首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of an atherosclerotic lesion is in part mediated by inflammatory and oxidative mechanisms including lipid peroxidation. To characterize the potential role of lipid peroxidation products in atherogenesis, we assessed the effect of 4-hydroxy-2-nonenal (HNE), a component of oxidatively modified lipids on vascular smooth muscle cells (VSMCs) proliferation, and its interaction with serotonin (5-hydroxytryptamine, 5-HT), a known mitogen for VSMCs. Growth-arrested rabbit VSMCs were incubated with different concentrations of HNE in the absence or presence of 5-HT. VSMCs proliferation was examined by increases in [3H]thymidine incorporation into DNA and cell number. HNE and 5-HT stimulated DNA synthesis in a dose-dependent manner. HNE had a maximal proliferative effect at a concentration of 1 microM (143% of the control) and 5-HT at 50 microM (211%). When added together, low concentrations of HNE (0.1 microM) and 5-HT (5 microM) synergistically induced DNA synthesis (273%). These effects on DNA synthesis were paralleled by an increase in cell number. A 5-HT2 receptor antagonist LY 281067 (10 microg/ml) and pertussis toxin (10 ng/ml) inhibited the mitogenic effect of 5-HT only. Protein tyrosine kinase inhibitor erbstatin A (10 microM) completely inhibited the mitogenic effect of HNE and partially that of 5-HT and the combined effect of HNE+5-HT. Protein kinase C inhibitor Ro 31-8220 (0.1 microM) completely inhibited mitogenic effects of both HNE and 5-HT, and also the combined effect of HNE+5-HT. The synergistic effect of HNE+5-HT on DNA synthesis was completely reversed by the combined use of LY 281067 (10 microg/ml) and antioxidants N-acetylcysteine (400 microM), vitamin C (200 microM), or vitamin E (20 microM). Our results suggest that HNE acts synergistically with 5-HT in inducing VSMCs proliferation. Combined use of both antiplatelet and antioxidant therapies may be useful for the prevention of VSMCs proliferative disorders associated with atherosclerosis and restenosis after angioplasty.  相似文献   

2.
Considerable attention has been focused on both highly oxidized low-density lipoprotein (ox-LDL) and mildly oxidized LDL (mox-LDL) as important risk factors for cardiovascular disease. Further, 5-hydroxytryptamine (5-HT) appears to play a crucial role in the development of atherosclerotic plaque. We assessed the interaction of oxidatively modified LDL and its major oxidative components, ie, hydrogen peroxide (H2O2), lysophosphatidylcholine (LPC), and 4-hydroxy-2-nonenal (HNE) with 5-HT on DNA synthesis in vascular smooth muscle cells (VSMCs). Growth-arrested rabbit VSMCs were incubated in serum-free medium with native LDL, mox-LDL, ox-LDL (all 50 ng/mL), H2O2 (0.5 microM), LPC (1 microM), or HNE (0.1 microM) for 24 hours followed by 5-HT (5 microM) for another 24 hours. DNA synthesis in VSMCs was measured by [3H]thymidine incorporation. Significant effects on [3H]thymidine incorporation were observed in VSMCs incubated with mox-LDL (129%), ox-LDL (129%), H2O2 (119%), LPC (115%), HNE (127%), or 5-HT (183%) in contrast with native LDL (113%). The mitogenic effect of 5-HT was potentiated by mox-LDL, ox-LDL, H2O2, LPC, or HNE (183 to 365%, 274%, 304%, 339%, or 273%, respectively) but not by native LDL (240%). The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 (10 microM) significantly inhibited the mitogenic effect of 5-HT but did not influence the effects of mox-LDL, ox-LDL, H2O2, LPC, or HNE. The intracellular antioxidant N-acetylcysteine (400 microM) significantly inhibited the mitogenic effects of mox-LDL, ox-LDL, H2O2, LPC, and HNE but not that of 5-HT. Our results suggest that mox-LDL, ox-LDL, and their major components H2O2, LPC, and HNE act synergistically with 5-HT in inducing VSMC DNA synthesis via MAPK and redox-sensitive pathways, contributing to the development of atherosclerotic plaque.  相似文献   

