首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PURPOSE: Factors affecting the efficacy of therapeutic monoclonal antibodies (mAb) directed to the epidermal growth factor receptor (EGFR) remain relatively unknown, especially in glioma. EXPERIMENTAL DESIGN: We examined the efficacy of two EGFR-specific mAbs (mAbs 806 and 528) against U87MG-derived glioma xenografts expressing EGFR variants. Using this approach allowed us to change the form of the EGFR while keeping the genetic background constant. These variants included the de2-7 EGFR (or EGFRvIII), a constitutively active mutation of the EGFR expressed in glioma. RESULTS: The efficacy of the mAbs correlated with EGFR number; however, the most important factor was receptor activation. Whereas U87MG xenografts expressing the de2-7 EGFR responded to therapy, those exhibiting a dead kinase de2-7 EGFR were refractory. A modified de2-7 EGFR that was kinase active but autophosphorylation deficient also responded, suggesting that these mAbs function in de2-7 EGFR-expressing xenografts by blocking transphosphorylation. Because de2-7 EGFR-expressing U87MG xenografts coexpress the wild-type EGFR, efficacy of the mAbs was also tested against NR6 xenografts that expressed the de2-7 EGFR in isolation. Whereas mAb 806 displayed antitumor activity against NR6 xenografts, mAb 528 therapy was ineffective, suggesting that mAb 528 mediates its antitumor activity by disrupting interactions between the de2-7 and wild-type EGFR. Finally, genetic disruption of Src in U87MG xenografts expressing the de2-7 EGFR dramatically enhanced mAb 806 efficacy. CONCLUSIONS: The effective use of EGFR-specific antibodies in glioma will depend on identifying tumors with activated EGFR. The combination of EGFR and Src inhibitors may be an effective strategy for the treatment of glioma.  相似文献   

3.
PURPOSE: Resistance to current cytotoxic therapies limits the treatment of most solid malignancies. This results, in part, from the overactivation of receptor tyrosine kinases and their downstream pathways in tumor cells and their associated vasculature. In this report, we ask if targeting the multifunctional mitogenic, cytoprotective, and angiogenic scatter factor/hepatocyte growth factor (SF/HGF)/c-Met pathway potentiates antitumor responses to gamma-radiation. EXPERIMENTAL DESIGN: Endogenous expression of SF/HGF and c-Met was targeted in U87 MG human malignant glioma cells and xenografts using chimeric U1/ribozymes. The effects of U1/ribozymes +/- gamma-radiation on glioma cell proliferation, apoptosis, xenograft growth, and animal survival were examined. RESULTS: U1/ribozymes knocked down SF/HGF and c-Met mRNA and protein levels, sensitized cells to gamma-radiation (P < 0.005), and enhanced radiation-induced caspase-dependent cytotoxicity in vitro (P < 0.005). Intravenous U1/ribozyme therapy as liposome/DNA complexes or radiation alone modestly and transiently inhibited the growth of s.c. U87 xenografts. Combining the therapies caused tumor regression and a 40% tumor cure rate. In animals bearing intracranial xenografts, long-term survival was 0% in response to radiation, 20% in response to intratumoral adenoviral-based U1/ribozyme delivery, and 80% (P < 0.0005) in response to combining U1/ribozymes with radiation. This apparent synergistic antitumor response was associated with a approximately 70% decrease in cell proliferation (P < 0.001) and a approximately 14- to 40-fold increase in apoptosis (P < 0.0001) within xenografts. CONCLUSIONS: Targeting the SF/HGF/c-Met pathway markedly potentiates the anti-glioma response to gamma-radiation. Clinical trials using novel SF/HGF/c-Met pathway inhibitors in glioma and other malignancies associated with c-Met activation should ultimate include concurrent radiation and potentially other cytotoxic therapeutics.  相似文献   

