首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.

Purpose

The purpose of the present study was to investigate the effect of muscle vibration (MV) on short latency intracortical inhibition (SICI) and facilitation (ICF) assessed by paired-pulse transcranial magnetic stimulation (TMS).

Methods

Nineteen right-handed healthy subjects were investigat ed without and with MV of the right extensor carpi radialis (ECR), using single- and paired-pulse TMS with interstimulus interval (ISI) of 3 and 13 ms. Intensities of the conditioning and test stimulus were 70 and 120 % of the motor threshold at rest. The motor-evoked potentials (MEPs) were recorded simultaneously from the vibrated ECR and its antagonist flexor carpi radialis (FCR).

Results

In all the subjects a SICI of similar strength could be observed at 3 ms, at rest and during MV both in the vibrated muscle as well as in its antagonist. The subjects were divided in two groups according to the changes in MEP response to paired-pulse TMS with 13 ms ISI observed during MV. In nine subjects SICI was evident also at 13 ms when vibration was applied, while in another ten subjects vibration induced ICF at 13 ms.

Conclusions

The effect of MV is not just a facilitation of SICI, but a stronger prolongation of the effect of intracortical inhibition to an ISI at which ICF is well pronounced, when the intensity of the conditioning stimulus exceeds the threshold for intracortical facilitation.  相似文献   

2.
Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m .), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits.  相似文献   

3.
Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150Hz, 30min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.  相似文献   

4.
Transcranial magnetic stimulation (TMS) can produce effects not only at the site of stimulation but also at distant sites to which it projects. Here we examined the connection between supplementary motor area (SMA) and the hand area of the primary motor cortex (M1Hand) by testing whether prolonged repetitive TMS (rTMS) over the SMA can produce changes in excitability of the M1Hand after the end of the stimulus train. We evaluated motor-evoked potentials (MEPs) and the cortical silent period (CSP) evoked by a single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) produced by a paired-pulse TMS, and forearm flexor H reflexes before and after 750 pulses of 5 Hz rTMS over SMA at an intensity of 110% active motor threshold (AMT) for the first dorsal interosseous (FDI) muscle. The amplitude of MEPs recorded from the right FDI muscle at rest as well as during voluntary contraction increased for at least 10 min after the end of rTMS, although the duration of the CSP, SICI and ICF did not change. There was no effect on H reflexes in the flexor carpi radialis muscle, even though the amplitude of the MEP obtained from the same muscle increased after rTMS. The effects on MEPs depended on the intensity of rTMS and were spatially specific to the SMA proper. We suggest that 5 Hz rTMS over SMA can induce a short-lasting facilitation in excitability of the M1Hand compatible with the anatomical connections between SMA and the M1Hand.  相似文献   

5.
Activity-dependent plasticity is a fundamental requirement for human motor learning, which takes place at several stages of the motor system and involves various mechanisms in neuronal circuitry. Here, we investigate parameters of cortical and spinal excitability before and immediately after a single session of locomotion-like arm training (LMT) or sequential visuo-motor learning (VMT). Both training paradigms focused especially on mainly activating the flexor carpi radialis muscle (FCR). The activity-dependent change in the excitability of FCR-associated neurons was investigated using standard transcranial magnetic stimulation, including analysis of motor-evoked potentials (MEP) amplitude, short-interval intracortical inhibition and intracortical facilitation (ICF). Furthermore, spinal plasticity was also assessed by means of homosynaptic FCR H-reflex depression (HD). LMT decreased HD and ICF. In contrast, VMT had no significant effect on cortical and spinal parameters. There was a nonsignificant tendency of an increase in MEP amplitudes after both interventions. This implies that human locomotor-related learning involves spinal mechanisms. Despite the decreasing importance of quadrupedal coordination in the course of evolution, these changes in transsynaptic plasticity may reflect a persisting locomotor memory-encoding function in the spinal circuitry of the human upper extremities. Evaluating FCR HD might be helpful for the evaluation and development of locomotor rehabilitation strategies.  相似文献   

