Amy S. Paller 《American journal of medical genetics. Part A》2013,161(4):875-879
Ganglioside GM3 synthase deficiency is a rare autosomal recessive metabolic disorder characterized by infantile onset of severe irritability and epilepsy, failure to thrive, developmental stagnation, and cortical blindness. Because of the lack of easily recognizable dysmorphism and specific neurologic manifestations, identification of patients with this condition is extremely challenging. Here we report on previously undescribed pigmentary abnormalities in 20 of 38 patients with GM3 synthase deficiency. All 20 of the patients showed freckle‐like hyperpigmented macules, ranging in size from 2 to 5 mm in diameter and usually found bilaterally on the extremities, especially the dorsal aspects of the hands and feet. Seven of these patients also had depigmented macules and patches, especially on the face and extremities. These cutaneous changes were asymptomatic, and were not associated with the severity or particular phenotype of the neurologic disease. They became visible only after the first years of life with an increased incidence with advancing age. These distinct pigmentary features are not identified in 54 normal siblings, and may provide a useful clue in identifying patients with ganglioside metabolic disorders. © 2013 Wiley Periodicals, Inc. 相似文献
2.
Early growth and development impairments in patients with ganglioside GM3 synthase deficiency 下载免费PDF全文
Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GSD) causes a complete absence of GM3 and all downstream biosynthetic derivatives. The individuals affected by this disorder manifest severe irritability, intractable seizures and profound intellectual disability. However, we have found that most newborns seem symptom‐free for a period of time after birth. In order to further understand the onset of the disease, we investigated the early growth and development of patients with this condition through this study. We compared 37 affected individuals with their normal siblings and revealed that all children with GSD had relatively normal intrauterine growth and development, as their weight, length and head circumference were similar to their normal siblings at birth. However, the disease progresses quickly after birth and causes significant constitutional impairments of growth and development by 6 months of age. Neither breastfeeding nor gastrostomy tube placement made significant difference on growth and development as all groups of patients showed the similar pattern. We conclude that GSD causes significant postnatal growth and developmental impairments and the amount of gangliosides in breast milk and general nutritional intervention do not seem to alter these outcomes. 相似文献
3.
4.
Hossein Jafari Khamirani Sina Zoghi Fatemeh Faghihi Seyed Alireza Dastgheib Hamidreza Hassanipour Seyed Mohammad Bagher Tabei Sanaz Mohammadi Marjan Masoudi Shiva Poorang Elham Ehsani Mehdi Dianatpour 《European journal of medical genetics》2021,64(8):104250
ST3GAL3 deficiency is an extremely rare autosomal recessive disorder caused by pathogenic mutations in the ST3GAL3 gene. Epilepsy, motor development delay, severe intellectual disability, and behavioral disorders have been reported to be associated with ST3GAL3 deficiency. In the present study, ST3GAL3 deficiency was caused by a homozygous splice-site mutation (NM_174964.4: c.936+1delG) in ST3GAL3. The patient described in this study was clinically similar to previously reported cases; nevertheless, we were able to detect repetitive behavior, previously not reported manifestations. 相似文献
5.
Molecular characterization of 6-pyruvoyl-tetrahydropterin synthase deficiency in Japanese patients 总被引:1,自引:0,他引:1
Takuji Imamura Y. Okano Haruo Shintaku Yutaka Hase Gen Isshiki 《Journal of human genetics》1999,44(3):163-168
We identified three mutations in four Japanese patients with central type 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency.
