首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Toll-like receptor 4 (TLR4) has been identified as a transmembrane protein involved in the host innate immune response to gram-negative bacterial lipopolysaccharide (LPS). Upon activation by LPS recognition, the TIR domain of TLR4 signals through MyD88 to activate the nuclear factor kappa B (NF-kappa B) pathway, a critical regulator of many proinflammatory genes, including interleukin-8 (IL-8). Emerging evidence suggests that reactive oxygen species (ROS) can contribute to diverse signaling pathways, including the LPS-induced cascade. In the present study we investigated the role of ROS in TLR-mediated signaling. Purified Escherichia coli LPS, a highly specific TLR4 agonist, elicited an oxidative burst in the monocyte-like cell line THP-1 in a time- and dose-dependent manner. This oxidative burst was shown to be dependent on the presence of TLR4 through transfection studies in HEK cells, which do not normally express this protein, and with bone marrow-derived macrophages from C3H/HeJ mice, which express a mutated TLR4 protein. LPS-stimulated IL-8 expression could be blocked by the antioxidants N-acetyl-L-cysteine and dimethyl sulfoxide at both the protein and mRNA levels. These antioxidants also blocked LPS-induced IL-8 promoter transactivation as well as the nuclear translocation of NF-kappa B. These data provide evidence that ROS regulate immune signaling through TLR4 via their effects on NF-kappa B activation.  相似文献   

2.
3.
Fc receptor (FcR)-mediated phagocytosis requires activation of the Rho GTPases Cdc42 and Rac1, but how they are recruited to the FcR is unknown. Here we show that the calcium-promoted Ras inactivator (CAPRI), a Ras GTPase-activating protein, functions as an adaptor for Cdc42 and Rac1 during FcR-mediated phagocytosis. CAPRI-deficient macrophages had impaired FcgammaR-mediated phagocytosis and oxidative burst, as well as defective activation of Cdc42 and Rac1. CAPRI interacted constitutively with both Cdc42 and Rac1 and translocated to phagocytic cups during FcgammaR-mediated phagocytosis. CAPRI-deficient mice had an impaired innate immune response to bacterial infection. These results suggest that CAPRI provides a link between FcgammaR and Cdc42 and Rac1 and is essential for innate immune responses.  相似文献   

4.
PI3K and negative regulation of TLR signaling   总被引:10,自引:0,他引:10  
Excessive immune responses are detrimental to the host and negative feedback regulation is crucial for the maintenance of immune-system integrity. Recent studies have shown that phosphoinositide 3-kinase (PI3K) is an endogenous suppressor of interleukin-12 (IL-12) production triggered by Toll-like receptor (TLR) signaling and limits excessive Th1 polarization. Unlike IRAK-M (IL-1 receptor-associated kinase-M) and SOCS-1 (suppressor of cytokine signaling-1) that are induced by TLR signaling and function during the second or continuous exposure to stimulation, PI3K functions at the early phase of TLR signaling and modulates the magnitude of the primary activation. Thus, PI3K, IRAK-M and SOCS-1 have unique roles in the gate-keeping system, preventing excessive innate immune responses.  相似文献   

5.
6.
Toll-like receptor (TLR) signals that initiate innate immune responses to pathogens must be tightly regulated to prevent excessive inflammatory damage to the host. The adaptor protein Mal is specifically involved in signaling via TLR2 and TLR4. We demonstrate here that after TLR2 and TLR4 stimulation Mal becomes phosphorylated by Bruton's tyrosine kinase (Btk) and then interacts with SOCS-1, which results in Mal polyubiquitination and subsequent degradation. Removal of SOCS-1 regulation potentiates Mal-dependent p65 phosphorylation and transactivation of NF-kappaB, leading to amplified inflammatory responses. These data identify a target of SOCS-1 that regulates TLR signaling via a mechanism distinct from an autocrine cytokine response. The transient activation of Mal and subsequent SOCS-1-mediated degradation is a rapid and selective means of limiting primary innate immune response.  相似文献   

