首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to [3H]ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both [3H]DOB and [3H]ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] to this system caused a rightward shift and steepening of agonist competition curves for [3H] ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity [3H]DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that [3H]DOB and [3H]ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein. These observations are consistent with the classical view of interconvertible agonist affinity states of GTP-binding protein-coupled receptors and strongly support the "two state" over the "two receptor" model for DOB binding to the 5-HT2 receptor.  相似文献   

2.
The kinetic and pharmacological characteristics of the binding of [3H]ketanserin and [3H]mesulergine to frontal cortical brain membranes from rat, pig and human were studied. In the 3 species [3H]ketanserin labeled sites with the characteristics of the 5-HT2 receptors previously described in the rat. In contrast, [3H]mesulergine labeled 5-HT2 receptors in rat, but not in pig and human cortices. The characteristics of the sites labeled by [3H]mesulergine in pig cortex were similar to those of sites in the choroid plexus of rats, pigs and humans. While several reputed 5-HT2 ligands presented a similar affinity for the [3H]ketanserin binding sites in the 3 species, other such ligands, e.g. mesulergine, methysergide, cinanserin and LSD which displaced these sites with high affinity in rat brain, had lower affinities in pig and human brain. These results indicate that 5-HT2 receptors show different pharmacological profiles in different species. Caution should thus be exerted in extrapolating data from laboratory animals to humans.  相似文献   

3.
Specific [3H]ketanserin binding to serotonin 5-HT2 receptors of rat frontal cortex tissue is of high affinity, saturable and unaffected by guanine nucleotides. Antagonists displace [3H]ketanserin from a single recognition site (pseudo-Hill coefficients close to unity), which is also unaffected by guanine nucleotides. Agonist displacement of either [3H]ketanserin or [3H]spiperone from three different membrane preparations showed pseudo-Hill coefficients less than one, and may be described in terms of two agonist binding sites with differing agonist affinities. In the presence of guanine nucleotides, overall agonist affinity was lowered slightly, with little or no change in pseudo-Hill coefficient.  相似文献   

4.
The affinities of a series of 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA) derivatives, most of which are hallucinogenic in man, and several related agents were determined for rat cortical serotonin (5-HT) binding sites. Competition assays were performed in which these agents were competed for the 5-HT2 binding of [3H]ketanserin, or the 5-HT1 binding of [3H]LSD (in the presence of ketanserin). The R(-)-isomers of DOI, DOM and DON (i.e. the 4-iodo, -methyl and -nitro derivatives of 2,5-DMA) were found to be more potent than their racemates and demonstrated selectivity for 5-HT2 sites. These same agents in competing for [3H]ketanserin binding resulted in Hill coefficients significantly less than unity; computer-assisted analysis indicated a two-state model better fit the data. In the presence of 10(-4) M Gpp(NH)p the competition curve for R(-)-DOI produced a Hill coefficient close to unity. These results are consistent with the hypothesis that certain derivatives of 2,5-DMA, in particular R(-)-DOI, may be potent and selective agonists at 5-HT2 binding sites, sites that may constitute a serotonin receptor that is regulated by a guanine nucleotide regulatory protein. Conversely, the interactions of these agents at 5-HT1 sites was with a lower affinity and a lack of stereoselectivity. Although DOI and DOM are amongst the most potent of these agents as hallucinogens, it is still too premature to draw any conclusions regarding a possible relationship between 5-HT binding and hallucinogenic potency.  相似文献   

5.
[3H]Ketanserin, a specific serotonin (5-HT) antagonist, was used to investigate whether 5-HT receptors increased in the uterine membranes of ovariectomized rats on administration of 17 beta-estradiol-3-benzoate (estradiol) and also to investigate the characteristics of specific [3H]ketanserin binding to the uterine membranes from estradiol-treated ovariectomized rat. Administration of estradiol significantly increased the amount of [3H]ketanserin specifically bound at equilibrium but did not change the apparent affinity of specific [3H]ketanserin binding. The specific [3H]ketanserin binding to estradiol-treated ovariectomized preparations was rapid and reversible. The Scatchard plots of the saturation curves of specific [3H]ketanserin binding to untreated and estradiol-treated ovariectomized preparations were convex. The apparent Ki values of various serotonergic agents deduced from displacements by these compounds of specific [3H]ketanserin binding to estradiol-treated ovariectomized preparations were two to four orders of magnitude smaller than those of adrenergic, dopaminergic and histaminergic agents. These results suggest that [3H]ketanserin binds mainly to 5-HT receptors in the uterine membranes of estradiol-treated ovariectomized rats.  相似文献   