One missense mutation was a C-to-T transition, resulting in the substitution of Pro by Ser at codon 87 (P87S) in exon 5. Another
missense mutation was a G-to-A transition, resulting in the substitution of Asp by Asn at codon 96 (D96N) in exon 5. A splicing
mutation was found by skipping of exon 4 on PTPS mRNA analysis, and a G-to-A transition at the third base of codon 81 (E81E)
and at the terminal base in exon 4 were detected on genomic PTPS DNA analysis. The E81E mutation affected the splice donor
site of exon 4 and caused the splicing error. In COS cell expression analysis, the P87S and D96N mutant constructs revealed,
respectively, 52% and 10% of wild-type activity. Patients with P87S/P87S (52%/52% in-vitro PTPS activity) exhibited 0.11 and
0 μU/g hemoglobin [Hb] in erythrocyte PTPS activity (wild-type control: 11-29 μU/gHb) erythrocyte PTPS activity, and the patient
with P87S/D96N mutations (52%/10%) had 0.97 μU/gHb in PTPS erythrocyte activity. The PTPS erythrocyte activity did not coincide
with the in-vitro PTPS activity based on patient genotype.
Received: October 27, 1998 / Accepted: December 15, 1998 相似文献
6.
Mustafa Kılıç Sevil Dorum Ali Topak Mutlu U. Yazıcı Fatih S. Ezgu Turgay Coskun 《American journal of medical genetics. Part A》2020,182(7):1608-1614
Mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase (mHS) deficiency is a very rare autosomal recessive inborn error of ketone body synthesis and presents with hypoketotic hypoglycemia, metabolic acidosis, lethargy, encephalopathy, and hepatomegaly with fatty liver precipitated by catabolic stress. We report acute presentation of two patients from unrelated two families with novel homozygous c.862C>T and c.725‐2A>C mutations, respectively, in HMGCS2 gene. Affected patients had severe hypoketotic hypoglycemia, lethargy, encephalopathy, severe metabolic and lactic acidosis and hepatomegaly after infections. Surprisingly, molecular screening of the second family showed more affected patients without clinical findings. These cases expand the clinic spectrum of this extremely rare disease. 相似文献
7.
Meret Wegler Xiangbin Jia Marielle Alders Arjan Bouman Jia Chen Xinyu Duan Julie L. Lauzon Inge B. Mathijssen Heinrich Sticht Steffen Syrbe Senwei Tan Hui Guo Rami Abou Jamra 《Genetics in medicine》2022,24(8):1761-1773
PurposeThe study aimed to investigate the role of PABPC1 in developmental delay (DD).MethodsChildren were examined by geneticists and pediatricians. Variants were identified using exome sequencing and standard downstream bioinformatics pipelines. We performed in silico molecular modeling and coimmunoprecipitation to test if the variants affect the interaction between PABPC1 and PAIP2. We performed in utero electroporation of mouse embryo brains to enlighten the function of PABPC1.ResultsWe describe 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1. Further symptoms were seizures and behavioral disorders. Molecular modeling predicted that the variants are pathogenic and would lead to decreased binding affinity to messenger RNA metabolism-related proteins, such as PAIP2. Coimmunoprecipitation confirmed this because it showed a significant weakening of the interaction between mutant PABPC1 and PAIP2. Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not.ConclusionPathogenic variants in the PABP domain lead to DD, possibly because of interference with the translation initiation and subsequently an impaired neurogenesis in cortical development. 相似文献
8.
《Genetics in medicine》2022,24(12):2464-2474
PurposeKLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.MethodsPatients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.ResultsWe studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.ConclusionOur findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity. 相似文献
9.
10.
Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Mutations in PGM3 gene have been recently shown to underlie a new congenital disorder of glycosylation often associated to elevated IgE. Herein, we report twelve PGM3 deficient patients. They belong to three highly consanguineous families, originating from a rural district in the west central Tunisia. The patient’s clinical phenotype is characterized by severe respiratory and cutaneous infections as well as developmental delay and severe mental retardation. Fourteen patients died in early infancy before diagnosis supporting the severity of the clinical phenotype.Laboratory findings revealed elevated IgE, CD4 lymphopenia and impaired T cell proliferation in most patients. Genetic analysis showed the presence, of a unique homozygous mutation (p.Glu340del) in PGM3 gene leading to reduced PGM3 abundance. Segregating analysis using fifteen polymorphic markers overlapping PGM3 gene showed that all patients inherited a common homozygous haplotype encompassing 10-Mb on chromosome 6. The founder mutational event was estimated to have occurred approximately 100 years ago.To date, (p.Glu340del) mutation represents the first founder mutation identified in PGM3 gene. These findings will facilitate the development of preventive approaches through genetic counselling and prenatal diagnosis in the affected families. 相似文献
11.