7.
Macrophages, as sentinels of robust host immunity, are key regulators of innate immune responses against invading mycobacteria; however, pathogenic mycobacteria survive in the infected host by subverting host innate immunity. Infection dependent expression of early secreted antigenic target protein 6 (ESAT-6) by Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. As a part of multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) may act as an important influencing factor towards effective host immunity. In the current investigation, we demonstrate that ESAT-6 triggers COX-2 expression both in vitro and in vivo in a TLR2 dependent manner. Signaling perturbation data suggest that signaling dynamics of PI3K and p38 and JNK1/2 MAPK assume critical importance in ESAT-6 triggered expression of COX-2 in macrophages. Interestingly, ESAT-6 triggered PI3K-MAPK signaling axis holds the capacity to regulate coordinated activation of NF-κB and AP-1. Overall, current investigation provides mechanistic insights into ESAT-6 induced COX-2 expression and unravels TLR2 mediated interplay of PI3K and MAPK signaling axis as a rate-determining step during intricate host immune responses. These findings would serve as a paradigm to understand pathogenesis of mycobacterial infection and clearly pave a way towards development of novel therapeutics.  相似文献   

8.
9.
TRAIL-R as a negative regulator of innate immune cell responses   总被引:13,自引:0,他引:13  
Diehl GE  Yue HH  Hsieh K  Kuang AA  Ho M  Morici LA  Lenz LL  Cado D  Riley LW  Winoto A 《Immunity》2004,21(6):877-889
TRAIL receptor (TRAIL-R) signaling has been implicated in inducing apoptosis in tumor cells, but little is understood about its physiological function. Here, we report the generation and characterization of TRAIL-R(-/-) mice, which develop normal lymphocyte populations but possess enhanced innate immune responses. TRAIL-R(-/-) mice exhibited increased clearance of murine cytomegalovirus that correlated with increased levels of IL-12, IFN-alpha, and IFN-gamma. Stimulation of macrophages with Mycobacterium and Toll-like receptor (TLR)-2, -3, and -4, but not TLR9, ligands resulted in high levels of TRAIL upregulation and enhanced cytokine production in TRAIL-R(-/-) cells. The immediate-early TLR signaling events in TRAIL-R(-/-) macrophages and dendritic cells are normal, but I kappa B-alpha homeostatic regulation and NF-kappa B activity at later time points is perturbed. These data suggest that TRAIL-R negatively regulates innate immune responses.  相似文献   

10.
TCR-induced NF-kappa B activation is necessary for the innate immune response and involves induced lipid raft recruitment of the I kappa B kinase (IKK) complex. In this study, we systematically investigated lipid raft recruitment of members of the NF-kappa B activation pathway in human T cells. All upstream components leading to IKK activation were found constitutively or inducibly in lipid rafts, while the NF-kappa B/I kappa B complex and phosphorylated forms of IKK alpha/beta, I kappa B alpha and p65 are exclusively found in the cytosolic fraction. Disruption of raft organization precluded NF-kappaB activation induced by T cell costimulation, but IL-1-triggered NF-kappa B activation remained unaffected. Targeting of the IKK complex to lipid rafts caused constitutive IKK activation and NF-kappa B DNA binding, which was further triggered upon T cell costimulation. Various experimental approaches revealed that costimulation-induced IKK alpha/beta activation loop phosphorylation is independent from IKK beta-mediated transautophosphorylation, but rather involves phosphorylation by the IKK-interacting protein NIK and its upstream activator COT.  相似文献   