6.
The affinities of putative serotonin receptor agonists and antagonists for 5-HT1A, 5-HT1B, 5-HT1C, and 5-HT2 receptors were assayed using radioligand binding assays. The 5-HT1 sites were labeled with the agonist radioligands [3H]-8-hydroxy-2-(di-n-propylamino)-tetralin [3H]-8-OH-DPAT, [3H]-5-HT, and [3H]mesulergine. The 5-HT2 receptor was labeled with the antagonist radioligand [3H]ketanserin or the agonist radioligand [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB). The apparent 5-HT1 receptor selectivity of agonist compounds was found to be 50- to 100-fold higher when the 5-HT2 receptor affinity was determined using the antagonist radioligand [3H]ketanserin than when the agonist radioligand [3H]DOB was used. Quipazine, a putative specific 5-HT2 agonist, appeared to be only 3-fold more potent at 5-HT2 than at 5-HT1A receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, quipazine was determined to be 100-fold more potent at 5-HT2 receptors than at 5-HT1A receptors. 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a putative specific 5-HT1B receptor agonist was apparently 10-fold more potent at 5-HT1B receptors than at 5-HT2 receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, TFMPP was found to be equipotent at 5-HT1B and 5-HT2 receptors. Using the 5-HT2 antagonist radioligand [3H]ketanserin, a similar pattern of underestimating 5-HT2 receptor selectivity and/or overestimating 5-HT1A or 5-HT1B receptor selectivity was observed for a series of serotonin receptor agonists. Antagonist receptor selectivity was not affected significantly by the nature of the 5-HT2 receptor assay used. These data indicate that, by using an antagonist radioligand to label 5-HT2 receptors and agonist radioligands to label 5-HT1 receptors, the 5-HT1 receptor selectivity may be overestimated. This may be an especially severe problem in serotonin drug development as drugs that interact potently with 5-HT2 receptors have been reported to be psychoactive and/or hallucinogenic.  相似文献   

7.
The binding characteristics of [3H]ketanserin (a reported selective radioligand for serotonin 5-HT2 receptors) and [125I]BE 2254 (which labels selectively alpha 1-adrenoceptors) were characterized in brain frontal cortex membranes of pig and man. Saturation experiments indicated that both radioligands label apparently a homogeneous class of binding sites in human and pig fontal cortex membranes. Competition experiments with [125I]BE 2254 using 17 agonists and antagonists showed monophasic and steep curves in human and pig frontal cortex membranes. The pharmacological profile of these sites is typical of alpha 1-adrenoceptors. In competition experiments with [3H]ketanserin, most of the tested compounds displayed shallow or biphasic curves. In particular, alpha 1-adrenoceptor-selective antagonists (prazosin, WB 4101, BE 2254...) displaced with nanomolar affinity about 15 and 40% of the specific [3H]ketanserin binding in human and pig frontal cortex membranes, respectively. The minor component of [3H]ketanserin binding correlated highly significantly with [125I]BE 2254 binding in both membrane preparations. The major component of [3H]ketanserin binding to pig and human frontal cortex membranes correlated significantly with [3H]ketanserin binding in rat brain cortex membranes (which is essentially to 5-HT2 receptors). The present data demonstrate that [3H]ketanserin in nanomolar concentrations binds significantly to alpha 1-adrenoceptors in human and pig frontal cortex membranes; this suggests a rather limited degree of selectivity of ketanserin for 5-HT2 receptors in pig and human tissues.  相似文献   