3.
BACKGROUND: Previous studies have shown that very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low density lipoprotein (LDL) from hyperlipidemic plasma are more atherogenic than those from normal plasma. Since platelet aggregation at sites of atherosclerotic injury exposes the cells to high concentrations of serotonin (5HT), a known mitogen for vascular smooth muscle cells (VSMCs), it was examined whether VLDL, IDL or LDL from plasma of 1% cholesterol-fed rabbits can potentiate the mitogenic effect of 5HT on VSMC. METHODS: Growth arrested primary aortic VSMC in 1st or 2nd passage were incubated with different concentrations of VLDL, IDL or LDL in the presence or absence of pertusis toxin (PTX) for 24 h followed by incubation with 5HT for 24 h. The amount of [3H]thymidine incorporated into the DNA as well as the increase in cell number was measured. RESULTS: Either VLDL, IDL or LDL at a concentration of 60 microg/ml induced proliferation of VSMC by themselves (196, 137 or 122% increase in [3H]thymidine incorporation, or 122, 119 or 122% increase in cell number, respectively when compared to the control, P<0.05). This effect on DNA synthesis was markedly potentiated by 50 microM 5HT to 465, 714 and 1369%, respectively. PTX reversed the mitogenic effect of 5HT, but not that of VLDL, IDL or LDL. Conclusion: These results suggest that even low concentration of VLDL, IDL or LDL from hypercholesterolemic plasma may significantly potentiate the mitogenic effect of 5HT, that is released by aggregating platelets at sites of vascular damage.  相似文献   

4.
Human urotensin-II (U-II) is the most potent vasoactive peptide identified to date, and may be involved in hypertension and atherosclerosis. We investigated the effects of the interactions between U-II or other vasoactive agents and mildly oxidized low-density lipoprotein (mox-LDL) or hydrogen peroxide (H2O2) on the induction of vascular smooth muscle cell (VSMC) proliferation. Growth-arrested rabbit VSMCs were incubated with vasoactive agents (U-II, endothelin-1, angiotensin-II, serotonin, or thromboxane-A2) in the presence or absence of mox-LDL or H2O2. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. On interaction with mox-LDL or H2O2, U-II induced the greatest increase in [3H]thymidine incorporation among these vasoactive agents. A low concentration of U-II (10 nmol/l) enhanced the potential mitogenic effect of low concentrations of mox-LDL (120 to 337%) and H2O2 (177 to 226%). U-II at 50 nmol/l showed the maximal mitogenic effect (161%), which was abolished by G protein inactivator (GDP-beta-S), c-Src tyrosine kinase inhibitor (radicicol), protein kinase C (PKC) inhibitor (Ro31-8220), extracellular signal-regulated kinase (ERK) kinase inhibitor (PD98059), or Rho kinase inhibitor (Y27632). Mox-LDL at 5 microg/ml showed the maximal mitogenic effect (211%), which was inhibited by free radical scavenger (catalase), intracellular and extracellular antioxidants (N-acetylcysteine and probucol), nicotinamide adenine dinucleotide phosphate oxidase inhibitor (diphenylene iodonium), or c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results suggested that U-II acts in synergy with mox-LDL in inducing VSMC DNA synthesis at the highest rate among these vasoactive agents. Activation of the G protein/c-Src/PKC/ERK and Rho kinase pathways by U-II together with the redox-sensitive JNK pathway by mox-LDL may explain the synergistic interaction between these agents.  相似文献   