11.
Among all chemokine receptors CXCR4 possesses a unique response profile and distinguishes itself through a prolonged signaling capacity. Here, we investigated the signaling capacity of CXCR4 to its so far known unique ligand CXCL12 in B cell lines and primary CD19(+) B lymphocytes. During lymphopoiesis, CXCR4 is continuously expressed on the surface of B cells. However, its signaling profile changes inasmuch preB and proB cells migrate towards CXCL12, mobilize intracellular calcium and activate the small GTPases Rac1 and Cdc42, whereas mature B cells do not show these responses, albeit the cells retain the capability to migrate in response to CXCL13 and CCL21. By contrast, stimulation of B cells with CXCL12 at all stages of development results in the activation of the MAP-kinase cascade and in rapid CXCR4 internalization. The pathways leading to ERK1/2 activation are different in preB and mature B cell lines. In either case, ERK1/2 activation is pertussis toxin sensitive, but only in mature B-cells inhibition of PI3-kinase causes an almost complete block of ERK1/2 activation. Taken together, the results show that CXCR4 changes its coupling to downstream signal-transduction pathways in B cells, suggesting that receptor activity may depend on accessory proteins.  相似文献   

12.
The production of superoxide from NADPH oxidase by macrophages in response to endotoxin (LPS) is an important innate immune response, yet it is not clear how LPS signals the activation of NADPH oxidase. The hypothesis is that LPS-induced src kinase and PI3 kinase (PI3K) facilitates the activation of p47phox, the regulatory subunit of NADPH oxidase. In mouse macrophage RAW264.7 cells, inhibition of src tyrosine family kinases inhibited LPS-induced activation of NADPH oxidase, phosphorylation of p47phox, activation of PI3K and phosphorylation of the TLR4. Moreover, inhibition of LPS-induced increases in intracellular calcium blunted src kinase activation, PI3K association with TLR4, as well as PI3 kinase activation. These data suggest that both src kinase and PI3 kinase are involved in LPS-induced NADPH oxidase activation. Importantly, these data suggest that LPS-induced src kinase activation is critical for PI3 kinase activation as well as TLR4 phosphorylation and is dependent upon LPS-induced increase in intracellular calcium. These signaling events fill critical gaps in our understanding of LPS-induced free radical production as well as may potentially responsible for the mechanism of innate immune tolerance or desensitization caused by steroids or ethanol.  相似文献   

13.
Toll-like receptors (TLRs) play a crucial role in the innate immune system as a first line of defense against pathogens. TLR activation in phagocytes produces pro-inflammatory cytokines and chemokines that contribute directly to elimination of infectious agents and activation of adaptive immune responses. However, a sustained inflammatory response can result in tissue damage and generalized sepsis. This review summarizes the complex and sometimes conflicting links of TLR signaling with two important regulators of immune cells functions: phosphoinositide 3-kinases (PI3Ks) and small GTPases of the Rho family. A unified model of hierarchical organization of these signaling participants is still premature, given that the tools for delineating how control of TLRmediated pathways is achieved are just emerging. Critical progress in our understanding of spatial-temporal propagation of TLR signaling will certainly be provided in the near future by pharmacological targeting of PI3Ks using recently characterized, second-generation PI3K inhibitors in combination with gene-targeting strategies for PI3K subunits and Rho GTPases targeted to the murine myeloid compartment.  相似文献   

14.
In addition to direct activation of caspase-1 and induction of apoptosis by SipB, invasive Salmonella stimulates multiple signaling pathways that are key regulators of host cell survival. Nevertheless, little is known about the relative contributions of these pathways to Salmonella-mediated death of macrophages. We studied human monocytic U937 cells and found that apoptosis was induced by invading wild-type Salmonella typhimurium but not by phagocytosed, serum-opsonized, noninvasive Salmonella mutants. Pretreating U937 cells with inhibitors of tyrosine kinases or phosphatidylinositol-3 kinase (PI-3K) completely blocked phagocytosis of opsonized Salmonella mutants but did not affect invasion by wild-type Salmonella or the apoptosis caused by invasion. However, pretreatment with GGTI-298, a geranylgeranyltransferase-1 inhibitor that prevents prenylation of Cdc42 and Rac1, suppressed Salmonella-induced apoptosis by approximately 70%. Transduction of Tat fusion constructs containing dominant-negative Cdc42 or Rac1 significantly inhibited Salmonella-induced cell death, indicating that the cytotoxicity of Salmonella requires activation of Cdc42 and Rac. In contrast to phagocytosis of opsonized bacteria, invasion by S. typhimurium stimulated Cdc42 and Rac1, regardless of the activities of tyrosine- or PI-3K. Moreover, Salmonella infection activated Akt protein in a tyrosine-kinase or PI-3K-dependent manner, and a reduced expression of Akt by antisense transfection rendered the cells more sensitive to apoptosis induced by opsonized Salmonella. These results indicate that direct activation of Cdc42 and Rac1 by invasive Salmonella is a prerequisite of Salmonella-mediated death of U937 cells, whereas the simultaneous activation of Akt by tyrosine kinase and PI-3K during receptor-mediated phagocytosis protects cells from apoptosis.  相似文献   

