首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1   总被引:7,自引:0,他引:7  
Bae MK  Kim SH  Jeong JW  Lee YM  Kim HS  Kim SR  Yun I  Bae SK  Kim KW 《Oncology reports》2006,15(6):1557-1562
  相似文献   

2.
Could a rational, hypothesis-driven and well-tolerated therapy drive tumor progression? This scenario can be foreseen for antiangiogenic therapy, despite it is one of the most elegant anticancer strategies. Antiangiogenic agents inhibit growth of endothelial cells resulting in tumor hypoxia and starvation which in turn inhibit tumor growth. On the other hand, it is known that hypoxia selects for a highly aggressive and metastatic cancer and is associated with unfavorable prognosis. This review attempts to reconcile these opposite notions and to revisit the thesis that antiangiogenic therapy is "resistant to resistance". The latter logical paradigm is based on the notion that endothelial cells cannot become drug resistant. Although endothelial cells may not acquire drug-resistance, cancer cells can acquire hypoxia-resistance which is also associated with the resistance to growth arrest and apoptosis as well as high metastatic potentials. Hypoxia-inducible factor (HIF-1) renders cells capable of surviving hypoxia and stimulating endothelial growth. Disruption of the HIF-1 pathway inhibits tumor growth, indicating HIF-1 as a potential anticancer target. Furthermore, inhibition of HIF-1 is a mechanism-based antiangiogenic strategy because it is the HIF-mediated response that drives tumor angiogenesis. Pharmacological approaches to HIF-1 inhibition are discussed.  相似文献   

3.
低氧诱导因子-1(HIF-1)是调节血管内皮生长因子转录最重要的核转录因子之一,在肿瘤血管生长、转移中起重要的作用。HIF-1对肿瘤血管生成的转录调控作用与其本身的分子结构、生物学特性、分子机制及信号通路密切相关。  相似文献   

4.
5.
Cao Y  Li CY  Moeller BJ  Yu D  Zhao Y  Dreher MR  Shan S  Dewhirst MW 《Cancer research》2005,65(13):5498-5505
It is well established that hypoxia potently stimulates tumor angiogenesis by activating hypoxia inducible factor-1 (HIF-1)-induced proangiogenic factors, such as vascular endothelial growth factor. However, very little is known about the role of hypoxia in incipient angiogenesis in avascular tumors during their early stages of growth. To noninvasively investigate the functional significance of hypoxia and HIF-1 activation in incipient tumor angiogenesis, we genetically engineered HCT116 human colon carcinoma cells and 4T1 mouse mammary carcinoma cells with constitutively expressed red fluorescence protein as a tumor marker and green fluorescence protein (GFP) as a reporter for hypoxia and HIF-1 activation. The accuracy of GFP fluorescence in reporting hypoxia was confirmed by flow cytometry analysis and by immunohistochemical comparison with pimonidazole, a well-established hypoxia marker drug. Mouse dorsal skin-fold window chambers showed that incipient angiogenesis preceded a detectable level of hypoxia. The detectable levels of hypoxia were spatially and temporally related with more intensive secondary angiogenesis following the initial onset of new vessel formation. Selective killing of hypoxic cells by tirapazamine efficiently eliminated or delayed the detection of hypoxic cells, but it did not significantly delay the onset of incipient angiogenesis. These findings provide the first in vivo evidence that incipient tumor angiogenesis may not depend on hypoxia or HIF-1 activation. This is in contrast to the clear role of hypoxia in driving angiogenesis once initial tumor microvessel formation has occurred.  相似文献   

