首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the relationship of arsenic-associated skin lesions and degree of arsenic exposure, a cross-sectional study was conducted in Bangladesh, where a large part of the population is exposed through drinking water. Four villages in Bangladesh were identified as mainly dependent on wells contaminated with arsenic. We interviewed and examined 1,481 subjects [Greater/equal to] 30 years of age in these villages. A total of 430 subjects had skin lesions (keratosis, hyperpigmentation, or hypopigmentation). Individual exposure assessment could only be estimated by present levels and in terms of a dose index, i.e., arsenic levels divided by individual body weight. Arsenic water concentrations ranged from 10 to 2,040 microg/L, and the crude overall prevalence rate for skin lesions was 29/100. After age adjustment to the world population the prevalence rate was 30. 1/100 and 26.5/100 for males and females, respectively. There was a significant trend for the prevalence rate both in relation to exposure levels and to dose index (p < 0.05), regardless of sex. This study shows a higher prevalence rate of arsenic skin lesions in males than females, with clear dose-response relationship. The overall high prevalence rate in the studied villages is an alarming sign of arsenic exposure and requires an urgent remedy.  相似文献   

2.
OBJECTIVE: Arsenic concentrations in 25% of tube wells in Bangladesh exceed 50 microg/L, a level known to be hazardous. Levels in individual wells vary widely. We gathered data on arsenic exposure levels and skin lesion prevalence to address the lack of knowledge about risks where the average arsenic concentrations was lower. METHODS: The nongovernmental organization Gonoshasthaya Kendra did three related studies of keratotic skin lesions since 2004: (1) an ecological prevalence survey among 13 705 women aged > 18 in a random sample of 53 villages; (2) a case-control study of 176 cases and age- and village-matched referents; and (3) a prevalence survey of the entire population of 11,670 in two additional villages. We calculated prevalence as a function of average arsenic concentrations as reported in the National Hydrochemical Survey, and measured arsenic concentrations in wells used by subjects in the case-control study. FINDINGS: The prevalence of skin lesions was 0.37% in people exposed to arsenic concentrations below 5 microg/L, 0.63% at 6-50 microg/L, and 6.84% at 81 microg/L. In the case-control analysis, relative risk of skin lesions increased threefold at concentrations above 50 microg/L (P < 0.05). CONCLUSION: Little serious skin disease is likely to occur if the arsenic concentration in drinking water is kept below 50 microg/L, but ensuring this water quality will require systematic surveillance and reliable testing of all wells, which may be impractical. More research is needed on feasible prevention of toxic effects from arsenic exposure in Bangladesh.  相似文献   

3.
OBJECTIVES: Exposure to arsenic causes keratosis, hyperpigmentation, and hypopigmentation and seemingly also diabetes mellitus, at least in subjects with skin lesions. Here we evaluate the relations of arsenical skin lesions and glucosuria as a proxy for diabetes mellitus. METHODS: Through existing measurements of arsenic in drinking water in Bangladesh, wells with and without arsenic contamination were identified. Based on a questionnaire, 1595 subjects > or = 30 years of age were interviewed; 1481 had a history of drinking water contaminated with arsenic whereas 114 had not. Time weighted mean arsenic concentrations and mg-years/l of exposure to arsenic were estimated based on the history of consumption of well water and current arsenic concentrations. Urine samples from the study subjects were tested by means of a glucometric strip. People with positive tests were considered to be cases of glucosuria. RESULTS: A total of 430 (29%) of the exposed people were found to have skin lesions. Corresponding to drinking water with < 0.5, 0.5-1.0, and > 1.0 mg/l of arsenic, and with the 114 unexposed subjects as the reference, the prevalence ratios for glucosuria, as adjusted for age and sex, were 0.8, 1.4, and 1.4 for those without skin lesions, and 1.1, 2.2, and 2.6 for those with skin lesions. Taking exposure as < 1.0, 1.0-5.0, > 5.0-10.0 and > 10.0 mg- years/l of exposure to arsenic the prevalence ratios, similarly adjusted, were 0.4, 0.9, 1.2, and 1.7 for those without and 0.8, 1.7, 2.1, and 2.9 for those with skin lesions. All series of risk estimates were significant for trend, (p < 0.01). CONCLUSIONS: The results suggest that skin lesions and diabetes mellitus, as here indicated by glucosuria, are largely independent effects of exposure to arsenic although glucosuria had some tendency to be associated with skin lesions. Importantly, however, glucosuria (diabetes mellitus) may occur independently of skin lesions.