6.
7.
To evaluation the effect of experimental tonic cutaneous pain on motor cortex excitability by means of transcranial magnetic stimulation (TMS). Thirty healthy adults (male: 12, female: 18) were tested with TMS. Cutaneous pain was induced by topical application of capsaicin cream (0.025%) on the skin overlying the flexor carpi radialis of dominant limb. And the cream had been under an occlusive dressing for 40 minutes until we removed it. Magnetic stimulation was performed to the contralateral cortex with a circular coil at 80% intensity of maximum stimulator output. MEPs were recorded at flexor carpi radialis (FCR), extensor carpi radialis (ECR) and opponens pollicis (OP) with constant isometric contraction of 10%, 30% maximal voluntary contraction (MVC). Main outcome measures the intensity of pain by visual analog scale (VAS). The latency, amplitude and silent period of motor evoked potentials (MEPs). Values at baseline and 20, 40, 60, 80 minutes from applying capsaicin were compared. VAS score reached the peak value at 40 minutes. Amplitudes of MEPs at FCR progressively decreased up to 40 minutes than returned to nearly baseline value at 80 minutes. The decrease in MEP amplitude at FCR was accompanied by the increase in VAS score significantly and sustained for 20 min after washing out capsaicin cream. At ECR & OP, we could not demonstrate any changes in amplitude with time. Silent period at FCR only was significantly prolonged with the increase in VAS score. The present findings support that noxious cutaneous stimulation inhibit motor cortex excitability by so-called cortico-cortical circuits.  相似文献   

8.
Manipulation of afferent input is capable of inducing reorganisation of the motor cortex. For example, following 1 h of paired electrical stimulation to the motor point of two hand muscles (associative stimulation) the excitability of the corticospinal projection to the stimulated muscles is increased. Here we investigated the mechanisms responsible for such change using transcranial magnetic stimulation (TMS). Cortical excitability changes were investigated by measuring motor evoked potentials (MEPs), intracortical inhibition (ICI), intracortical facilitation (ICF), and short-interval intracortical facilitation (SICF). Following 1 h of associative stimulation MEP amplitudes in the stimulated muscles significantly increased. Additionally, there was a significant increase in ICF and of SICF at interstimulus intervals in the range of 2.3–3.3 ms. There was no significant change in ICI. These findings confirm previous observations that a 1-h period of associative stimulation can increase the excitability of the cortical projection to stimulated muscles. Additionally, these results suggest that the observed modifications of excitability are due to changes in intracortical excitatory circuits.  相似文献   

9.
Interhemispheric inhibition between motor cortices is reduced in musicians. In the present study we have assessed intracortical inhibition (ICI) and facilitation (ICF) within ipsilateral motor cortex in 15 musicians and 15 non-musician controls. Transcranial magnetic stimulation (TMS) was used to elicit muscle evoked potentials (MEPs) from left first dorsal interosseous (FDI) muscle at rest, and during voluntary index finger abduction (0.5 N). Paired TMS with subthreshold conditioning was used to test early ICI with interstimulus intervals (ISIs) 1-5 ms, and ICF with ISIs 8-15 ms. Suprathreshold conditioning was used to test late ICI with ISIs 100-200 ms. TMS thresholds were similar in musicians and controls both at rest and with weak voluntary activation of FDI, indicating that postsynaptic excitability of corticospinal neurons was similar in both groups. ICI was less effective in musicians with FDI at rest and active, but only with an ISI of 3 ms. ICF was less effective in musicians under both rest and active conditions, and this was independent of ISI. There were no differences in late ICI between musicians and controls. We conclude that ICI and ICF circuits which are activated by weak TMS have less influence on corticospinal neuron excitability in musicians. Because of the dependence on ISI, the most likely explanation for the reduced ICI in musicians is an alteration of the interaction between the ICI circuit and neural elements responsible for the later I-waves evoked in corticospinal neurons by TMS. Excitability of the neural elements producing early and late ICI is not altered in musicians. Reduced ICF in musicians could be due to reduced excitability of neurons responsible for ICF, or an altered balance of excitatory inputs to corticospinal neurons which favours neurons that are not acted upon by the ICF circuit. The reduced influence of ICI and ICF circuits on corticospinal neuron excitability in musicians is likely to reflect a training-induced adaptation. It is not clear at present whether these differences represent an adaptive change related to their extraordinary control of finger movements, or alternatively a maladaptive change induced by "overuse" of the hands from extensive training.  相似文献   