15.
Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -κB (NF-κB) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.  相似文献   

16.
The capacity of cytokines to modulate neutrophil apoptosis is thought to be a major factor influencing the resolution of granulocytic inflammation. We have previously shown that the late survival effect of TNF-alpha in human neutrophils involves activation of both NF-kappa B and phosphoinositide 3-kinase (PI3-kinase) pathways. In this study, we address how these pathways integrate to prevent cell death. In human neutrophils, TNF-alpha (200 U/ml) induced rapid I kappa B-alpha degradation, NF-kappa B activation and IL-8 release (31.8+/-5.4 pg/10(5) cells/2 h), whereas GM-CSF (10 ng/ml) stimulated an equivalent IL-8 release (26.5+/-4.5 pg/10(5) cells/2 h) without enhanced I kappa B-alpha degradation or NF-kappa B activation compared to control. Importantly, inhibition of PI3-kinase did not modify TNF-alpha -induced I kappa B-alpha degradation, yet fully inhibited the survival effect of both cytokines. Inhibition of I kappa B-alpha phosphorylation, PI3-kinase or ERK1/2 activation blocked IL-8 release by both cytokines. Blocking IL-8 activity by inhibiting its synthesis or by using a neutralizing antibody enhanced the early pro-apoptotic effect of TNF-alpha and inhibited its late survival effect without affecting GM-CSF-induced survival. These data suggest that cross-talk between NF-kappa B and PI3-kinase pathways in TNF-alpha -stimulated neutrophils results from NF-kappa B/ERK1/2-dependent IL-8 production which acts in an autocrine manner to drive PI3-kinase-dependent survival. In contrast, GM-CSF-mediated survival does not involve NF-kappa B activation or IL-8 release.  相似文献   

17.
18.
Toll‐like receptors (TLRs) are playing important roles in stimulating the innate immune response and intensifying adaptive immune response against invading pathogens. Appropriate regulation of TLR activation is important to maintain a balance between preventing tumor activation and inhibiting autoimmunity. Toll‐like receptor 9 (TLR9) senses microbial DNA in the endosomes of plasmacytoid dendritic cells and triggers myeloid differentiation primary response gene 88 (MyD88) dependent nuclear factor kappa B (NF‐κB) pathways and type I interferon (IFN) responses. However, mechanisms of how TLR9 signals are mediated and which molecules are involved in controlling TLR9 functions remain poorly understood. Here, we report that penta EF‐hand protein grancalcin (GCA) interacts and binds with TLR9 in a yeast two‐hybrid system and an overexpression system. Using siRNA‐mediated knockdown experiments, we also revealed that GCA positively regulates type I IFN production, cytokine/chemokine production through nuclear localization of interferon regulatory factor 7 (IRF7), NF‐κB activation, and mitogen‐activated protein kinase (MAPK) activation in plasmacytoid dendritic cells. Our results indicate that heterodimerization of GCA and TLR9 is important for TLR9‐mediated downstream signaling and might serve to fine tune processes against viral infection.  相似文献   