 

  相似文献   

4.
Millions of persons around the world are exposed to low doses of arsenic through drinking water. However, estimates of health effects associated with low-dose arsenic exposure have been extrapolated from high-dose studies. In Bangladesh, many persons have been exposed to a wide range of doses of arsenic from drinking water over a significant period of time. The authors evaluated dose-response relations between arsenic exposure from drinking water and premalignant skin lesions by using baseline data on 11,746 participants recruited in 2000-2002 for the Health Effects of Arsenic Longitudinal Study in Araihazar, Bangladesh. Several measures of arsenic exposure were estimated for each participant based on well-water arsenic concentration and usage pattern of the wells and on urinary arsenic concentration. In different regression models, consistent dose-response effects were observed for all arsenic exposure measures. Compared with drinking water containing <8.1 microg/liter of arsenic, drinking water containing 8.1-40.0, 40.1-91.0, 91.1-175.0, and 175.1-864.0 microg/liter of arsenic was associated with adjusted prevalence odds ratios of skin lesions of 1.91 (95% confidence interval (CI): 1.26, 2.89), 3.03 (95% CI: 2.05, 4.50), 3.71 (95% CI: 2.53, 5.44), and 5.39 (95% CI: 3.69, 7.86), respectively. The effect seemed to be influenced by gender, age, and body mass index. These findings provide information that should be considered in future research and policy decisions.  相似文献   

5.
BACKGROUND: Chronic arsenic exposure causes a wide range of health effects, but little is known about critical windows of exposure. Arsenic readily crosses the placenta, but the few available data on postnatal exposure to arsenic via breast milk are not conclusive. AIM: Our goal was to assess the arsenic exposure through breast milk in Bangladeshi infants, living in an area with high prevalence of arsenic-rich tube-well water. METHODS: We analyzed metabolites of inorganic arsenic in breast milk and infant urine at 3 months of age and compared them with detailed information on breast-feeding practices and maternal arsenic exposure, as measured by concentrations in blood, urine, and saliva. RESULTS: Arsenic concentrations in breast-milk samples were low (median, 1 microg/kg; range, 0.25-19 microg/kg), despite high arsenic exposures via drinking water (10-1,100 microg/L in urine and 2-40 microg/L in red blood cells). Accordingly, the arsenic concentrations in urine of infants whose mothers reported exclusive breast-feeding were low (median, 1.1 microg/L; range, 0.3-29 microg/L), whereas concentrations for those whose mothers reported partial breast-feeding ranged from 0.4 to 1,520 microg/L (median 1.9 microg/L). The major part of arsenic in milk was inorganic. Still, the infants had a high fraction (median, 87%) of the dimethylated arsenic metabolite in urine. Arsenic in breast milk was associated with arsenic in maternal blood, urine, and saliva. CONCLUSION: Very little arsenic is excreted in breast milk, even in women with high exposure from drinking water. Thus, exclusive breast-feeding protects the infant from exposure to arsenic.  相似文献   

6.
BACKGROUND: The objective of this population-based case-referent study in Matlab, Bangladesh, was to assess the susceptibility to arsenic-induced skin lesions by age and sex, in a population drinking water from As-contaminated tube wells. METHODS: Identification of As-related skin lesions was carried out in three steps: a) screening of the entire population > 4 years of age (n = 166,934) by trained field teams; b) diagnosis of suspected As-related cases by physicians; and c) confirmation by experts based on physicians' records and photographs. A total of 504 cases with skin lesions were confirmed. We randomly selected 2,201 referents from the Matlab health and demographic surveillance system; 1,955 were eligible, and 1,830 (94%) were available for participation in the study. Individual history of As exposure was based on information obtained during interviews and included all drinking-water sources used since 1970 and concentrations of As (assessed by atomic absorption spectrophotometry) in all the tube wells used. RESULTS: Cases had been exposed to As more than referents (average exposure since 1970: male cases, 200 microg/L; female cases, 211 microg/L; male referents, 143 microg/L; female referents, 155 microg/L). We found a dose-response relationship for both sexes (p < 0.001) and increased risk with increasing socioeconomic status. Males had a higher risk of obtaining skin lesions than females (odds ratio 10.9 vs. 5.78) in the highest average exposure quintile (p = 0.005). Start of As exposure (cumulative exposure) before 1 year of age was not associated with higher risk of obtaining skin lesions compared to start of As exposure later in life. CONCLUSIONS: The results demonstrate that males are more susceptible than females to develop skin lesions when exposed to As in water from tube wells.  相似文献   