10.
 The motor-evoked potential (MEP) to transcranial magnetic stimulation (TMS) is inhibited when preceded by a subthreshold TMS stimulus at short intervals (1–6 ms; intracortical inhibition, ICI) and is facilitated when preceded by a subthreshold TMS at longer intervals (10–15 ms; intracortical facilitation, ICF). We studied changes in ICI and ICF associated with two motor tasks requiring a different selectivity in fine motor control of small hand muscles (abductor pollicis brevis muscle, APB, and fourth dorsal interosseous muscle, 4DIO). In experiment 1 (exp. 1), nine healthy subjects completed four sets (5 min duration each) of repetitive (1 Hz) thumb movements. In experiment 2 (exp. 2), the subjects produced the same number of thumb movements, but complete relaxation of 4DIO was demanded. Following free thumb movements (exp. 1), amplitudes of MEPs in response to both single and paired TMS showed a trend to increase with the number of exercise sets in both APB and 4DIO. By contrast, more focal, selective thumb movementsinvolving APB with relaxation of 4DIO (exp. 2) caused an increase in MEP amplitudes after single and paired pulses only in APB, while a marked decrease in MEPs after paired pulses, but not after single TMS, in the actively relaxed 4DIO. This effect was more prominent for the interstimulus interval (ISI) of 1–3 ms than for longer ISIs (8 ms, 10 ms, and 15 ms). F-wave amplitudes reflecting excitability of the alpha motoneuron pool were unaltered in APB and 4DIO, suggesting a supraspinal origin for the observed changes. We conclude that plastic changes of ICI and ICF within the hand representation vary according to the selective requirements of the motor program. Performance of more focal tasks may be associated with a decrease in ICI in muscles engaged in the training task, while at the same time ICI may be increased in an actively relaxed muscle, also required for a focal performance. Additionally, our data further supports the idea that ICI and ICF may be controlled independently. Received: 20 September 1996 / Accepted: 1 October 1997  相似文献   

11.
Low-frequency repetitive transcranial magnetic stimulation (rTMS) can exert local and inter-hemispheric neuromodulatory effects on cortical excitability. These physiologic effects can translate into changes in motor behavior, and may offer valuable therapeutic interventions in recovery from stroke. Neuronavigated TMS can maximize accurate and consistent targeting of a given cortical region, but is a lot more involved that conventional TMS. We aimed to assess whether neuronavigation enhances the physiologic and behavioral effects of low-frequency rTMS. Ten healthy subjects underwent two experimental sessions during which they received 1600 pulses of either navigated or non-navigated 1 Hz rTMS at 90% of the resting motor threshold (RMT) intensity over the motor cortical representation for left first dorsal interosseous (FDI) muscle. We compared the effects of navigated and non-navigated rTMS on motor-evoked potentials (MEPs) to single-pulse TMS, intracortical inhibition (ICI) and intracortical facilitation (ICF) by paired-pulse TMS, and performance in various behavioral tasks (index finger tapping, simple reaction time and grip strength tasks). Following navigated rTMS, the amplitude of MEPs elicited from the contralateral (unstimulated) motor cortex was significantly increased, and was associated with an increase in ICF and a trend to decrease in ICI. In contrast, non-navigated rTMS elicited nonsignificant changes, most prominently ipsilateral to rTMS. Behaviorally, navigated rTMS significantly improved reaction time RT and pinch force with the hand ipsilateral to stimulation. Non-navigated rTMS lead to similar behavioral trends, although the effects did not reach significance. In summary, navigated rTMS leads to more robust modulation of the contralateral (unstimulated) hemisphere resulting in physiologic and behavioral effects. Our findings highlight the spatial specificity of inter-hemispheric TMS effects, illustrate the superiority of navigated rTMS for certain applications, and have implications for therapeutic applications of rTMS.  相似文献   