4.
The monoclonal antibody (mAb) 806 was raised against the delta2-7 epidermal growth factor receptor (de2-7 EGFR or EGFRvIII), a truncated version of the EGFR commonly expressed in glioma. Unexpectedly, mAb 806 also bound the EGFR expressed by cells exhibiting amplification of the EGFR gene but not to cells or normal tissue expressing the wild-type receptor in the absence of gene amplification. The unique specificity of mAb 806 offers an advantage over current EGFR antibodies, which all display significant binding to the liver and skin in humans. Therefore, we examined the antitumor activity of mAb 806 against human tumor xenografts grown in nude mice. The growth of U87 MG xenografts, a glioma cell line that endogenously expresses approximately 10(5) EGFRs in the absence of gene amplification, was not inhibited by mAb 806. In contrast, mAb 806 significantly inhibited the growth of U87 MG xenografts transfected with the de2-7 EGFR in a dose-dependent manner using both preventative and established tumor models. Significantly, U87 MG cells transfected with the wild-type EGFR, which increased expression to approximately 10(6) EGFRs/cell and mimics the situation of gene amplification, were also inhibited by mAb 806 when grown as xenografts in nude mice. Xenografts treated with mAb 806 all displayed large areas of necrosis that were absent in control tumors. This reduced xenograft viability was not mediated by receptor down-regulation or clonal selection because levels of antigen expression were similar in control and treated groups. The antitumor effect of mAb 806 was not restricted to U87 MG cells because the antibody inhibited the growth of new and established A431 xenografts, a cell line expressing >10(6) EGFRs/cell. This study demonstrates that mAb 806 possesses significant antitumor activity.  相似文献   

5.
Neuropilin-1 (NRP1) functions as a coreceptor through interaction with plexin A1 or vascular endothelial growth factor (VEGF) receptor during neuronal development and angiogenesis. NRP1 potentiates the signaling pathways stimulated by semaphorin 3A and VEGF-A in neuronal and endothelial cells, respectively. In this study, we investigate the role of tumor cell-expressed NRP1 in glioma progression. Analyses of human glioma specimens (WHO grade I-IV tumors) revealed a significant correlation of NRP1 expression with glioma progression. In tumor xenografts, overexpression of NRP1 by U87MG gliomas strongly promoted tumor growth and angiogenesis. Overexpression of NRP1 by U87MG cells stimulated cell survival through the enhancement of autocrine hepatocyte growth factor/scatter factor (HGF/SF)/c-Met signaling. NRP1 not only potentiated the activity of endogenous HGF/SF on glioma cell survival but also enhanced HGF/SF-promoted cell proliferation. Inhibition of HGF/SF, c-Met and NRP1 abrogated NRP1-potentiated autocrine HGF/SF stimulation. Furthermore, increased phosphorylation of c-Met correlated with glioma progression in human glioma biopsies in which NRP1 is upregulated and in U87MG NRP1-overexpressing tumors. Together, these data suggest that tumor cell-expressed NRP1 promotes glioma progression through potentiating the activity of the HGF/SF autocrine c-Met signaling pathway, in addition to enhancing angiogenesis, suggesting a novel mechanism of NRP1 in promoting human glioma progression.  相似文献   