8.
We aimed to investigate the effects of serotonin (5-hydroxytryptamine, 5-HT) on the bovine ciliary muscle and subsequently to characterize and identify the subtypes of 5-HT receptors involved in the serotonin-evoked contractility muscle. The binding of [3H]ketanserin, [3H]granisetron and [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) was analyzed. All labelled compounds bound with high affinity to a single site in the membrane preparations studied. The affinity (K(d)) of the binding site was 7.5+/-1.2 nM for [3H]ketanserin, 6.9+/-0.8 nM for [3H]granisetron and 4.4+/-0.31 nM for [3H]8-OH-DPAT. The density of receptors (B(max)) was 1062+/-43.0 fmol/mg protein for [3H]ketanserin, 566+/-2.32 fmol/mg protein for [3H]granisetron and 205+/-4.63 fmol/mg protein for [3H]8-OH-DPAT. The serotonin-induced contraction appeared to be competitively antagonized by ketanserin (0.1, 1 and 10 microM) and ondansetron (0.1, 10 and 100 microM) which produced a pA(2) value of 8.5+/-0.12 and 8.0+/-0.19, respectively. 8-OH-DPAT and 5-carboxamidotryptamine (5-CT) proved to be completely ineffective. We conclude that serotonin induces bovine ciliary muscle contraction via 5-HT(2) and 5-HT(3) receptors while the 5-HT(1A) receptors, although present, do not mediate the contractile response.  相似文献   

9.
We investigated whether phencyclidine (PCP)-induced head-twitch was antagonized in rats by ritanserin, a selective serotonin2 (5-HT2) receptor antagonist, to confirm the involvement of 5-HT neurons in PCP action and to discover whether PCP could protect the binding sites of [3H]PCP and [3H]ketanserin from the inhibitory effect of protein-modifying reagents which affect sulfhydryl groups. PCP (7.5, 10 and 12.5 mg/kg, i.p.)-induced head-twitch was completely antagonized by ritanserin (1 mg/kg, s.c.). Scatchard plots of specific [3H]PCP and [3H]ketanserin binding showed that sulfhydryl-modifying reagent, N-ethylmaleimide (NEM, 100 microM) caused a significant decrease in Bmax without changing Kd. PCP (10 microM) and ritanserin (1 microM) protected [3H]PCP and [3H]ketanserin binding sites from the decrease in the number induced by NEM (100 microM). 5-HT protected [3H]5-HT binding sites from inactivation by NEM, but PCP and ritanserin did not show any effect. On the basis of the present findings, it is concluded that PCP can interact with 5-HT2 receptors directly or allosterically, and 5-HT2 receptors may locate at PCP binding sites in membranes.  相似文献   

10.
Twenty-one indolealkylamines, some of which are known to be psychoactive in man, were examined for their binding interactions with rat brain cortical 5-HT2 receptors labeled with the antagonist radioligand [3H]ketanserin in order to develop structure-activity relationships for binding at these sites. Features investigated included aromatic, alpha-methyl and terminal amine substituents. 4-Methoxy and 5-methoxy substitution impart a higher affinity than 6- or 7-methoxy substitution; a 7-hydroxyl group essentially abolishes affinity whereas a 7-methyl or 7-bromo group enhances affinity. alpha-Methylation has little effect on affinity and, in the one case examined, the S(+) isomer of alpha-methyltryptamine was essentially equipotent with its racemate and twice as potent as its R(-) enantiomer. Terminal amine methylation results in a small but progressive decrease in affinity in the order: primary amine greater than dimethylamine greater than diethylamine. Similarities were noted between these structural requirements for binding and those of the phenalkylamines. Selected compounds (5-methoxytryptamine, N,N-dimethyltryptamine, 5-methoxy-N,N-diethyltryptamine and 5-methoxy-N,N-dimethyltryptamine) were further examined by two-site analysis of displacement studies for [3H]ketanserin specific binding. Hill coefficients were significantly less than unity and computer-assisted analysis indicated that a two-site model better fit the data than a one-site model. In displacement studies using the putative agonist radioligand [3H]DOB to label 5-HT2 receptors affinities were 10-100-fold higher than those using [3H]ketanserin. These results are also consistent with earlier findings using psychoactive phenalkylamines in competition studies for radiolabelled 5-HT2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The kinetic and pharmacological characteristics of the binding of [3H]5-HT (serotonin), [3H]8-OH-DPAT (8-OH-2-di-n-propylaminotetraline), [3H]LSD, [3H]ketanserin and [3H]mesulergine to membranes from frontal cortex, hippocampus and choroid plexus of pig brain were studied. The binding of these ligands to frontal cortex and hippocampus demonstrated the presence of 5-HT1 and 5-HT2 sites in both tissues, although hippocampus was richer in 5-HT1 (subtype 5-HT1A) sites. [3H]5-HT, [3H]mesulergine and [3H]LSD labeled the pig choroid plexus with high affinity. The pharmacological profiles of [3H]5-HT and [3H]mesulergine binding to this tissue were closely comparable. Ligands reported as selective for 5-HT1A, 5-HT1B or 5-HT2 subtypes did not show high affinity for these binding sites. Therefore, these 5-HT binding sites in pig choroid plexus could be named 5-HT1C. Other drugs with a high affinity for these sites were methysergide and mianserine. In pig frontal cortex, [3H]5-HT labeled the different subtypes of 5-HT1 sites. In contrast, [3H]mesulergine bound in pig frontal cortex to a small population of sites with pharmacological properties similar to those of the choroid plexus 5-HT1C sites. Possible physiological functions in which these sites might be involved are discussed.  相似文献   