12.
The effects of theophylline on human corticospinal excitability were studied using transcranial magnetic stimulation (TMS) before and after double-blind oral administration of theophylline or placebo in 20 healthy volunteers. TMS measurements included resting and active motor threshold, silent period, intracortical inhibition (ICI), and intracortical facilitation. F-wave and compound muscle action potential (CMAP) were also measured. Theophylline produces a reduction in ICI, while other parameters of corticospinal excitability remained unaffected. Since ICI is thought to depend on GABAA intracortical inhibitory mechanisms, our data suggest that the increase of human motor cortex excitability is the result of a decrease in GABAergic transmission. Our results further support the hypothesis that theophylline might induce convulsions by inhibiting GABAA receptor binding.  相似文献   

13.
Short-interval intracortical inhibition (SICI) decreases during voluntary contraction of the target muscle. It is unknown whether this effect also occurs with postural contractions. We have compared the effects of voluntary and postural contractions on SICI in the soleus (SOL) muscle. We applied transcranial magnetic stimuli (TMS) in subjects under three tasks: sitting at rest (Rest), sitting while activating the SOL muscle (Voluntary), or standing quietly (Postural). In control trials, we applied suprathreshold TMS to obtain unconditioned motor-evoked potentials (MEPs). In test trials, the same TMS was preceded by a subthreshold TMS at different interstimulus intervals (ISIs), to obtain a conditioned MEP. SICI and intracortical facilitation (ICF) were expressed as the decrease or increase in MEP size relative to unconditioned MEPs. There was significant effect of task in mean SICI or mean ICF in SOL. Mean SICI in SOL was 52% in Rest and decreased to 21% in Voluntary and 15% in Postural. Mean ICF in SOL was 132% and decreased to 113% in Voluntary and to 108% in Postural. Mean SICI in SOL was not different in Voluntary and Postural tasks. There was no effect of task in mean SICI or mean ICF in TA. Our results indicate that decrease of SICI with muscle contraction occurs to a similar extent with tonic voluntary and postural activation, suggesting that those contractions require a similar type of cortical involvement. However, it cannot be excluded that some part of the SICI reduction with muscle contraction depends on changes in segmental excitability.  相似文献   

14.
Several lines of evidence indicate that motor cortex excitability can be modulated by manipulation of afferent inputs, like peripheral electrical stimulation. Most studies in humans mainly dealt with the effects of prolonged low-frequency peripheral nerve stimulation on motor cortical excitability, despite its being known from animal studies that high-frequency stimulation can also result in changes of the cortical excitability. To investigate the possible effects of high-frequency peripheral stimulation on motor cortical excitability we recorded motor-evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) of the left motor cortex from the right flexor carpi radialis (FCR), extensor carpi radialis (ECR), and first dorsal interosseous (FDI) in normal subjects, before and after transcutaneous electrical nerve stimulation (TENS) of 30 min duration applied over the FCR. The amplitude of MEPs from the FRC was significantly reduced from 10 to 35 min after TENS while the amplitude of MEPs from ECR was increased. No effects were observed in the FDI muscle. Indices of peripheral nerve (M-wave) and spinal cord excitability (H waves) did not change throughout the experiment. Electrical stimulation of the lateral antebrachial cutaneous nerve has no significant effect on motor cortex excitability. These findings suggest that TENS of forearm muscles can induce transient reciprocal inhibitory and facilitatory changes in corticomotoneuronal excitability of forearm flexor and extensor muscles lasting several minutes. These changes probably may occur at cortical site and seem to be mainly dependent on stimulation of muscle afferents. These findings might eventually lead to practical applications in rehabilitation, especially in those syndromes in which the excitatory and inhibitory balance between agonist and antagonist is severely impaired, such as spasticity and dystonia.M. Tinazzi and S. Zarattini contributed equally to the work  相似文献   