6.
Targeting tumor angiogenesis with histone deacetylase inhibitors   总被引:1,自引:0,他引:1  
  相似文献   

7.
Enhanced angiogenesis apparently contributes to the poor clinical outcome of human neuroblastoma, but the mechanisms have remained unclear. We report here that cultured human neuroblastoma cells express a bioactive endothelial cell growth factor indistinguishable from the angiogenesis stimulator vascular endothelial growth factor (VEGF). VEGF is present in neuroblastoma but not vascular endothelial cells, whereas the corresponding VEGF receptors (Flt-1 and Flk-1/KDR) are expressed in endothelial but not neuroblastoma cells. Exposure of neuroblastoma cells to hypoxia induces a marked increase in bioactive VEGF. VEGF is also present in human neuroblastoma specimens, with substantial amounts in apparently hypoxic neuroblastoma cells, eventually accumulating in tumor microvessels. Our results indicate that VEGF (i) is present in human neuroblastomas, (ii) is up-regulated by tumor hypoxia and (iii) may stimulate neuroblastoma angiogenesis by paracrine mechanisms, thereby contributing to the progression of human neuroblastomas. We suggest that inhibition of VEGF activity may represent a novel approach for the therapy of human neuroblastoma.  相似文献   

8.
Previous studies show that a number of natural compounds from our diet have anticancer effects. Sulforaphane is the most characterized isothiocyanates (ITCs), which are identified in cruciferous vegetables. Sulforaphane is viewed as a conceptually promising agent in cancer prevention. Because of its ability to induce cancer cell apoptosis, it inhibits progression of benign tumors to malignant tumors and interrupts metastasis. However, the effect of sulforaphane on tongue cancer cell proliferation has not yet been reported, and the mechanisms that sulforaphane inhibits cancer development are still unclear. Hypoxia-inducible factor 1 (HIF-1) expression is associated with tumorigenesis and angiogenesis. It regulates the expression of many genes including vascular endothelial growth factor (VEGF), inducible nitric oxide synthase, and lactate dehydrogenase A. In our study, we investigated the effects of sulforaphane on expression of hypoxia-inducible factor-1alpha (HIF-1alpha), which was overexpressed in many human malignant tumors, human tongue squamous cell carcinoma and prostate cancer DU145 cells. Sulforaphane inhibited hypoxia induced expression of HIF-1alpha via inhibiting synthesis of HIF-1alpha. Sulforaphane was also found to inhibit hypoxia induced HIF-1alpha expression through activating JNK and ERK signaling pathways, but not AKT pathway. Inhibition of HIF-1alpha by sulforaphane resulted in decreasing expression of VEGF. Taken together, these results suggest that sulforaphane is an effective chemopreventive compound against tongue cancers and prostate cell angiogenesis in vitro, and that the HIF-1alpha target provides a new sight into the mechanisms of sulforaphane's inhibition against tumor cell proliferation.  相似文献   

9.
Tumor cells exploit their microenvironment by growth factors and cytokines such as vascular endothelial growth factor (VEGF) to stimulate abnormal vessel formation that is leaky and tortuous, causing irregular blood flow. The combination of poor perfusion, raised interstitial fluid pressure and areas of vascular collapse leads to hypoxia within tumor. The latter activates factors such as hypoxia inducible factor 1 (HIF-1) that serve to make cancer cells more aggressive and also markedly influences the response of malignant tumors to conventional irradiation and chemotherapy. Accumulating data now suggest that blockade of oncogenic signaling, for example by PI3K/Akt/mTOR inhibitors, might consist a promising strategy since these agents do not only possess antitumor effects but can also alter tumor vasculature and oxygenation to improve the response to radiation and chemotherapy. In many cases, these changes are related to downregulation of HIF-1α and VEGF. Here, we review the pathophysiology of tumor microenvironment (TME) and how it adversely affects cancer treatment. The complex interaction of tumor vasculature and radiotherapy is examined together the preclinical evidence supporting a proinvasive/metastatic role for ionising radiation. We will discuss the expanding role of oncogenic signaling, especially PI3K/Akt/mTOR, on tumor angiogenesis. Special emphasis will be paid to the potential of different oncogenic pathways blockade and other indirect antivascular strategies to alter the TME for the benefit of cancer treatment, as an alternative to the classical angiogenetic treatment.  相似文献   