Tanja Oppliger Beat Thny Claudia Kluge Ana Matasovic Claus W. Heizmann Alberto Ponzone Marco Spada Nenad Blau 《Human mutation》1997,10(1):25-35
6-Pyruvoyl-tetrahydrobiopterin synthase (PTPS) is involved in tetrahydrobiopterin (BH4) biosynthesis, the cofactor for various enzymes including the hepatic phenylalanine hydroxylase. Inherited PTPS deficiency leads to BH4 depletion, causes hyperphenylalaninemia, and requires cofactor replacement therapy for treatment. We previously isolated the human PTPS cDNA and recently characterized its corresponding gene, PTS. Here we developed PCR-based mutation analysis with newly designed primers to detect genomic alterations and describe five mutations, four of which are novel, in the PTS gene of four Italian families with affected individuals. The mutant alleles found included three missense mutations (T67M, K129E, D136V), a previously described triplet deletion (ΔV57), and a single c–3⇒g transversion in the 3′-acceptor splice site of intron 1, leading to cryptic splice site usage that resulted in a 12 bp deletion (mutant allele Δ(K29-S32)). Except for K129E, all mutant alleles were inactive and/or unstable proteins, as shown by recombinant expression and Western blot analysis of patients' fibroblasts. The PTPS-deficient patient with the homozygous K129E allele had transient hyperphenylalaninemia, did not depend on BH4 replacement therapy, and showed normal PTPS immunoreactivity, but no enzyme activity in primary fibroblasts and red blood cells. In contrast to its inactivity in these cells, the K129E mutant was 2–3 fold more active than wild-type PTPS when transfected into COS-1 or the human hepatoma cell line Hep G2. K129E appears thus as a mutant PTPS whose activity depends on the cell type. Hum Mutat 10:25–35, 1997. © 1997 Wiley-Liss, Inc. 相似文献
12.
Mónica Ramos Sebastián Menao María Arnedo Beatriz Puisac María Concepción Gil-Rodríguez María Esperanza Teresa-Rodrigo María Hernández-Marcos Germaine Pierre Uma Ramaswami Carolina Baquero-Montoya Gloria Bueno Cesar Casale Fausto G. Hegardt Paulino Gómez-Puertas Juan Pié 《European journal of medical genetics》2013,56(8):411-415
Mitochondrial HMG-CoA synthase deficiency is a rare inherited metabolic disorder that affects ketone-body synthesis. Acute episodes include vomiting, lethargy, hepatomegaly, hypoglycaemia, dicarboxylic aciduria, and in severe cases, coma. This deficiency may have been under-diagnosed owing to the absence of specific clinical and biochemical markers, limitations in liver biopsy and the lack of an effective method of expression and enzyme assay for verifying the mutations found. To date, eight patients have been reported with nine allelic variants of the HMGCS2 gene. We present a new method of enzyme expression and a modification of the activity assay that allows, for first time, the functional study of missense mutations found in patients with this deficiency. Four of the missense mutations (p.V54M, p.R188H, p.G212R and p.G388R) did not produce proteins that could have been detected in soluble form by western blot; three produced a total loss of activity (p.Y167C, p.M307T and p.R500H) and one, variant p.F174L, gave an enzyme with a catalytic efficiency of 11.5%. This indicates that the deficiency may occur with partial loss of activity of enzyme. In addition, we describe a new patient with this deficiency, in which we detected the missense allelic variant, c.1162G>A (p.G388R) and the nonsense variant c.1270C>T (p.R424X). 相似文献
13.
14.
《Genetics in medicine》2023,25(2):100323
PurposePathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified.MethodsChromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes.ResultsIn total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect.ConclusionHECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome. 相似文献
15.