19.
The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol   总被引:11,自引:0,他引:11  
Taxol can mimic bacterial lipopolysaccharide (LPS) by activating mouse macrophages in a cell cycle-independent, LPS antagonist-inhibitable manner. Macrophages from C3H/HeJ mice, which have a spontaneous mutation in Toll-like receptor 4 (TLR4), are hyporesponsive to both LPS and Taxol, suggesting that LPS and Taxol may share a signaling pathway involving TLR4. To determine whether TLR4 and its interacting adaptor molecule MyD88 are necessary for Taxol's LPS mimetic actions, we examined Taxol responses of primary macrophages from genetically defective mice lacking either TLR4 (C57BL/10ScNCr) or MyD88 (MyD88 knockout). When stimulated with Taxol, macrophages from wild-type mice responded robustly by secreting both TNF and NO, while macrophages from either TLR4-deficient C57BL/10ScNCr mice or MyD88 knockout mice produced only minimal amounts of TNF and NO. Taxol-induced NF-kappa B-driven luciferase activity was reduced after transfection of RAW 264.7 macrophages with a dominant negative version of mouse MyD88. Taxol-induced microtubule-associated protein kinase (MAPK) activation and NF-kappa B nuclear translocation were absent from TLR4-null macrophages, but were preserved in MyD88 knockout macrophages with a slight delay in kinetics. Neither Taxol-induced NF-kappa B activation, nor I kappa B degradation was affected by the presence of phosphatidylinositol 3-kinase inhibitors. These results suggest that Taxol and LPS not only share a TLR4/MyD88-dependent pathway in generating inflammatory mediators, but also share a TLR4-dependent/MyD88-independent pathway leading to activation of MAPK and NF-kappa B.  相似文献   

20.
Tumor necrosis factor (TNF)-receptor-associated-factor-6 (TRAF6) is an adaptor protein involved in Toll-like receptor (TLR) signaling. Recent studies using macrophages from TRAF6 knockout mice have revealed that TRAF6 is required for TLR7 signaling. However, an essential role of TRAF6 in TLR4 signaling and cytokine production is slightly controversial. Using an RNAi approach to reduce the cellular levels of TRAF6, we tested the role of this adaptor protein on the sensitivity of the various components of the ERK pathway mediated by TLR4 and -7 in Raw264.7, a mouse macrophage cell line. ERK activation in macrophages by TLR4 and -7 is mediated via a MAP3K, called TPL2/COT, which under unstimulated conditions is associated with NF kappa B1 p105, a member of the I kappa B family of proteins. Upon stimulation with TLR ligands, p105 is phosphorylated by I kappa B kinase (IKK) complex and partially degraded, which releases TPL2. The free TPL2 is active and stimulates the ERK pathway via MEK1/2. The free TPL2, however, is also unstable and is targeted for degradation. We demonstrate here that reduced level of TRAF6 ( approximately 80% decrease) in macrophages does not significantly affect any of the components of the TLR4-stimulated ERK pathway, including p105 phosphorylation, TPL2 degradation and ERK1/2 phosphorylation. Surprisingly, however, TLR4-induced JNK1/2 phosphorylation is significantly blocked by TRAF6 knockdown, suggesting that ERK and JNK pathways are differentially sensitive to TRAF6 levels. Furthermore, although TLR4-mediated IKK-induced p105 phosphorylation is not sensitive to TRAF6 knockdown, I kappa B alpha phosphorylation (also, IKK-induced) is significantly blocked, suggesting that TLR4 activation results in a TRAF6-sensitive and -insensitive IKK activation in macrophages. In contrast to TLR4 signaling, TLR7 activation of ERK, JNK pathways and phosphorylation of p105 and I kappa B alpha are completely inhibited in TRAF6 knockdown cells. Compared to the signaling data, while TLR4-induced TNFalpha mRNA expression is not significantly inhibited by TRAF6 knockdown, TLR7-induced TNFalpha mRNA is significantly blocked. In contrast, both TLR4- and TLR7-induced IL6 mRNA are significantly blocked by TRAF6 knockdown. These results suggest that while TRAF6 is absolutely essential for TLR7 activation of ERK, JNK and NF kappa B pathways, TLR4-induced ERK, JNK pathways and IKK-mediated phosphorylation of I kappa B family members as well as cytokine expression are differentially sensitive to the cellular levels of TRAF6. These results have important implications in terms of therapeutic targeting of TRAF6 complexes in diseases where TLR4 and -7 are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号