5.
Mildly oxidized LDL (mox-LDL) has been shown to induce monocyte-endothelial interactions and vascular smooth muscle cell (VSMC) proliferation, key events in the formation of the atherosclerotic lesion. Growth factors and vasoactive peptides are also thought to play a major role in atherogenesis. We examined the interaction between mox-LDL and well-known vasoactive agents such as serotonin (5-HT), angiotensin II (Ang-II), endothelin-1 (ET-1), or urotensin II (U-II) in inducing DNA synthesis in VSMCs. Growth-arrested VSMCs were incubated with different concentrations of native LDL, mox-LDL, or highly oxidized LDL (ox-LDL) with 5-HT, Ang-II, ET-1, or U-II in the absence or presence of N-acetylcysteine (NAC), an intracellular free radical scavenger. DNA synthesis in VSMCs was examined by [3H]thymidine incorporation into cellular DNA. Mox-LDL and ox-LDL stimulated [3H]thymidine incorporation with a maximal effect at 5 microg/ml (211%, 154%), which values were significantly greater than that for native LDL (128%). 5-HT, Ang-II, ET-1, or U-II also stimulated [3H]thymidine incorporation in a dose-dependent manner. 5-HT had a maximal stimulatory effect at a concentration of 50 micromol/l (205%), Ang-II at 1.75 micromol/l (202%), ET-1 at 0.1 micromol/l (205%), and U-II at 0.05 micromol/l (161%). When added together, mox-LDL (100 ng/ml)-induced [3H]thymidine incorporation was potentiated by low concentrations of 5-HT (1 micromol/l), Ang-II (0.5 micromol/l), ET-1 (1 nmol/l), or U-II (10 nmol/l) (114% to 330%, 325%, 338%, or 345%, respectively). Synergistic interactions of mox-LDL with 5-HT, Ang-II, ET-1, or U-II were significantly inhibited by NAC (400 micromol/l). Our results suggest that mild oxidation of LDL may enhance its atherogenic potential and exert a synergistic interaction with vasoactive agents in inducing DNA synthesis via the generation of reactive oxygen species in VSMCs.  相似文献   

6.
OBJECTIVES: Considerable attention has been focused on both mildly oxidized low-density lipoprotein (mox-LDL) and highly oxidized LDL (ox-LDL) as important risk factors for cardiovascular disease. Further, angiotensin II (Ang II) appears to play a crucial role in the development of hypertension and atherosclerosis. We assessed the effect of oxidatively modified LDL and its major oxidative components, i.e., hydrogen peroxide (H2O2), lysophosphatidylcholine (LPC), and 4-hydroxy-2-nonenal (HNE) and their interaction with Ang II on vascular smooth muscle cell (VSMC) DNA synthesis. METHODS: Growth-arrested rabbit VSMCs were incubated in serum-free medium with different concentrations of native LDL, mox-LDL, ox-LDL, H2O2, LPC, or HNE with or without Ang II. DNA synthesis in VSMCs was measured by [3H]thymidine incorporation. RESULTS: Ang II stimulated DNA synthesis in a dose-dependent manner with a maximal effect at a concentration of 1 micromol/l (173%). Ang II (0.5 micromol/l) amplified the effect of native LDL at 500 ng/ml, ox-LDL at 100 ng/ml, and mox-LDL at 50 ng/ml on DNA synthesis (108 to 234%, 124 to 399%, 129 to 433%, respectively). H2O2 had a maximal effect at a concentration of 5 micromol/l (177%), LPC at 15 micromol/l (156%), and HNE at 0.5 micromol/l (137%). Low concentrations of H2O2 (1 micromol/l), LPC (5 micromol/l), or HNE (0.1 micromol/l) also acted synergisitically with Ang II (0.5 micromol/l) in inducing DNA synthesis to 308, 304, or 238%, respectively. Synergistic interactions of Ang II (0.5 micromol/l) with mox-LDL, ox-LDL (both 50 ng/ml), H2O2 (1 micromol/l), LPC (5 micromol/l), or HNE (0.1 micromol/l) on DNA synthesis were completely reversed by the combined use of probucol (10 micromol/l), a potent antioxidant and candesartan (0.1 micromol/l), an AT1 receptor antagonist. CONCLUSIONS: Our results suggest that mox-LDL, ox-LDL, and their major components H2O2, LPC, and HNE act synergistically with Ang II in inducing VSMC DNA synthesis. A combination of antioxidants with AT1 receptor blockade may be effective in the treatment of VSMC proliferative disorders associated with hypertension and atherosclerosis.  相似文献   