6.
In some respects, the EGFR appears to be an attractive target for tumor-targeted antibody therapy: it is overexpressed in many types of epithelial tumor and inhibition of signaling often induces an anti-tumor effect. The use of EGFR specific antibodies, however, may be limited by uptake in organs that have high endogenous levels of the wild type EGFR such as the liver. The de2-7 EGFR (or EGFRvIII) is a naturally occurring extracellular truncation of the EGFR found in a number of tumor types including glioma, breast, lung and prostate. Antibodies directed to this tumor specific variant of the EGFR provide an alternative targeting strategy, although the lower proportion of tumors that express the de2-7 EGFR restricts this approach. We describe a novel monoclonal antibody (MAb 806) that potentially overcomes the difficulties associated with targeting the EGFR expressed on the surface of tumor cells. MAb 806 bound to de2-7 EGFR transfected U87MG glioma cells (U87MG.Delta 2-7) with high affinity (approximately 1 x 10(9) M(-1)), but did not bind parental cells that express the wild type EGFR. Consistent with this observation, MAb 806 was unable to bind a soluble version of the wild type EGFR containing the extracellular domain. In contrast, immobilization of this extracellular domain to ELISA plates induced saturating and dose response binding of MAb 806, suggesting that MAb 806 can bind the wild type EGFR under certain conditions. MAb 806 also bound to the surface of A431 cells, which due to an amplification of the EGFR gene express large amounts of the EGFR. Interestingly, MAb 806 only recognized 10% of the total EGFR molecules expressed by A431 cells and the binding affinity was lower than that determined for the de2-7 EGFR. MAb 806 specifically targeted U87MG.Delta 2-7 and A431 xenografts grown in nude mice with peak levels in U87MG.Delta 2-7 xenografts detected 8 h after injection. No specific targeting of parental U87MG xenografts was observed. Following binding to U87MG.Delta 2-7 cells, MAb 806 was rapidly internalized by macropinocytosis and subsequently transported to lysosomes, a process that probably contributes to the early targeting peak observed in the xenografts. Thus, MAb 806 can be used to target tumor cells containing amplification of the EGFR gene or de2-7 EGFR but does not bind to the wild type EGFR when expressed on the cell surface.  相似文献   

7.
This phase II study evaluated the efficacy and safety of AMG 102 (rilotumumab), a fully human monoclonal antibody against hepatocyte growth factor/scatter factor (HGF/SF), in patients with recurrent glioblastoma (GBM). Patients with histologically confirmed, measurable recurrent GBM or gliosarcoma (World Health Organization grade 4) and ≤3 relapses or prior systemic therapies received AMG 102 (10 or 20 mg/kg) by infusion every 2 weeks. The primary endpoint was best confirmed objective response rate (central assessment) per Macdonald criteria. Of the 61 patients who enrolled, 60 received AMG 102. Twenty-nine patients (48%) had previously received bevacizumab. There were no objective responses per central assessment, but 1 patient had an objective response per investigator assessment. Median overall survival (95% CI) in the 10- and 20-mg/kg cohorts was 6.5 months (4.1-9.8) and 5.4 months (3.4-11.4), respectively, and progression-free survival (PFS) per central assessment was 4.1 weeks (4.0-4.1) and 4.3 weeks (4.1-8.1), respectively. PFS was similar among patients who had previously received bevacizumab compared with bevacizumab-naive patients. The most common adverse events were fatigue (38%), headache (33%), and peripheral edema (23%). AMG 102 serum concentrations increased approximately dose-proportionally with 2-fold accumulation at steady state. Plasma total HGF/SF and soluble c-Met concentrations increased 12.05- and 1.12-fold, respectively, from baseline during AMG 102 treatment. AMG 102 monotherapy at doses up to 20 mg/kg was not associated with significant antitumor activity in heavily pretreated patients with recurrent GBM.  相似文献   

8.
c-Met is a well-characterized receptor tyrosine kinase for hepatocyte growth factor (HGF). Compelling evidence from studies in human tumors and both cellular and animal tumor models indicates that signaling through the HGF/c-Met pathway mediates a plethora of normal cellular activities, including proliferation, survival, migration, and invasion, that are at the root of cancer cell dysregulation, tumorigenesis, and tumor metastasis. Inhibiting HGF-mediated signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of human tumors. Toward this goal, we generated and characterized five different fully human monoclonal antibodies that bound to and neutralized human HGF. Antibodies with subnanomolar affinities for HGF blocked binding of human HGF to c-Met and inhibited HGF-mediated c-Met phosphorylation, cell proliferation, survival, and invasion. Using a series of human-mouse chimeric HGF proteins, we showed that the neutralizing antibodies bind to a unique epitope in the beta-chain of human HGF. Importantly, these antibodies inhibited HGF-dependent autocrine-driven tumor growth and caused significant regression of established U-87 MG tumor xenografts. Treatment with anti-HGF antibody rapidly inhibited tumor cell proliferation and significantly increased the proportion of apoptotic U-87 MG tumor cells in vivo. These results suggest that an antibody to an epitope in the beta-chain of HGF has potential as a novel therapeutic agent for treating patients with HGF-dependent tumors.  相似文献   