7.
BACKGROUND: The risk of skin lesions associated with arsenic exposure from drinking water in Bangladesh is considerably greater in men than in women. METHODS: Using baseline data from 11,062 cohort members in the Health Effects of Arsenic Longitudinal Study in Araihazar, Bangladesh, we performed a cross-sectional analysis to evaluate whether the association between arsenic exposure from drinking water and the risk of skin lesions is modified by tobacco smoking, excessive sunlight, the use of fertilizer, and the use of pesticides. A time-weighted well arsenic concentration was estimated for each participant by incorporating history of well use. Relative excess risk for interaction (RERI) and its 95% confidence intervals (CIs) were estimated using adjusted prevalence odds ratios. RESULTS: We observed a synergistic effect between the highest level of arsenic exposure (> 113 microg/L) and tobacco smoking on risk of skin lesions in men (RERI = 1.5 [95% CI = 0.3 to 2.7] overall and 1.7 [0.2 to 3.4] for the subpopulation with longer-term arsenic exposure). We also observed suggestive synergistic effects between higher levels (28.1-113.0 microg/L and 113.1-864.0 microg/L) of arsenic exposure and fertilizer use in men (RERI = 1.0 [-0.2 to 2.2] and 1.3 [-0.2 to 2.9] respectively). Furthermore, the risk of skin lesions associated with any given level of arsenic exposure was greater in men with excessive sun exposure. The patterns of effect estimates in women indicate similar-but-weaker interaction effects of arsenic exposure with tobacco smoking and fertilizer use. CONCLUSIONS: These findings help explain why the risk of arsenic-related skin lesions was much greater in men than in women in Bangladesh. Because most arsenic-induced skin cancers arise from these skin lesions, treatment and remediation plans should take into consideration these etiologic cofactors.  相似文献   

8.
Arsenic in drinking water causes a widespread concern in Bangladesh, where a major proportion of tube wells is contaminated. Arsenic ingestion causes skin lesions, which is considered as definite exposure. A prevalence comparison study of respiratory effects among subjects with and without arsenic exposure through drinking water was conducted in Bangladesh. Exposed participants were recruited through health awareness campaign programs. Unexposed participants were randomly selected, where tubewells were not contaminated with arsenic. A total of 169 individuals participated (44 exposed individuals exhibiting skin lesions; 125 unexposed individuals). The arsenic concentrations ranged from 136 to 1000 micro g l(-1). The information regarding respiratory system signs and symptoms were also collected and the analyses were confined to nonsmokers. The crude prevalence ratio for chronic bronchitis and chronic cough amounted to 2.1 (95% CI 0.7-6.1). The prevalence ratios for chronic bronchitis increased with increasing exposure, i.e., 1.0, 1.6, 2.7 and 2.6 using unexposed as the reference. The prevalence ratios for chronic cough were 1.0, 1.6, 2.7 and 2.6 for the exposure categories, using the same unexposed as the reference. The dose-response trend was the same (P < 0.1) for both conditions. These results add to evidence that long-term ingestion of arsenic exposure can cause respiratory effects.  相似文献   

9.
BACKGROUND: A large population in West Bengal, India has been exposed to naturally occurring inorganic arsenic through their drinking water. A cross-sectional survey involving 7683 participants of all ages was conducted in an arsenic-affected region between April 1995 and March 1996. The main focus of the study was skin keratoses and pigmentation alterations, two characteristic signs of ingested inorganic arsenic. Strong exposure-response gradients were found for these skin lesions. The study also collected limited information concerning respiratory system signs and symptoms, which we report here because increasing evidence suggests that arsenic ingestion also causes pulmonary effects. METHODS: Participants were clinically examined and interviewed, and the arsenic content in their current primary drinking water source was measured. There were few smokers and analyses were confined to non-smokers (N = 6864 participants). RESULTS: Among both males and females, the prevalence of cough, shortness of breath, and chest sounds (crepitations and/or rhonchi) in the lungs rose with increasing arsenic concentrations in drinking water. These respiratory effects were most pronounced in individuals with high arsenic water concentrations who also had skin lesions. Prevalence odds ratio (POR) estimates were markedly increased for participants with arsenic-induced skin lesions who also had high levels of arsenic in their current drinking water source (> or = 500 microg/l) compared with individuals who had normal skin and were exposed to low levels of arsenic (<50 microg/l). In participants with skin lesions, the age-adjusted POR estimates for cough were 7.8 for females (95% CI : 3.1-19.5) and 5.0 for males (95% CI : 2.6-9.9); for chest sounds POR for females was 9.6 (95% CI : 4.0-22.9) and for males 6.9 (95% CI : 3.1-15.0). The POR for shortness of breath in females was 23.2 (95% CI : 5.8-92.8) and in males 3.7 (95% CI : 1.3-10.6). CONCLUSION: These results add to evidence that long-term ingestion of inorganic arsenic can cause respiratory effects.  相似文献   