7.
Vascular smooth muscle cell (VSMC) proliferation is a key feature in the development of atherosclerosis and restenosis after angioplasty, which can occur in response to many different humoral and mechanical stimuli. We investigated the growth promoting activities of two potent vasoactive substances, angiotensin II (Ang II) and serotonin (5-HT), on cultured rabbit VSMCs. Growth-arrested VSMCs were incubated with serum-free medium containing different concentrations of Ang II in the presence or absence of 5-HT. [3H]thymidine incorporation into VSMC DNA was measured as an index of cell proliferation. Ang II and 5-HT stimulated DNA synthesis in a dose-dependent manner with a maximal effect at 1.75 microM for Ang II (202%) and 50 microM for 5-HT (205%). When added together, low concentrations of Ang II (1 microM) and 5-HT (5 microM) synergistically induced DNA synthesis (363%). Candesartan (1 microM), an AT(1) receptor antagonist, but not PD 123319 (1 microM), an AT(2) receptor antagonist, inhibited the mitogenic effect on Ang II and its interaction with 5-HT. Sarpogrelate (10 microM), a 5-HT(2A) receptor antagonist, and pertussis toxin (10 ng/ml) inhibited the mitogenic effect of 5-HT and its interaction with Ang II. The protein kinase C inhibitor Ro 31-8220 (0.1 microM), the Raf-1 inhibitor radicicol (10 microM), and the MAPK kinase inhibitor PD 098059 (10 microM) abolished mitogenic effects of Ang II and 5-HT, and also their synergistic interaction. The JAK2 inhibitor AG 490 (10 microM) had only a minimal inhibitory effect of Ang II-induced DNA synthesis but significantly inhibited the interaction of Ang II with 5-HT. The synergistic effect on Ang II (1 microM) with 5-HT (5 microM) on DNA synthesis was completely reversed by the combined use of both candesartan (1 microM) and sarpogrelate (10 microM). Our results suggest that Ang II and 5-HT exert a synergistic interaction on VSMC proliferation via AT(1) and 5-HT(2A) receptors. The activation of MAPK and JAK/STAT pathways may explain the synergistic interaction between Ang II and 5-HT.  相似文献   

8.
9.
Diets rich in fish oils are associated with a reduced risk of cardiovascular disease including reduction of atherosclerosis and restenosis. We examined the effect of omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), major components of fish oils, on serotonin (5HT) stimulated vascular endothelial cells proliferation as a possible mechanism for this vascular protective effect. In this study we demonstrate that 5HT, a known mitogen for vascular endothelial cells, failed to stimulate proliferation of endothelial cells pre-incubated with EPA and DHA. This inhibitory effect was specific for omega-3 fatty acids only and not shared by other fatty acids like oleic acid (monounsaturated) or arachidonic acid (polyunsaturated) or palmitic acid (saturated). When endothelial cells were exposed to EPA and DHA in the ratio present in fish oils, EPA and DHA were shown to act synergistically in inhibiting the proliferative effect of 5HT. These results suggests that one of the mechanisms by which fish oils may confer vascular protective effect is by making the endothelial cells less responsive to mitogenic stimuli of growth factors such as 5HT that are released by aggregating platelets at sites of vascular injury. This inhibition of endothelial cell proliferation may account for the clinically observed effects of fish oil in attenuating the progression of atherosclerotic changes or neointimal proliferation following vascular injury.  相似文献   

10.
BACKGROUND: Urotensin II (U-II), the most potent vasoconstrictor, and serotonin (5-HT) are known to play an important role in pulmonary hypertension. However, little is known about the effect of U-II and its interaction with 5-HT on vascular smooth muscle cell (VSMC) proliferation. OBJECTIVE: We assessed the interaction between U-II and 5-HT in inducing VSMC proliferation. METHODS: Growth-arrested rabbit VSMCs were incubated in serum-free medium with different concentrations of U-II and 5-HT. VSMC proliferation was examined by the increase in [3H]thymidine incorporation into DNA and cell number. RESULTS: U-II or 5-HT induced [3H]thymidine incorporation in a dose-dependent manner with a maximal effect at a concentration of 50 nmol/l (161%) or 50 micromol/l (205%), respectively. When added together, low concentrations of U-II (50 nmol/l) and 5-HT (1 micromol/l) interacted synergistically in inducing [3H]thymidine incorporation (382%). These effects on [3H]thymidine incorporation were paralleled by an increase in cell number. The G-protein inactivator GDP-beta-S (100 micromol/l), protein kinase C (PKC) inhibitor Ro31-8220 (0.1 micromol/l), Src family tyrosine kinase inhibitor PP2 (1 micromol/l), and mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 (10 micromol/l) inhibited the mitogenic effects of U-II and 5-HT and also their interaction in inducing [3H]thymidine incorporation. CONCLUSION: Our results suggest that U-II and 5-HT may induce the synergistic interaction in inducing VSMC proliferation via a G-protein-coupled receptor/PKC/Src tyrosine kinase/MAPK pathway, thus contributing to the relatively rapid development of atherosclerosis in hypertensive vascular disease.  相似文献   