9.
10.
A mutant epidermal growth factor receptor (variously called DeltaEGFR, de2-7 EGFR, or EGFRvIII) containing a deletion of 267 amino acids of the extracellular domain is frequently highly expressed in human malignant gliomas and has been reported for cancers of the lung, breast, and prostate. We tested the efficacy of a novel monoclonal anti-DeltaEGFR antibody, mAb 806, on the growth of intracranial xenografted gliomas in nude mice. Systemic treatment with mAb 806 significantly reduced the volume of tumors and increased the survival of mice bearing xenografts of U87 MG.DeltaEGFR, LN-Z308.DeltaEGFR, or A1207.DeltaEGFR gliomas, each of which expresses high levels of DeltaEGFR. In contrast, mAb 806 treatment was ineffective with mice bearing the parental U87 MG tumors, which expressed low levels of endogenous wild-type EGFR, or U87 MG.DK tumors, which expressed high levels of kinase-deficient DeltaEGFR. A slight increase of survival of mice xenografted with a wild-type EGFR-overexpressing U87 MG glioma (U87 MG.wtEGFR) was effected by mAb 806 concordant with its weak cross-reactivity with such cells. Treatment of U87 MG.DeltaEGFR tumors in mice with mAb 806 caused decreases in both tumor growth and angiogenesis, as well as increased apoptosis. Mechanistically, in vivo mAb 806 treatment resulted in reduced phosphorylation of the constitutively active DeltaEGFR and caused down-regulated expression of the apoptotic protector, Bcl-XL. These data provide preclinical evidence that mAb 806 treatment may be a useful biotherapeutic agent for those aggressive gliomas that express DeltaEGFR.  相似文献   

11.
Accumulating evidences suggest that glutamate plays a key role in the proliferation and invasion of malignant glioblastoma (GBM) tumors. It has been shown that GBM cells release and exploit glutamate for proliferation and invasion through AMPA glutamate receptors. Additionally, amplification of the epidermal growth factor receptor (EGFR) gene occurs in 40–50% of GBM. Since, PI3K/Akt is considered one of the main intracellular pathways involved in EGFR activation, AKT functions could trigger EGFR signaling. Thus, we investigated whether EGFR-phospho-Akt pathway is involved on the glutamate inducing U-87MG human GBM cell line proliferation. For these purpose, we treated the U-87MG cell line with 5 to 200 mM of glutamate and assessed the number of viable cells by trypan blue dye exclusion test. An increase in cell number (50%) was found at 5 mM glutamate, while the addition of DNQX (500 μM), an antagonist of AMPA receptor, inhibited the effect of glutamate on the U87-MG cells proliferation. Also, at 5 mM glutamate we observed an increase on the EGFR and phospho-Akt contents evaluated by immunohistochemistry. Moreover, U-87MG cells treated with glutamate exhibited an increase about 2 times in the EGFR mRNA expression. While, in the presence of the anti-EGFR gefitinib (50 μM) or the PI3K inhibitor wortmannin (5 μM), the U-87MG proliferation was restored to control levels. Together, our data suggest that glutamate signaling mediated by AMPA receptor induces U-87MG human GBM cell line proliferation via EGFR-phospho-Akt pathway.  相似文献   