12.
We studied [3H]serotonin [( 3H]5-HT) binding on cultured arterial smooth muscle cells from rat aorta. We found a high and low affinity binding site. Binding to the higher affinity site could be displaced by drugs in an order corresponding most closely with the 5-HT1B subtype, and high affinity [125I]iodo-cyanopindolol binding was also found. We found evidence for a 5-HT2 subtype using [3H]ketanserin binding, with similar results whether specific binding was determined using unlabelled ketanserin, methysergide or mianserin.  相似文献   

13.
This study was designed to assess whether phencyclidine (PCP)-induced behaviors in rats were potentiated after two days' withdrawal from chronic methysergide (a 5-HT2 receptor blocker) treatment (10 mg/kg per day i.p. for 12 days), in order to confirm the involvement of 5-hydroxytryptamine (5-HT) neurons in PCP actions. The PCP (10 mg/kg)-induced behaviors (head-twitch, head-weaving, turning and backpedalling) were attenuated by successive pretreatment with PCP (10 mg/kg per day i.p. for 12 days), while PCP- and 5-methoxy-N,N-dimethyltryptamine (2 mg/kg)-induced head-twitch increased significantly after the repeated methysergide treatment was stopped. The development of tolerance to PCP-induced head-twitch was antagonized by pretreatment with methysergide. Furthermore, Scatchard plots of specific [3H]ketanserin binding at the 5-HT2 receptors and [3H]PCP binding at the PCP receptors in the methysergide group revealed significant increases in binding capacity (Bmax) with no change in affinity (Kd). On the contrary, after development of tolerance to PCP, there were significant decreases in Bmax of [3H]ketanserin binding with no change in affinity. PCP can thus displace [3H]ketanserin at the 5-HT2 receptor site, but not [3H]5-HT at the 5-HT1 receptor site. These facts indicate that PCP may produce head-twitch via an agonistic interaction with 5-HT2 receptor sites.  相似文献   

14.
The phenylisopropylamine derivative 1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane (DOI) has been suggested recently as a selective serotonin2 (5-HT2) receptor agonist. Because of the potential importance of such a tool for investigations of 5-HT2 receptor regulation, receptor binding studies were performed in rats after acute and chronic treatment with DOI, the selective 5-HT2 antagonist ketanserin, or vehicle. Single injections of 5 or 10 mg/kg DOI reduced the Bmax of cortical sites labeled with [3H]1-(2,5-dimethoxy-4-bromo-phenyl)-2-aminopropane and [3H]ketanserin (9-32 or 32-46%, respectively). Chronic daily treatment with DOI (3-9 mg/kg) further down-regulated 5-HT2 sites in cortex identified with either [3H]ketanserin (-60%) or with [3H]DOB (-75%), without altering Kd values or affecting 5-HT1 sites. In vitro addition to the [3H]ketanserin or [3H]DOB binding assay of 10 nM to 1 microM DOI resulted in competitive inhibition, suggesting that down-regulation found in vivo was not secondary to residual drug. Chronic treatment with ketanserin (10 mg/kg) also down-regulated both [3H]ketanserin (-38%) and [3H]DOB (-58%) sites in cortex without charges in 5-HT1 sites. In naive cortex, competition experiments revealed a Ki (nM) for ( +/- )-DOI of 1.7 +/- 0.02 at sites labeled by [3H]DOB, and a KH and KL of 4.8 +/- 1.5 and 53 +/- 2 nM at sites labeled by [3H]ketanserin. These data indicate that in chronic treatment, DOI, like ketanserin, is highly selective for 5-HT2 vs 5-HT1 sites at behaviorally useful doses. However, a representative putative 5-HT2 selective agonist and antagonist have similar effects on 5-HT2 receptors labeled by agonist or antagonist radioligands.  相似文献   