10.
BACKGROUND: Over 6 million people live in areas of West Bengal, India, where groundwater sources are contaminated with naturally occurring arsenic. The key objective of this nested case-control study was to characterize the dose-response relation between low arsenic concentrations in drinking water and arsenic-induced skin keratoses and hyperpigmentation. METHODS: We selected cases (persons with arsenic-induced skin lesions) and age- and sex-matched controls from participants in a 1995-1996 cross-sectional survey in West Bengal. We used a detailed assessment of arsenic exposure that covered at least 20 years. Participants were reexamined between 1998 and 2000. Consensus agreement by four physicians reviewing the skin lesion photographs confirmed the diagnosis in 87% of cases clinically diagnosed in the field. RESULTS: The average peak arsenic concentration in drinking water was 325 microg/liter for cases and 180 microg/liter for controls. The average latency for skin lesions was 23 years from first exposure. We found strong dose-response gradients with both peak and average arsenic water concentrations. CONCLUSIONS: The lowest peak arsenic ingested by a confirmed case was 115 microg/liter. Confirmation of case diagnosis and intensive longitudinal exposure assessment provide the basis for a detailed dose-response evaluation of arsenic-caused skin lesions.  相似文献   

11.
A large number of drinking water supplies worldwide have greater than 50 microg l(- 1) inorganic arsenic in drinking water, and there is increasing pressure to reduce concentrations. Few studies have specifically considered low concentrations of arsenic in water supplies and the significance of other factors which may contribute to increased exposure. This study aimed to investigate risk factors for increased urinary inorganic arsenic concentrations, in a population exposed to 10 - 100 microg l(- 1) of arsenic in drinking water, as well as a control population with lower arsenic concentrations in their drinking water. Inorganic arsenic in urine was used as the measure of exposure. The median drinking water arsenic concentration in the exposed population was 43.8 microg l(- 1) (16.0 - 73 microg l(- 1)) and less than the analytical limit of detection of 1 microg l(- 1) (相似文献   

12.
BACKGROUND: Arsenic is a unique human carcinogen in that it causes lung cancer by exposure through ingestion (in drinking water) as well as through inhalation. Less is known about nonmalignant pulmonary disease after exposure to arsenic in drinking water. METHODS: We recruited 108 subjects with arsenic-caused skin lesions and 150 subjects without lesions from a population survey of over 7000 people in an arsenic-exposed region in West Bengal, India. Thirty-eight study participants who reported at least 2 years of chronic cough underwent high-resolution computed tomography (CT); these scans were read by investigators in India and the United States without knowledge of the presence or absence of skin lesions. RESULTS: The mean (+/-standard deviation) bronchiectasis severity score was 3.4 (+/-3.6) in the 27 participants with skin lesions and 0.9 (+/-1.6) in the 11 participants without these lesions. In subjects who reported chronic cough, CT evidence of bronchiectasis was found in 18 (67%) participants with skin lesions and 3 (27%) subjects without skin lesions. Overall, subjects with arsenic-caused skin lesions had a 10-fold increased prevalence of bronchiectasis compared with subjects who did not have skin lesions (adjusted odds ratio=10; 95% confidence interval=2.7-37). CONCLUSIONS: These results suggest that, in addition to being a cause of lung cancer, ingestion of high concentrations of arsenic in drinking water may be a cause of bronchiectasis.  相似文献   