12.
13.
Overexpression and mutation of the epidermal growth factor receptor (EGFR) gene play a causal role in tumorigenesis and resistance to treatment of glioblastoma (GBM). EGFR inhibitors such as erlotinib are currently used for the treatment of GBM; however, their efficacy has been limited due to drug resistance. New treatment strategies are therefore urgently needed. Shikonin, a natural naphthoquinone, induces both apoptosis and necroptosis in human glioma cells, but the effectiveness of erlotinib‐shikonin combination treatment as well as the underlying molecular mechanisms is unknown yet. In this study, we investigated erlotinib in combination with shikonin and 14 shikonin derivatives in parental U87MG and transfected U87MG.ΔEGFR GBM cells. Most of the shikonin derivatives revealed strong cytotoxicity. Shikonin together with five other derivatives, namely deoxyshikonin, isobutyrylshikonin, acetylshikonin, β,β‐dimethylacrylshikonin and acetylalkannin showed synergistic cytotoxicity toward U87MG.ΔEGFR in combination with erlotinib. Moreover, the combined cytotoxic effect of shikonin and erlotinib was further confirmed with another three EGFR‐expressing cell lines, BS153, A431 and DK‐MG. Shikonin not only dose‐dependently inhibited EGFR phosphorylation and decreased phosphorylation of EGFR downstream molecules, including AKT, P44/42MAPK and PLCγ1, but also together with erlotinib synergistically inhibited ΔEGFR phosphorylation in U87MG.ΔEGFR cells as determined by Loewe additivity and Bliss independence drug interaction models. These results suggest that the combination of erlotinib with shikonin or its derivatives might be a potential strategy to overcome drug resistance to erlotinib.  相似文献   

14.
Nitrogen-containing bisphosphonates (N-BPs), which prevent bone resorption, exert direct and γδT cell (GDT)-mediated antitumor effects against several tumor cell types, including glioblastoma (GBM). However, limited information is available regarding the antitumor effects of N-BPs in GBM. Specifically, the antitumor effects of minodronate (MDA), a third-generation N-BP, in GBM are yet unclear. This study aimed to investigate the antitumor effects of MDA in GBM in vitro and in vivo. We performed growth inhibition and apoptosis detection assays using the GBM cell lines U87MG and U138MG. Apoptosis inhibition assays were also conducted. In vivo xenograft assays were performed in highly immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Sug/Jic mice subcutaneously implanted with U87MG and U138MG cells. Growth inhibition and apoptosis detection assays demonstrated that MDA inhibited GBM cell growth via apoptosis, which was markedly enhanced by ex vivo expanded GDT. A pan-caspase inhibitor, z-VAD-fmk, inhibited MDA-induced U138MG apoptosis and MDA/GDT-induced U87MG and U138MG apoptosis. But z-VAD-fmk increased MDA-induced U87MG apoptosis. MDA/GDT-mediated apoptosis was blocked by the anti-T cell receptor (TCR) Vγ9, mevalonate pathway inhibitor, granzyme B inhibitor, and antitumor necrosis factor (TNF)-α. In vivo xenograft assays showed that combined intraperitoneal administration of MDA/GDT induced antitumor effects on unestablished U87MG-derived subcutaneous tumors. MDA exerted direct and GDT-mediated anti-GBM apoptotic effects in a caspase-dependent manner. GDT recognized MDA-exposed GBM cells via TCRVγ9 and induced apoptosis via granzyme B and TNF-α release. Because MDA elicited anti-GBM effects in synergy with GDT in vivo, a combination of MDA and ex vivo-generated GDT could be an effective treatment in patients with GBM.  相似文献   