15.
The effects of single and long-term administration of the antidepressants imipramine, desimipramine, amitriptyline, zimelidine and maprotiline were studied in the rabbit brain. Special attention was given to the brain serotonin (5-HT) receptors. Our results show that in different areas of the rabbit brain, the binding sites for 5-HT display pharmacological characteristics very similar to those of the 5-HT1 and 5-HT2 receptors described for the rat brain. No significant correlation could be shown between the distribution of either of the receptors and the distribution of serotonergic nerve terminals (as measured by the 5-HT content and the [3H]5-HT accumulation). Addition of antidepressants to rabbit brain slices, in vitro, caused an inhibition of the [3H]5-HT accumulation. The compounds only weakly inhibited the binding of [3H]5-HT and [3H]ketanserin as compared to the inhibition caused by serotonergic agonists and antagonists. The [3H]5-HT accumulation in brain slices was markedly reduced 2 h after a single i.p. injection of imipramine. After a two-week administration of the antidepressants, the specific binding of neither [3H]5-HT nor [3H]ketanserin was significantly altered. The simultaneous determination of monoamine metabolites and of dopamine-beta-hydroxylase in the cerebrospinal fluid of these treated rabbits did not reveal any significant difference from the control animals.  相似文献   

16.
The pharmacological characteristics of the binding of [3H]8-OH-DPAT ([3H]8-hydroxy-2(di-n-propylamino)tetralin, [125I]CYP ((-)[125I]iodocyanopindolol) (in the presence of 30 microM (-)isoprenaline) and [3H]mesulergine to 5-HT1 recognition sites were studied in rat and pig brain membranes. [3H]8-OH-DPAT bound in rat and pig cortex to the 5-HT1A recognition site characterized by high affinity for 5-CT (5-carboxamido-tryptamine), 8-OH-DPAT, 5-HT (5-hydroxytryptamine, serotonin) and low affinity for pirenperone, ketanserin and mesulergine. [125I]CYP bound in rat but not in pig cortex to the 5-HT1B site which shows high affinity for (-)21-009 (4[3-ter-butyl-amino-2-hydroxy-propoxy]indol-2-carbonic acid isopropyl ester), (+/-)ICYP (3-I-cyanopindolol), 5-HT, RU 24969 (5-methoxy-3-[1,2,3,6-tetrahydropyridon-4-yl]1H-indole) and low affinity for 8-OH-DPAT, mesulergine and pirenperone. [3H]Mesulergine bound in pig choroid plexus and in rat cortex (besides binding to 5-HT2 sites in rat cortex) to the 5-HT1C recognition site characterized by high affinity for metergoline, mesulergine, 5-HT and methergine and low affinity for (-)21-009, ICYP, 8-OH-DPAT and spiroperidol. The pharmacological profile of 5-HT1A sites in rat and pig cortex appears to be identical; 5-HT1C sites in pig choroid plexus and rat cortex show no differences. In contrast, it was not possible to label 5-HT1B sites with [125I]CYP in pig brain membranes indicating that like 5-HT2 receptors, 5-HT1 recognition sites show species differences. The pharmacological profiles of the three 5-HT1 recognition sites are clearly different from one another. Furthermore, the pharmacological profile of each individual 5-HT1 recognition site is also different from that of the 5-HT2 receptors labelled with [3H]ketanserin in rat cortex membranes although some similarities exist between 5-HT2 and 5-HT1C sites. Finally, the beta-adrenoceptor antagonist (-)21-009 which has different affinities for 5-HT1A, 5-HT1B and 5-HT1C recognition sites, yielded triphasic competition curves for [3H]5-HT binding in rat cortex membranes providing evidence that [3H]5-HT labels three distinct 5-HT1 sites in these membranes.  相似文献   