《European journal of medical genetics》2019,62(12):103586
Autism spectrum disorders are complex neurodevelopmental syndromes characterized by phenotypic and genetic heterogeneity. Further identification of causal genes may help in better understanding the underlying mechanisms of the disorder, thus improving the patients’ management. To date, abnormal synaptogenesis is thought to be one of the major underlying causes of autism spectrum disorders.Here, using oligoarray-based comparative genomic hybridization, we identified a de novo deletion at 2q37.2 locus spanning 1 Mb and encompassing AGAP1 and SH3BP4, in a boy with autism and intellectual disability. Both genes have been described as being involved in endosomal trafficking, and AGAP1 in particular has been shown to be expressed in the developing brain and to play a role in dendritic spine formation and synapse function, making it a potential causative gene to our patient's phenotype. 相似文献
16.
《European journal of medical genetics》2021,64(12):104373
Intellectual disability (ID) often co-occurs with other neurologic phenotypes making molecular diagnosis more challenging particularly in consanguineous populations with the co-segregation of more than one ID-related gene in some cases.In this study, we investigated the phenotype of three patients from a large Tunisian family with significant ID phenotypic variability and microcephaly and performed a clinical exome sequencing in two cases. We identified, within the first branch, a homozygous variant in the TRAPPC9 gene (p.Arg472Ter) in two cases presenting severe ID, absent speech, congenital/secondary microcephaly in addition to autistic features, supporting the implication of TRAPPC9 in the “secondary” autism spectrum disorders and congenital microcephaly. In the second branch, we identified a homozygous variant (p.Lys189ArgfsTer15) in the CDK5RAP2 gene associated with an heterozygous TRAPPC9 variant (p.Arg472Ter) in one case harbouring primary hereditary microcephaly (MCPH) associated with an inter-hypothalamic adhesion, mixed hearing loss, selective thinning in the retinal nerve fiber layer and parafoveal ganglion cell complex, and short stature. Our findings expand the spectrum of the recently reported neurosensorial abnormalities and revealed the variable phenotype expressivity of CDK5RAP2 defect. Our study highlights the complexity of the genetic background of microcephaly/ID and the efficiency of the exome sequencing to provide an accurate diagnosis and to improve the management and follow-up of such patients. 相似文献
17.
18.
Silvia Radenkovic Diego Martinelli Yuebo Zhang Graeme J. Preston Arianna Maiorana Alessandra Terracciano Maria Lisa Dentici Elisa Pisaneschi Antonio Novelli Wasantha Ranatunga Anna N. Ligezka Bart Ghesquière David R. Deyle Tamas Kozicz Filippo Pinto e Vairo Peter Witters Eva Morava 《Genetics in medicine》2022,24(4):894-904
PurposeTRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities.MethodsExome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients’ blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics.ResultsAll 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites.ConclusionWe identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease. 相似文献
19.
《European journal of medical genetics》2020,63(4):103850
The Jumonji domain containing 1C (JMJD1C) gene encodes the Jumonji domain-containing protein 1C (JMJD1C) and is a member of the jmJC domain-containing protein family involved in histone demethylation that is expressed in the brain. We report seven, unrelated patients with developmental delays or intellectual disability and heterozygous, de novo sequence variants in JMJD1C. All patients had developmental delays, but there were no consistent additional findings. Two patients were reported to have seizures for which there was no other identified cause. De novo, deleterious sequence variants in JMJD1C have previously been reported in patients with autism spectrum disorder and a phenotype resembling classical Rett syndrome, but only one JMJD1C variant has undergone functional evaluation. In all of the seven patients in this report, there was a plausible, alternative explanation for the neurocognitive phenotype or a modifying factor, such as an additional potentially pathogenic variant, presence of the variant in a population database, heteroplasmy for a mitochondrial variant or mosaicism for the JMJD1C variant. Although the de novo variants in JMJD1C are likely to be relevant to the developmental phenotypes observed in these patients, we conclude that further data supporting the association of JMJD1C variants with intellectual disability is still needed. 相似文献