15.
Jin X  Yin J  Kim SH  Sohn YW  Beck S  Lim YC  Nam DH  Choi YJ  Kim H 《Cancer research》2011,71(22):7125-7134
Aberrant activation of receptor tyrosine kinases (RTK) is causally linked to the pathobiological traits of glioblastoma and genesis of glioma stem-like cells (GSC), but the underlying mechanism is still unknown. Here, we show that epidermal growth factor receptor (EGFR) signaling regulates the proliferation, angiogenesis, and acquisition of GSC characteristics by inducing inhibitor of differentiation 3 (ID3) and ID3-regulated cytokines [GRO1 and interleukins (IL)-6 and 8] induction. We found that EGFR-mediated ID3 expression was regulated by Smad5, which was directly phosphorylated by AKT. Furthermore, ID3 alone imparted GSC features to primary astrocytes derived from Ink4a/Arf-deficient mouse, and EGFR-ID3-IL-6 signaling axis gave rise to tumor cell heterogeneity. Conversely, EGFR inhibitors suppressed EGFR-AKT-Smad5-driven induction of ID3, which led to a decrease in the tumorsphere forming ability of GSCs and U87MG cells that possess an active mutant EGFR, EGFRvIII, without obvious cytotoxic effects. However, these cells seemed to regain colonogenic ability after removal of the EGFR inhibitors. Together, the results delineate a novel integrative molecular mechanism in which the RTK-ID signaling pathway governs genesis and maintenance of GBM histopathologic features, such as GSCs-based tumor initiation, progression, and angiogenesis.  相似文献   

16.
Insulin-like growth factor-binding protein 7 (IGFBP7) is a selective biomarker of glioblastoma (GBM) vessels, strongly expressed in tumor endothelial cells and vascular basement membrane. IGFBP7 gene regulation and its potential role in tumor angiogenesis remain unclear. Mechanisms of IGFBP7 induction and its angiogenic capacity were examined in human brain endothelial cells (HBECs) exposed to tumor-like conditions. HBEC treated with GBM cell (U87MG)-conditioned media (-CM) exhibited fourfold upregulation of IGFBP7 mRNA and protein compared to control cells. IGFBP7 gene regulation in HBEC was methylation independent. U87MG-CM analysed by enzyme-linked immunosorbent assay contained approximately 5 pM transforming growth factor (TGF)-beta1, a concentration sufficient to stimulate IGFBP7 in HBEC to similar levels as U87MG-CM. Both pan-TGF-beta-neutralizing antibody (1D11) and the TGF-beta1 receptor (activin receptor-like kinase 5, ALK5) antagonist, SB431542, blocked U87MG-CM-induced IGFBP7 expression in HBEC, indicating that TGF-beta1 is an important tumor-secreted effector capable of IGFBP7 induction in endothelial cells. HBEC exposed to either U87MG-CM or IGFBP7 protein exhibited increased capillary-like tube (CLT) formation in Matrigel. Both TGF-beta1- and U87MG-CM-induced Smad-2 phosphorylation and U87MG-CM-induced CLT formation in HBEC were inhibited by the ALK5 antagonist, SB431542. These data suggest that proangiogenic IGFBP7 may be induced in brain endothelial cells by TGF-betas secreted by GBM, most likely through TGF-beta1/ALK5/Smad-2 pathway.  相似文献   

17.
The multifunctional growth factor scatter factor/hepatocyte growth factor (SF/HGF) and its receptor tyrosine kinase c-Met have emerged as key determinants of brain tumor growth and angiogenesis. SF/HGF and c-Met are expressed in brain tumors, the expression levels frequently correlating with tumor grade, tumor blood vessel density, and poor prognosis. Overexpression of SF/HGF and/or c-Met in brain tumor cells enhances their tumorigenicity, tumor growth, and tumor-associated angiogenesis. Conversely, inhibition of SF/HGF and c-Met in experimental tumor xenografts leads to inhibition of tumor growth and tumor angiogenesis. SF/HGF is expressed and secreted mainly by tumor cells and acts on c-Met receptors that are expressed in tumor cells and vascular endothelial cells. Activation of c-Met leads to induction of proliferation, migration, and invasion and to inhibition of apoptosis in tumor cells as well as in tumor vascular endothelial cells. Activation of tumor endothelial c-Met also induces extracellular matrix degradation, tubule formation, and angiogenesis in vivo. SF/HGF induces brain tumor angiogenesis directly through only partly known mechanisms and indirectly by regulating other angiogenic pathways such as VEGF. Different approaches to inhibiting SF/HGF and c-Met have been recently developed. These include receptor antagonism with SF/HGF fragments such as NK4, SF/HGF, and c-Met expression inhibition with U1snRNA/ribozymes; competitive ligand binding with soluble Met receptors; neutralizing antibodies to SF/HGF; and small molecular tyrosine kinase inhibitors. Use of these inhibitors in experimental tumor models leads to inhibition of tumor growth and angiogenesis. In this review, we summarize current knowledge of how the SF/HGF:c-Met pathway contributes to brain tumor malignancy with a focus on glioma angiogenesis.  相似文献   