10.
11.
12.
Kim SH  Kim KW  Jeong JW 《Oncology reports》2007,17(4):793-797
Hypoxia-inducible factor-1 (HIF-1) plays a pivotal role in cellular response to low oxygen concentration, such as angiogenesis in tumors. Here, we found that a histone deacetylase inhibitor, sodium butyrate, inhibits the hypoxia-induced induction and activity of HIF-1alpha in HT1080 human fibrosarcoma cells. Moreover, sodium butyrate also suppressed the hypoxia-stimulated angiogenic effects and downregulated HIF-1alpha and vascular endothelial growth factor expression in vascular endothelial cells. These findings suggest that sodium butyrate may play important roles in tumor suppression via inhibition of HIF-1alpha mediated angiogenesis under hypoxic conditions.  相似文献   

13.
Angiogenesis is critical to tumor growth and is stimulated by tissue hypoxia due to poor oxygen delivery. In turn, cellular hypoxia leads to angiogenesis via the induction of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) at a cellular level. Pomegranate juice and extracts, which are rich sources of ellagitannins, have been shown to have chemopreventive potential against prostate cancer, but there have been no studies on the effects of an ellagitannin-rich pomegranate extract on angiogenesis. Human prostate cancer cells (LNCaP) and human umbilical vein endothelial cells (HUVEC) were incubated with a pomegranate extract standardized to ellagitannin content (POMx), under normoxic and hypoxic conditions in vitro. Human prostate cancer cells (LAPC4) were injected subcutaneously into severe combined immunodeficient (SCID) mice and the effects of oral administration of POMx on tumor growth, microvessel density, and HIF-1alpha and VEGF expression were determined after 4 weeks of treatment. POMx inhibited the proliferation of LNCaP and HUVEC cells significantly under both normoxic and hypoxic conditions. HIF-1alpha and VEGF protein levels were also reduced by POMx under hypoxic conditions. POMx decreased prostate cancer xenograft size, tumor vessel density, VEGF peptide levels and HIF-1alpha expression after 4 weeks of treatment in SCID mice. These results demonstrate that an ellagitannin-rich pomegranate extract can inhibit tumor-associated angiogenesis as one of several potential mechanisms for slowing the growth of prostate cancer in chemopreventive applications. Further studies in humans are needed to confirm that angiogenesis can be inhibited by an ellagitannin-rich pomegranate extract administered orally as a dietary supplement.  相似文献   

14.
HIF-1: Using Two Hands to Flip the Angiogenic Switch   总被引:16,自引:0,他引:16  
  相似文献   

15.
16.
Fang J  Zhou Q  Liu LZ  Xia C  Hu X  Shi X  Jiang BH 《Carcinogenesis》2007,28(4):858-864
Apigenin is a non-toxic dietary flavonoid with anti-tumor properties. We recently showed that apigenin-inhibited hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) expression in human ovarian cancer cells under normoxic condition. However, the effect of apigenin in angiogenesis remains to be elucidated. Angiogenesis is the formation of new blood vessels and is required for tumor growth and metastasis. In this study, we showed that apigenin-inhibited expression of HIF-1 and VEGF in different cancer cells under both normoxic and hypoxic conditions. We demonstrated that apigenin significantly inhibited tumor angiogenesis in vivo, by using both the chicken chorioallantoic membrane and Matrigel plug assays. The inhibition of tumor angiogenesis was associated with the decrease of HIF-1 and VEGF in tumor tissues. Taken together, our results show that apigenin suppresses tumor angiogenesis through HIF-1 and VEGF expression.  相似文献   