13.
OBJECTIVE: Arsenic is associated with numerous health effects. We investigated the association between arsenic exposure from drinking water and anemia during pregnancy. METHODS: We conducted a prospective cohort pregnancy study in two Chilean cities with contrasting drinking water arsenic levels: 40 microg/L versus <1 microg/L. This analysis included 810 women who gave birth to live, singleton infants and had at least one hemoglobin determination during pregnancy. RESULTS: Arsenic exposed women were more likely to be anemic during pregnancy after adjusting for other factors. Furthermore, as pregnancy progressed, the prevalence of anemia rose more sharply among those in the exposed versus unexposed city: 49% versus 17%. CONCLUSION: This study suggests an association between moderate arsenic in drinking water and anemia during pregnancy. Further research is needed to identify the specific types of anemia underlying the association.  相似文献   

14.
It has been suggested that the indigenous Atacame?o people in Northern Chile might be protected from the health effects of arsenic in drinking water because of many centuries of exposure. Here we report on the first intensive investigation of arsenic-induced skin lesions in this population. We selected 11 families (44 participants) from the village of Chiu Chiu, which is supplied with water containing between 750 and 800 microg/L inorganic arsenic. For comparison, 8 families (31 participants) were also selected from a village where the water contains approximately 10 microg/L inorganic arsenic. After being transported to the nearest city for blind assessment, participants were examined by four physicians with experience in studying arsenic-induced lesions. Four of the six men from the exposed village, who had been drinking the contaminated water for more than 20 years, were diagnosed with skin lesions due to arsenic, but none of the women had definite lesions. A 13-year-old girl had definite skin pigmentation changes due to arsenic, and a 19-year-old boy had both pigmentation changes and keratoses on the palms of his hands and the soles of his feet. Family interviews identified a wide range of fruits and vegetables consumed daily by the affected participants, as well as the weekly intake of red meat and chicken. However, the prevalence of skin lesions among men and children in the small population studied was similar to that reported with corresponding arsenic drinking water concentrations in both Taiwan and West Bengal, India--populations in which extensive malnutrition has been thought to increase susceptibility.  相似文献   

15.
Although genetic polymorphisms have been shown to explain some of the large variation observed in the metabolism of inorganic arsenic there may be several other factors playing an important role, e.g. nutrition. The objective of this study was to elucidate the influence of various factors on current arsenic exposure and metabolism in Matlab, a rural area in Bangladesh, where elevated water arsenic concentrations and malnutrition are prevalent. In total 1571 individuals, randomly selected from all inhabitants above 5 years of age, were investigated by measuring arsenic in urine and drinking water. In a subset of 526 randomly selected individuals, arsenic metabolites were speciated using HPLC coupled to inductively coupled plasma mass spectrometry (HPLC-HG-ICPMS). A significant association was observed between arsenic in urine and drinking water (R2=0.41). The contribution to urinary arsenic from arsenic exposure from food and other water sources was calculated to be almost 50microg/L. The individuals in the present study had remarkably efficient methylation, in spite of high exposure and prevalence of malnutrition. Gender and age were major factors influencing arsenic metabolism in this population with a median of 77microg/L of arsenic in urine (range: 0.5-1994microg/L). Women had higher arsenic methylation efficiency than men, but only in childbearing age, supporting an influence of sex hormones. Overall, exposure level of arsenic, gender and age explained at most 30% of the variation in the present study, indicating that genetic polymorphisms are the most important factor influencing the metabolism of inorganic arsenic.  相似文献   

16.
The objective of this study was to determine arsenic exposure via drinking water and to characterize urinary arsenic excretion among adults in the Yaqui Valley, Sonora, Mexico. A cross-sectional study was conducted from July 2001 to May 2002. Study subjects were from the Yaqui Valley, Sonora, Mexico, residents of four towns with different arsenic concentrations in their drinking water. Arsenic exposure was estimated through water intake over 24 h. Arsenic excretion was assessed in the first morning void urine. Total arsenic concentrations and their species arsenate (As V), arsenite (As III), monomethyl arsenic (MMA), and dimethyl arsenic (DMA) were determined by HPLC/ICP-MS. The town of Esperanza with the highest arsenic concentration in water had the highest daily mean intake of arsenic through drinking water, the mean value was 65.5 microg/day. Positive correlation between total arsenic intake by drinking water/day and the total arsenic concentration in urine (r = 0.50, P < 0.001) was found. Arsenic excreted in urine ranged from 18.9 to 93.8 microg/L. The people from Esperanza had the highest geometric mean value of arsenic in urine, 65.1 microg/L, and it was statistically significantly different from those of the other towns (P < 0.005). DMA was the major arsenic species in urine (47.7-67.1%), followed by inorganic arsenic (16.4-25.4%), and MMA (7.5-15%). In comparison with other reports the DMA and MMA distribution was low, 47.7-55.6% and 7.5-9.7%, respectively, in the urine from the Yaqui Valley population (except the town of Cocorit). The difference in the proportion of urinary arsenic metabolites in those towns may be due to genetic polymorphisms in the As methylating enzymes of these populations.  相似文献   