15.
The aim of the present study was to investigate the effects of muscle tendon vibration at different frequencies on corticospinal excitability by means of transcranial magnetic stimulation (TMS). A second objective was to describe whether the observed modulations in motor evoked potentials (MEPs), as a function of vibration frequency, reflect the behavior of Ia afferents during and after vibration. In ten subjects, muscle tendon vibration (duration 30 s) was applied to the flexor carpi radialis (FCR) muscle at three different frequencies (20, 75 and 120 Hz). MEPs following single-pulse TMS were recorded from the targeted muscle during a previbration, vibration, and postvibration period. Muscle tendon vibration at 75 Hz increased the MEP amplitude significantly during vibration, whereas a smaller but still significant effect was observed during 120 Hz vibration. No significant MEP changes could be observed during 20 Hz vibration and during the postvibration period for each frequency. Our findings indicate that muscle tendon vibration exerts a frequency-dependent effect on corticospinal excitability. Furthermore, evidence is provided for the notion that the excitatory effect of muscle tendon vibration on the primary motor cortex is mediated by Ia afferent input.  相似文献   

16.
Unilateral isometric muscle contractions increase motor-evoked potentials (MEPs) produced by transcranial magnetic stimulation not only in the contracting muscle but also in the resting contralateral homologous muscle. Corticospinal excitability in the M1 contralateral to the contracting muscle changes depending on the type of muscle contraction. Here, we investigated the possibility that corticospinal excitability in M1 ipsilateral to the contracting muscle is modulated in a contraction-type-dependent manner. To this end, we evaluated MEPs in the resting left flexor carpi radialis (FCR) during unilateral shortening, lengthening, and isometric muscle contractions of the right wrist flexors at 10, 20, and 30% of maximal isometric contraction force. To compare the effects of different unilateral contractions on MEPs between the contracting and resting sides, MEPs in the right FCR were recorded on two separate days. In a separate experiment, we investigated the contraction specificity of the crossed effect at the spinal level by recording H-reflexes from the resting left FCR during contraction of the right wrist flexors. The results showed that MEPs in the contracting right FCR were the smallest during lengthening contraction. By contrast, MEPs in the resting left FCR were the largest during lengthening contraction, whereas the H-reflex was similar in the resting left FCR during the three types of muscle contraction. These results suggest that different types of unilateral muscle contraction asymmetrically modulate MEP size in the resting contralateral homologous muscle and in the contracting muscle and that this regulation occurs at the supraspinal level.  相似文献   

17.
Modulation of human corticomotor excitability by somatosensory input   总被引:9,自引:3,他引:9  
In humans, somatosensory stimulation results in increased corticomotoneuronal excitability to the stimulated body parts. The purpose of this study was to investigate the underlying mechanisms. We recorded motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) from abductor pollicis brevis (APB), first dorsal interosseous (FDI), and abductor digiti minimi (ADM) muscles. MEP amplitudes, recruitment curves (RC), intracortical inhibition (ICI), intracortical facilitation (ICF), resting (rMT) and active motor thresholds (aMT) were recorded before and after a 2-h period of ulnar nerve electrical stimulation at the wrist. Somatosensory input was monitored by recording somatosensory evoked potentials. To differentiate excitability changes at cortical vs. subcortical sites, we recorded supramaximal peripheral M-responses and MEPs to brainstem electrical stimulation (BES). In order to investigate the involvement of GABAergic mechanisms, we studied the influence of lorazepam (LZ) (a GABAA receptor agonist) relative to that of dextromethorphan (DM) (an NMDA receptor antagonist) and placebo in a double-blind design. We found that somatosensory stimulation increased MEP amplitudes to TMS only in the ADM, confirming a previous report. This effect was blocked by LZ but not by either DM or placebo and lasted between 8 and 20 min in the absence of (i) changes in MEPs elicited by BES, (ii) amplitudes of early somatosensory-evoked potentials or (iii) M-responses. We conclude that somatosensory stimulation elicited a focal increase in corticomotoneuronal excitability that outlasts the stimulation period and probably occurs at cortical sites. The antagonistic effect of LZ supports the hypothesis of GABAergic involvement as an operating mechanism.  相似文献   