11.
OBJECTIVE: Changes in the local expression and signaling activity of the insulin-like growth factor-I (IGF-I) axis regulate growth and survival of plaque-derived vascular smooth muscle cells (VSMC) and influence plaque fate. Recent evidence suggests that accumulation of low density lipoproteins (LDL) in VSMC during the progression of atherogenesis is linked to local changes in IGF-I signaling. We investigated the effects of LDL on the biological actions and downstream signaling pathways mediated by this growth factor in A10 VSMC. METHODS AND RESULTS: We first characterized the effects of LDL on the proliferative and anti-apoptotic actions of IGF-I in A10 VSMC. Native LDL were mitogenic and synergistically enhanced DNA synthesis induced by IGF-I from 4-, 9- up to 7.8-fold, while having no effect on its anti-apoptotic actions. In contrast, oxidized LDL, at oxidation levels that did not modify these actions by themselves, significantly reduced the mitogenic and survival effects of IGF-I by 40% and 60%, respectively. These observations correlated with opposite changes exerted by native and oxidized LDL on the insulin receptor substrate-1 (IRS)-associated PI3 kinase/Akt response to IGF-I. The extracellular signal-regulated kinase (ERK) signaling response was not affected. CONCLUSIONS: Our study demonstrates a previously unidentified modulation of the actions of IGF-I on A10 VSMC by LDL, dependent on their extent of oxidative modification. Our findings suggest that the differential modulation of the PI3 kinase/Akt response to IGF-I play a pivotal role.  相似文献   

12.
Insulin-like growth factor-I (IGF-I) plays an important role in regulating vascular smooth muscle cell (VSMC) proliferation and directed migration. The mitogenic and chemotactic actions of IGF-I are mediated through the IGF-I receptor, but how the activation of the IGF-I receptor leads to these biological responses is poorly understood. In this study, we examined the role of phosphatidylinositol 3-kinase (PI3 kinase) in mediating the mitogenic and chemotactic signals of IGF-I. IGF-I treatment resulted in a significant increase in phosphotyrosine-associated PI3 kinase activity in cultured primary VSMCs. To determine whether insulin receptor substrate (IRS)-1, -2, or both are involved in IGF-I signaling in VSMCs, cell lysates were immunoprecipitated with either an anti-IRS-1 or an anti-IRS-2 antibody, and the associated PI3 kinase activity was determined. IGF-I stimulation resulted in a significant increase in IRS-1- but not IRS-2-associated PI3 kinase activity, suggesting that IGF-I primarily utilizes IRS-1 to transmit its signal in VSMCs. The IGF-I-induced increase in IRS-I-associated PI3 kinase activity was concentration dependent. At the maximum concentration (50 ng/mL), IGF-I induced a 60-fold increase. This activation occurred within 5 minutes and was sustained at high levels for at least 6 hours. IGF-I also caused a concentration-dependent and long-lasting activation of protein kinase B (PKB/Akt). Inhibition of PI3 kinase activation by LY294002 or wortmannin abolished IGF-I-stimulated VSMC proliferation and reduced IGF-I-directed VSMC migration by approximately 60%. These results indicate that activation of PI3 kinase is required for both IGF-I-induced VSMC proliferation and migration.  相似文献   