18.
Wu CJ  Chen Z  Ullrich A  Greene MI  O'Rourke DM 《Oncogene》2000,19(35):3999-4010
Several growth factors and cytokines, including EGF, are known to induce tyrosine phosphorylation of Signal Regulatory Proteins (SIRPs). Consistent with the idea that increased phosphorylation activates SIRP function, we overexpressed human SIRPalpha1 in U87MG glioblastoma cells in order to examine how SIRPalpha1 modulates EGFR signaling pathways. Endogenous EGFR proteins are overexpressed in U87MG cells and these cells exhibit survival and motility phenotypes that are influenced by EGFR kinase activity. Overexpression of the SIRPalpha1 cDNA diminished EGF-induced phosphoinositide-3-OH kinase (PI3-K) activation in U87MG cells. Reduced EGF-stimulated activation of PI3-K was mediated by interactions between carboxyl terminus of SIRPalpha1 and the Src homology-2 (SH2)-containing phosphotyrosine phosphatase, SHP2. SIRPalpha1 overexpression also reduced the EGF-induced association between SHP2 and the p85 regulatory subunit of PI3-K. Inhibition of transformation and enhanced apoptosis following gamma-irradiation were observed in SIRPalpha1-overexpressing U87MG cells, and enhanced apoptosis was associated with reduced levels of bcl-xL protein. Furthermore, SIRPalpha1-overexpressing U87MG cells displayed reduced cell migration and cell spreading that was mediated by association between SIRPalpha1 and SHP2. However, SIRPalpha1-overexpressing U87MG clonal derivatives exhibited no differences in cell growth or levels of mitogen-activated protein kinase (MAPK) activation. These data reveal a pathway that negatively regulates EGFR-induced PI3-K activation in glioblastoma cells and involves interactions between SHP2 and tyrosine phosphorylated SIRPalpha1. These results also suggest that negative regulation of PI3-K pathway activation by the SIRP family of transmembrane receptors may diminish EGFR-mediated motility and survival phenotypes that contribute to transformation of glioblastoma cells. Oncogene (2000) 19, 3999 - 4010.  相似文献   

19.
Breast cancers often have deregulated hepatocyte growth factor (HGF) and c-Met signaling that results in increased tumor growth and invasion. Elucidating the mechanism responsible for HGF/c-Met action in breast cancer progression has been difficult as c-Met communicates with a number of secondary receptors that can lead to various pathological outcomes. Understanding how these secondary receptors facilitate HGF/c-Met cellular responses will aid in the development of better therapeutic treatment options for breast cancer patients with elevated HGF signaling. In the present study it was shown that the epidermal growth factor receptor (EGFR) plays a significant role in HGF/c-Met mediated biological activities indicative of advanced tumor pathology, including enhanced proliferation and invasion. The clinically relevant EGFR inhibitor gefitinib was used to determine the role of EGFR in HGF-induced proliferation and motility in several mammary carcinoma cells including PyVmT, MDA-MB-231 and 4T1. Our analyses indicated that EGFR inhibition significantly blocked HGF activation of c-Met and EGFR and that inhibition of these pathways mitigated HGF induced proliferation and motility. The data indicate that this inhibition was not through a direct effect of gefitinib on c-Met, but that EGFR is necessary for c-Met activation in the assays performed. These results provide a novel mechanism of action for EGFR as a mediator of HGF signaling thereby linking EGFR to the oncogenic potential of c-Met in mammary carcinomas cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号