18.
Connections between the cerebellum and the contralateral motor cortex are dense and important, but their physiological significance is difficult to measure in humans. We have studied a group of 10 healthy subjects to test whether a modulation of the excitability of the left cerebellum can affect the excitability of the contralateral motor cortex. We used repetitive transcranial magnetic stimulation (rTMS) at 1 Hz frequency to transiently depress the excitability of the left cerebellar cortex and paired-pulse TMS testing of intracortical inhibition (ICI) and intracortical facilitation (ICF) to probe the excitability of cortico-cortical connections in the right motor cortex. The cortical silent period was also measured before and after cerebellar rTMS. Motor evoked potentials (MEPs) were significantly larger after than before conditioning rTMS trains (p < 0.01). Moreover, left cerebellar rTMS increased the ICF of the right motor cortex as measured with paired-pulses separated by an interstimulus interval (ISI) of 15 ms. The effect lasted for up to 30 min afterward and was specific for the contralateral (right) motor cortex. The cortical silent period was unaffected by cerebellar rTMS. The implication is that rTMS of the cerebellar cortex can shape the flowing of inhibition from Purkinje cells toward deep nuclei, thereby increasing the excitability of interconnected brain areas.  相似文献   

19.
Data on Transcranial Magnetic Stimulation (TMS) derived measures of cortical excitability and intracortical circuits in age-related white matter changes are scarce. We aimed to assess early changes of motor cortex excitability in nondemented elderly patients with subcortical ischemic vascular disease (SVD). Ten SVD elderly and ten age-matched controls underwent paired-pulse TMS for the analysis of intracortical inhibition (ICI) and facilitation (ICF). All subjects performed neuropsychological assessment and brain magnetic resonance imaging. SVD patients showed abnormal executive control function. No statistically significant differences were found for resting motor threshold, cortical silent period between SVD patients and controls or between the two hemispheres, in patients. A significant enhancement of mean ICF was observed in SVD patients. This study provides the first evidence of functional changes in intracortical excitatory neuronal circuits in patients with SVD and clinical features of vascular cognitive impairment-no dementia. Further studies are required to evaluate whether the observed change of ICF might predict cognitive and/or motor impairment in a population at risk for subcortical vascular dementia.  相似文献   

20.
To explore the effect of mirror box therapy based on the mirror neuron (MN) system of the primary motor cortex (M1), we examined if direct (without a mirror) and indirect (with a mirror) observation of self-movement in healthy subjects induced changes in motor evoked potential (MEP) evoked by transcranial magnetic stimulation (TMS). MEPs were elicited from the first dorsal interosseous (FDI) and the flexor carpi radialis (FCR) muscles. Somatosensory evoked potentials (SEPs) during self-movement observation were also recorded. Both observations of self-movement with and without a mirror increased MEP amplitude. In addition, increase in MEP amplitude was specific to the prime mover muscle involved in the observed movement. The SEPs increased similar to the MEPs during both observations of self-movement with and without a mirror. We conclude that although the MN system can be activated by observing self-movement in a manner similar to that achieved by observing movement of another person, there were no detectable effect on corticospinal excitability that were specific to movements observed with a mirror.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号