17.
Tumors have been recently recognized as aberrant organs composed of a complex mixture of highly interactive cells that in addition to the cancer cell include stroma (fibroblasts, adipocytes, and myofibroblasts), inflammatory (innate and adaptive immune cells), and vascular cells (endothelial and mural cells). While initially cancer cells co-opt tissue-resident vessels, the tumor eventually recruits its own vascular supply. The process of tumor neovascularization proceeds through the combined output of inductive signals from the entire cellular constituency of the tumor. During the last two decades, the identification and mechanistic outcome of signaling pathways that mediate tumor angiogenesis have been elucidated. Interestingly, many of the genes and signaling pathways activated in tumor angiogenesis are identical to those operational during developmental vascular growth, but they lack feedback regulatory control and are highly affected by inflammatory cells and hypoxia. Consequently, tumor vessels are abnormal, fragile, and hyperpermeable. The lack of hierarchy and inconsistent investment of mural cells dampen the ability of the vessels to effectively perfuse the tumor, and the resulting hypoxia installs a vicious cycle that continuously perpetuates a state of vascular inefficiency. Pharmacological targeting of blood vessels, mainly through the VEGF signaling pathway, has proven effective in normalizing tumor vessels. This normalization improves perfusion and distribution of chemotherapeutic drugs with resulting tumor suppression and moderate increase in overall survival. However, resistance to antiangiogenic therapy occurs frequently and constitutes a critical barrier in the inhibition of tumor growth. A concrete understanding of the chief signaling pathways that stimulate vascular growth in tumors and their cross-talk will continue to be essential to further refine and effectively abort the angiogenic response in cancer.  相似文献   

18.
Recent reports have suggested that phosphatidylinositol 3-kinase/Akt signaling can induce angiogenesis and tumor growth by activating the hypoxia-inducible factor-1 (HIF-1). However, the absence of specific biochemical inhibitors of HIF-1 signaling has prevented a direct test of the requirement for HIF-1 activity in Akt-dependent tumorigenesis. To genetically test the relationship between HIF-1 and Akt, activated Akt was expressed in a hepatoma cell line lacking HIF-1. Akt expression was associated with a dramatic increase in tumor size, despite the absence of HIF-1. Tumor size was not further increased in cells with reconstituted HIF-1 activity, indicating that the effects of Akt on tumorigenesis were not limited by the absence of HIF-1. Increased tumor size in Akt-expressing, HIF-deficient cells was associated with vascular endothelial growth factor secretion and tumor vascularization. In addition to vascular endothelial growth factor production, Akt also conferred a cell-autonomous competitive advantage to tumor cells in an in vivo competition experiment. Thus, Akt has potent, HIF-1-independent oncogenic and angiogenic activities.  相似文献   

19.
The extent of angiogenesis and/or vascular endothelial growth factor (VEGF) expression in neuroblastoma tumors correlates with metastases, N-myc amplification, and poor clinical outcome. Recently, we have shown that insulin-like growth factor-I and serum-derived growth factors stimulate VEGF expression in neuroblastoma cells via induction of hypoxia-inducible factor-1alpha (HIF-1alpha). Because another marker of poor prognosis in neuroblastoma tumors is high expression of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor, TrkB, we sought to evaluate the involvement of BDNF and TrkB in the regulation of VEGF expression. VEGF mRNA levels in neuroblastoma cells cultured in serum-free media increased after 8 to 16 hours in BDNF. BDNF induced increases in VEGF and HIF-1alpha protein, whereas HIF-1beta levels were unaffected. BDNF induced a 2- to 4-fold increase in VEGF promoter activity, which could be abrogated if the hypoxia response element in the VEGF promoter was mutated. Transfection of HIF-1alpha small interfering RNA blocked BDNF-stimulated increases in VEGF promoter activity and VEGF protein expression. The BDNF-stimulated increases in HIF-1alpha and VEGF expression required TrkB tyrosine kinase activity and were completely blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. These data indicate that BDNF plays a role in regulating VEGF levels in neuroblastoma cells and that targeted therapies to BDNF/TrkB, PI3K, mTOR signal transduction pathways, and/or HIF-1alpha have the potential to inhibit VEGF expression and limit neuroblastoma tumor growth.  相似文献   

20.
研究表明卵泡刺激素(FSH)在卵巢癌的发生发展中通过影响缺氧诱导因子-1(HIF-1)、血管内皮生长因子(VEGF)等因子的水平对血管生成起重要的调节作用。新近研究提示FSH-FSH受体(FSHR)可能参与了肺癌等性腺外实体瘤的血管生成过程。FSH与肿瘤血管生成密切相关,可能成为抗肿瘤血管生成的新靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号