13.
BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation induced by various growth factors has been implicated in a wide variety of pathological processes, including hypertension, atherosclerosis and restenosis after angioplasty. OBJECTIVES: To investigate the interactions among well-known potent vasoconstrictor substances, endothelin-1 (ET-1), angiotensin II (Ang II), and serotonin (5-HT), on VSMC proliferation. METHODS: Growth-arrested rabbit VSMCs were incubated with different concentrations of ET-1 in the absence or presence of Ang II, 5-HT, or both. VSMC proliferation was examined by increases in incorporation of [3H]thymidine into DNA and in cell number. RESULTS: ET-1, Ang II and 5-HT stimulated DNA synthesis in a dose-dependent manner. ET-1 had a maximal effect at a concentration of 0.5 micromol/l (259% of control), Ang II at 1 micromol/l (173%), and 5-HT at 50 micromol/l (205%). When added together, ET-1 (0.1 micromol/l) and Ang II (1 micromol/l) synergistically induced DNA synthesis (341%). When the vasoconstrictors were tested in combination, even non-mitogenic concentrations of ET-1 (0.01 nmol/l) potentiated 5-HT (5 micromol/l)-induced DNA synthesis (404%). Co-incubation of ET-1 (0.01 micromol/l) with Ang II (1 micromol/l) and 5-HT (5 micromol/l) synergistically induced DNA synthesis (566%). These effects on DNA synthesis were paralleled by an increase in cell number. The ETA/B non-selective receptor antagonist, TAK044 (1 micromol/l) and the ETA receptor antagonist, BQ123 (1 micromol/l), but not the ETB receptor antagonist, BQ788 (1 micromol/l), inhibited the mitogenic effect of ET-1 and its interaction with Ang II or 5-HT. In addition, TAK044 (1 micromol/l) or BQ123 (1 micromol/l) along with the angiotensin II type 1 (AT1) receptor antagonist, candesartan (1 micromol/l), the 5-HT2A receptor antagonist, sarpogrelate (10 micromol/l), or both, inhibited the interactions of ET-1 with Ang II or 5-HT. CONCLUSIONS: Our results suggest that Ang II and 5-HT could potentiate ET-1-induced VSMC proliferation. Inhibition of ETA, AT1, and 5-HT2A may be effective in the treatment of VSMC proliferative disorders associated with hypertension, atherosclerosis and restenosis after angioplasty.  相似文献   

14.
BACKGROUND AND AIM OF THE STUDY: Elevated serum serotonin is associated with carcinoid heart disease, the hallmark of which is valvular thickening. Yet, the mechanistic role of serotonin in carcinoid heart disease is poorly understood. We postulated that serotonin has a direct mitogenic effect on cardiac valvular subendocardial cells, and that this effect is mediated by serotonin receptors. METHODS: The dose-dependent proliferative effects of serotonin (10(-8) to 10(-4)M) on cultured porcine aortic valve cells via a [3H]thymidine assay were determined in vitro. Serotonin receptor antagonist studies in culture were also performed using methiotepin, a 5HT1b antagonist, and ketanserin, a 5HT2 receptor antagonist, to determine the mechanism of serotonin action. The ex-vivo proliferation level in human carcinoid (n = 26) and normal valves (n = 10) was compared using proliferating cell nuclear antigen (PCNA) staining, a marker for proliferation. Identification and localization of specific 5HT receptor was assessed by immunostaining for serotonin receptors in the valves. RESULTS: Serotonin increased valvular proliferation in vitro in a dose-dependent manner (10-fold increase) (p <0.001), and this mitogenic effect was inhibited by methiotepin but not ketanserin. In human carcinoid heart valves the level of proliferation was 35-fold higher than in normal human valves (p <0.001). 5HT1b receptors were found only in the carcinoid valves, and not in the normal valves. CONCLUSION: Serotonin is a powerful mitogen for valvular subendocardial cells. The mitogenic effect is at least partly mediated via 5HT1b receptors. Subendothelial cell proliferation is significantly elevated in human carcinoid valves in vivo. The data suggest a mechanism whereby serotonin may contribute to valvular proliferation in carcinoid heart disease.  相似文献   