17.
OBJECTIVE: To reveal the inter-relationship between nutritional status and arsenic toxicity. DESIGN: Cross-sectional study. SETTING: A survey in an area of lowland Nepal, where a high prevalence of both skin manifestation and malnutrition was observed. Daily arsenic intake was estimated by measuring the arsenic concentration and daily consumption of the drinking water. PARTICIPANTS: Adult villagers (248 men and 291 women). About half were classified as "underweight" (body mass index <18.5), indicating poor nutritional status. MAIN RESULTS: Arsenic intake was negatively correlated with body mass index and substantially increased the prevalence of underweight individuals, among whom the prevalence of skin manifestations was 1.65-fold higher than normal weight individuals. When exposure level was considered, the prevalence of skin symptoms was consistently higher in the underweight than in the normal group. Although enhanced susceptibility in men was apparent by the increased prevalence of cutaneous symptoms, no sex difference was observed in the prevalence of underweight individuals related with exposure to arsenic. CONCLUSIONS: The present data suggested that exposure to arsenic is associated with an increased prevalence of underweight, a serious health problem in developing countries, which in turn is associated with increased skin manifestation of arsenic poisoning.  相似文献   

18.
Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.  相似文献   

19.
This study was designed to assess the effects of exposure to arsenic in drinking water on visual and vibrotactile function in residents of the Bamen region of Inner Mongolia, China. Arsenic was measured by hydride generation atomic fluorescence. 321 participants were divided into three exposure groups- low (non-detectable-20), medium (100-300) and high (400-700 microg/l) arsenic in drinking water (AsW). Three visual tests were administered: acuity, contrast sensitivity and color discrimination (Lanthony's Desaturated 15 Hue Test). Vibration thresholds were measured with a vibrothesiometer. Vibration thresholds were significantly elevated in the high exposure group compared to other groups. Further analysis using a spline regression model suggested that the threshold for vibratory effects is between 150-170 microg/l AsW. These findings provide the first evidence that chronic exposure to arsenic in drinking water impairs vibrotactile thresholds. The results also indicate that arsenic affects neurological function well below the 1000 microg/I concentration reported by NRC (1999). No evidence of arsenic-related effects on visual function was found.  相似文献   

20.
Arsenic in drinking-water and risk for cancer in Denmark   总被引:1,自引:0,他引:1  
BACKGROUND: Arsenic is a well-known carcinogen, which is often found in drinking-water. Epidemiologic studies have shown increased cancer risks among individuals exposed to high concentrations of arsenic in drinking-water, whereas studies of the carcinogenic effect of low doses have had inconsistent results. OBJECTIVE: Our aim was to determine if exposure to low levels of arsenic in drinking-water in Denmark is associated with an increased risk for cancer. METHODS: The study was based on a prospective Danish cohort of 57,053 persons in the Copenhagen and Aarhus areas. Cancer cases were identified in the Danish Cancer Registry, and the Danish civil registration system was used to trace and geocode residential addresses of the cohort members. We used a geographic information system to link addresses with water supply areas, then estimated individual exposure to arsenic using residential addresses back to 1970. Average exposure for the cohort ranged between 0.05 and 25.3 microg/L (mean = 1.2 microg/L). Cox's regression models were used to analyze possible relationships between arsenic and cancer. RESULTS: We found no significant association between exposure to arsenic and risk for cancers of the lung, bladder, liver, kidney, prostate, or colorectum, or melanoma skin cancer; however, the risk for non-melanoma skin cancer decreased with increasing exposure (incidence rate ratio = 0.88/microg/L average exposure; 95% confidence interval, 0.84-0.94). Results adjusted for enrollment area showed no association with non-melanoma skin cancer. CONCLUSIONS: The results indicate that exposure to low doses of arsenic might be associated with a reduced risk for skin cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号