17.
In the presence of a 30 nM prazosin mask, [3H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([3H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [3H] WB4101 binding in cerebral cortex. Furthermore, we have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [3H]WB4101-binding sites in the presence of 30 nM prazosin and [3H] lysergic acid diethylamide ([3H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [3H]WB4101 is significantly lower than the Bmax of [3H]LSD in various brain regions. WB4101 competition for [3H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [3H]WB4101 binding derived from saturation experiments. This suggests that [3H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [3H]LSD. Interestingly, the selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [3H]WB4101 but compete for multiple [3H]LSD 5-HT1 binding sites. These data indicate that [3H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [3H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [3H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [3H]WB4101 binding. These characteristics are typical of agonists interacting with receptors which modulate cellular function via a guanine nucleotide-regulatory subunit.  相似文献   

18.
The interaction of the enantiomers of mianserin and propranolol with the binding of [3H]5-hydroxytryptamine ([3H]5-HT) to the 5-HT1A, 5-HT1B and 5-HT1C sites, and with the binding of [3H]ketanserin to the 5-HT2 site, has been evaluated in rat brain membranes. A stereoselective interaction at the 5-HT1A, 5-HT1B and 5-HT1C sites was demonstrated for both compounds, with (+)-mianserin being a more potent displacer than (-)-mianserin and (-)-propranolol being more potent than (+)-propranolol. Only mianserin interacted in a stereoselective manner with the 5-HT2 site, (+)-mianserin being the more potent isomer. The stereoselective association of mianserin and propranolol with the 5-HT1A, 5-HT1B and 5-HT1C sites may prove useful in the characterization of these sites.  相似文献   

19.
[3H]Ketanserin binding studies were performed on purified chromaffin granule membranes. Binding was found to occur on one class of sites and was temperature dependent. At 30 degrees the equilibrium dissociation constant KD was 45 nM. At 0 degrees, a KD value of 6 nM and a half-life of dissociation of 40 sec were measured. Methysergide, an antagonist of 5-hydroxytryptamine2 (5-HT2) receptors structurally unrelated to ketanserin, did not displace ketanserin binding. Tetrabenazine, an inhibitor of the monoamine transporter of chromaffin granules, displaced [3H]ketanserin binding. Conversely, ketanserin inhibited the binding of [3H] dihydrotetrabenazine, a ligand that specifically binds to the monoamine transporter. The inhibition was of the competitive type, indicating that both drugs bind to the same site. Ketanserin binding did not depend upon ATP-induced energization of chromaffin granules. ATP-dependent 5-HT uptake by chromaffin granule ghosts was inhibited by ketanserin with an IC50 value of 70 nM. A series of ketanserin derivatives were tested for their ability to displace [3H]dihydrotetrabenazine; EC50 values differed by more than 2 orders of magnitude and were not correlated to affinities on 5-HT2 receptors. In mouse brain, [3H]ketanserin was found to bind to methysergide-sensitive and to tetrabenazine-sensitive sites. In the striatum, tetrabenazine-sensitive sites represented a larger fraction than the methysergide-sensitive ones, whereas the reverse was true in the frontal cortex. It is concluded that nonspecific displaceable binding sites of [3H]ketanserin previously described in the striatum are tetrabenazine binding sites associated with the synaptic vesicle monoamine transporter.  相似文献   

20.
Summary The agonist potencies of 8 indole derivatives and the potencies of 19 recognized antagonists to inhibit constrictor responses to 5-hydroxytryptamine (5-HT) of canine basilar artery were established. In addition the affinities of the indole derivatives for [3H]5-hydroxytryptamine ([3H]5-HT) binding sites and the affinities of the antagonists for [125Iodo]LSD ([125I]LSD) binding sites in rat brain cortex membranes were determined. Comparison was also made between the potencies of the antagonists on canine basilar artery and the K D values published for displacement of [3H]ketanserin binding (Leysen et al. 1982).There was a good correlation between the affinities of the antagonists for 5-HT2 binding sites labelled by both [125I]LSD and [3H]ketanserin and the affinity parameters calculated for inhibition of constrictor responses to 5-HT of canine basilar artery. No correlation could be found between the affinities of the indole derivatives for 5-HT1 binding sites labelled by [3H]5-HT and their potencies to constrict canine basilar artery.It is concluded that constrictor responses to 5-HT of canine basilar artery are mediated by 5-HT2-like receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号