15.
An early component of atherogenesis is abnormal vascular smooth muscle cell (VSMC) proliferation. The presence of Chlamydia pneumoniae in many atherosclerotic lesions raises the possibility that this organism plays a causal role in atherogenesis. In this study, C pneumoniae elementary bodies (EBs) rapidly activated p44/p42 mitogen-activated protein kinases (MAPKs) and stimulated proliferation of VSMCs in vitro. Exposure of VSMCs derived from human saphenous vein to C pneumoniae EBs (3x10(7) inclusion forming units/mL) enhanced bromodeoxyuridine (BrdU) incorporation 12+/-3-fold. UV- and heat-inactivated C pneumoniae EBs also stimulated VSMC proliferation, indicating a role of direct stimulation by chlamydial antigens. However, the mitogenic activity of C pneumoniae was heat-labile, thus excluding a role of lipopolysaccharide. Chlamydial hsp60 (25 microg/mL) replicated the effect of C pneumoniae, stimulating BrdU incorporation 7+/-3-fold. Exposure to C pneumoniae or chlamydial hsp60 rapidly activated p44/p42 MAPK, within 5 to 10 minutes of exposure. In addition, PD98059 and U0126, which are two distinct inhibitors of upstream MAPK kinase 1/2 (MEK1/2), abolished the mitogenic effect of C pneumoniae and chlamydial hsp60. Toll-like receptors (TLRs) act as sensors for microbial antigens and can signal via the p44/p42 MAPK pathway. Human VSMCs were shown to express TLR4 mRNA and protein, and a TLR4 antagonist abolished chlamydial hsp60-induced VSMC proliferation and attenuated C pneumoniae-induced MAPK activation and VSMC proliferation. Together these results indicate that C pneumoniae and chlamydial hsp60 are potent inducers of human VSMC proliferation and that these effects are mediated, at least in part, by rapid TLR4-mediated activation of p44/p42 MAPK.  相似文献   

16.
17.
p38MAPK表达与血管平滑肌细胞增殖关系的研究   总被引:2,自引:0,他引:2  
目的探讨丝裂素活化蛋白激酶p38(p38MAPK)的表达与血管平滑肌细胞(VSMC)增殖的关系以及检测p38MAPK反义寡核苷酸(AODN)对VSMC增殖的抑制作用。方法将培养大鼠胸主动脉VSMC,随机分为对照组、p38MAPKAODN组、正义寡核苷酸(SODN)组。采用噻唑蓝比色分析法(MTT)和流式细胞仪检测VSMC,用蛋白免疫印迹法测定p38MAPK蛋白量。结果p38MAPKAODN能减少p38MAPK蛋白表达,明显抑制VSMC增殖,其抑制作用与p38MAPK蛋白表达相关,呈剂量依赖性。结论p38MAPKAODN能抑制大鼠VSMC增殖,该信号分子与VSMC增殖密切相关,可能是VSMC增殖的信号途径。  相似文献   

18.
Increased levels of C-peptide, a cleavage product of proinsulin, circulate in patients with insulin resistance and early type 2 diabetes mellitus. Recent data suggest a potential causal role of C-peptide in atherogenesis by promoting monocyte and T-lymphocyte recruitment into the vessel wall. The present study examined the effect of C-peptide on vascular smooth muscle cells (VSMCs) proliferation and evaluated intracellular signaling pathways involved. In early arteriosclerotic lesions of diabetic subjects, C-peptide colocalized with VSMCs in the media. In vitro, stimulation of human or rat VSMCs with C-peptide induced cell proliferation in a concentration-dependent manner with a maximal 2.6+/-0.8-fold induction at 10 nmol/L human C-peptide (P<0.05 compared with unstimulated cells; n=9) and a 1.8+/-0.2-fold induction at 0.5 nmol/L rat C-peptide (P<0.05 compared with unstimulated cells; n=7), respectively, as shown by [H3]-thymidin incorporation. The proliferative effect of C-peptide on VSMCs was inhibited by Src short interference RNA transfection, PP2, an inhibitor of Src-kinase, LY294002, an inhibitor of PI-3 kinase, and the ERK1/2 inhibitor PD98059. Moreover, C-peptide induced phosphorylation of Src, as well as activation of PI-3 kinase and ERK1/2, suggesting that these signaling molecules are involved in C-peptide-induced VSMC proliferation. Finally, C-peptide induced cyclin D1 expression as well as phosphorylation of Rb in VSMCs. Our results demonstrate that C-peptide induces VSMC proliferation through activation of Src- and PI-3 kinase as well as ERK1/2. These data suggest a novel mechanism how C-peptide may contribute to plaque development and restenosis formation in patients with insulin resistance and early type 2 diabetes mellitus.  相似文献   

19.
BACKGROUND: We reported that insulin modestly stimulates NAD(P)H oxidase activity in cultured rat vascular smooth muscle cells (VSMC) and synergistically stimulates enzyme activity with angiotensin II (Ang II), leading to synergistic stimulation of VSMC migration. The aim of this study was to determine the mechanism of insulin-stimulated NAD(P)H oxidase activity. METHODS: Cultured rat VSMC O(2)(-) and H(2)O(2) production was measured by lucigenin and luminol luminescence, respectively, and lactate and pyruvate content of cell lysates determined by measuring increase or loss, respectively, of NADH in the presence of lactate dehydrogenase. Migration of VSMC was determined by a wound closure method. RESULTS: Administration of 1 nmol/L insulin increased the lactate/pyruvate ratio (LPR), and hence the NADH/NAD(+) ratio by 122 +/- 16% (P < .05). Exogenous lactate (5 mmol/L), which increased the LPR similarly to insulin, increased O(2)(-) production by 123% +/- 32% (P < .05); Ang II (50 nmol/L) increased it by 60% +/- 9% (P < .05); but together these agents synergistically increased O(2)(-) production to 343% +/- 72% above the control value (P < .05 v the sum of the lactate-and Ang II-stimulated values), all in a diphenyleneiodonium-sensitive or apocynin-sensitive manner. Blocking the increase of insulin in the LPR with exogenous pyruvate or oxaloacetate blocked insulin's stimulation and insulin's plus Ang II's synergistic stimulation of O(2)(-)production as well as insulin's stimulation of migration of Ang II-treated VSMC. Insulin plus Ang II also stimulated H(2)O(2) production. Neither wortmannin nor pertussis toxin, which inhibit insulin-stimulated NAD(P)H oxidase activity in other cell types, affected insulin or insulin plus Ang II-stimulated O(2)(-)production. CONCLUSIONS: Insulin stimulates NAD(P)H oxidase activity and with Ang II synergistically stimulates it in cultured rat VSMC by increasing the NADH/NAD(+) redox potential, but not by phosphatidylinositol 3-kinase or heterotrimeric G(iota) protein-dependent pathways.  相似文献   

20.
Vascular smooth muscle cell (VSMC) proliferation is a key event in the development and progression of atherosclerotic lesions. Accumulating evidence suggests that lipoprotein lipase (LPL) produced in the vascular wall may exert proatherogenic effects. The aim of the present study was to examine the effect of LPL on VSMC proliferation. Incubation of growth-arrested human VSMCs with purified endotoxin-free bovine LPL for 48 and 72 hours, in the absence of any added exogenous lipoproteins, resulted in a dose-dependent increase in VSMC growth. Addition of VLDLs to the culture media did not further enhance the LPL effect. Treatment of growth-arrested VSMCs with purified human or murine LPL (1 microg/mL) led to a similar increase in cell proliferation. Neutralization of bovine LPL by the monoclonal 5D2 antibody, irreversible inhibition, or heat inactivation of the lipase suppressed the LPL stimulatory effect on VSMC growth. Moreover, preincubation of VSMCs with the specific protein kinase C inhibitors calphostin C and chelerythrine totally abolished LPL-induced VSMC proliferation. In LPL-treated VSMCs, a significant increase in protein kinase C activity was observed. Treatment of VSMCs with heparinase III (1 U/mL) totally inhibited LPL-induced human VSMC proliferation. Taken together, these data indicate that LPL stimulates VSMC proliferation. LPL enzymatic activity, protein kinase C activation, and LPL binding to heparan sulfate proteoglycans expressed on VSMC surfaces are required for this effect. The stimulatory effect of LPL on VSMC proliferation may represent an additional mechanism through which the enzyme contributes to the progression of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号