首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Enamel matrix derivative (EMD) has been clinically used to promote periodontal tissue regeneration. The purpose of the present study is to clarify EMD affects on osteoblastic cells and bone regeneration. MATERIALS AND METHODS: Mouse osteoblastic cells (ST2 cells and KUSA/A1 cells) are used in culture experiments. After cells were treated with EMD, cell growth was evaluated with DNA measurement, 5-bromo-2'-deoxyurydine (BrdU) incorporation assay. Measurement of alkaline phosphatase (ALP) activity and mineralized-nodule (MN) formation, Northern blotting analysis and zymography are also performed. In addition, EMD was applied to a rat skull defect and the defect was radiographically and histologically evaluated 2 weeks after the application. RESULTS: EMD did not stimulate ST2 cell growth; however, it enhanced KUSA/A1 cell proliferation. Although EMD stimulated ALP activity in both the cells, ALP activity in KUSA/A1 cells was affected to a much greater degree. Corresponding to the increase in ALP activity, MN formation in KUSA/A1 cells was enhanced by EMD. EMD stimulated osteoblastic phenotype expression of KUSA/A1 cells such as type I collagen, osteopontin, transforming growth factor beta 1 and osteocalcin. EMD treatment also stimulated matrix metalloproteinase production in KUSA/A1 cells. Although the effects of EMD on osteoblastic cells depend on cell type, the overall effect of EMD on osteoblastic cells is stimulatory rather than inhibitory. Finally, EMD application to a rat skull defect accelerated new bone formation. CONCLUSION: These results indicate that EMD affects osteoblastic cells and has potential as a therapeutic material for bone healing.  相似文献   

2.
OBJECTIVES: Enamel matrix derivative (EMD) is used clinically to promote periodontal tissue regeneration, however, there are few reports regarding effects of EMD on bone metabolism. We evaluated the influence of EMD on osteoclast formation using in vitro bone marrow culture. METHODS: Bioactive fractions were purified from EMD by reverse-phase HPLC on a C18 hydrophobic support, then mouse bone marrow cells were cultured with EMD or its purified fractions for 8 days. Following tartrate resistant acid phosphatase (TRAP) staining, TRAP-positive multinucleated cells were counted. The expression of receptor activator of NF-kappaB ligand (RANKL) in osteoblastic cells was detected using immunoblotting. RESULTS: EMD was dissolved in 0.1% (vol/vol) trifluoroacetic acid and applied to a C18 column for HPLC. Two major peaks were obtained of which the second (fraction numbers 21-25) was found to induce the formation of osteoclasts in mouse marrow cultures. Further, osteoprotegerin completely inhibited osteoclast formation in mouse marrow cultures with or without osteoblastic stromal cells, when being cultured with EMD or its purified fractions. In addition, Western blot analysis revealed the presence of RANKL in mouse osteoblastic cells stimulated with EMD or its purified fractions. CONCLUSION: Our results indicate that EMD induces the formation of osteoclasts through RANKL expressed by osteoblastic cells, and suggest that EMD may regulate both bone formation and bone resorption during periodontal tissue regeneration.  相似文献   

3.
4.
Previous studies have provided the biological basis for the therapeutic use of enamel matrix derivative (EMD) at sites of periodontal regeneration. A purpose of this study is to determine effects of EMD on cell growth, osteoblastic differentiation and insulin-like growth factor-I (IGF-I) and transforming growth factor-beta 1 (TGF-beta 1) production in human periodontal ligament cells (HPLC). We also examined participation of endogenous IGF-I and TGF-beta 1 with EMD-stimulated cell growth in these cells. HPLCs used in this study were treated with EMD alone or in combination with antihuman IGF-I antibody (anti-hIGF-I) or anti-hTGF-beta 1, recombinant human bone morphogenetic protein-2 (rhBMP-2), 1,25-dihydroxyvitamin D3[1,25(OH)2D3], rhTGF-beta 1 or rhIGF-I. After each treatment, cell growth, the production of IGF-I and TGF-beta 1 and the expression of osteoblastic phenotypes were evaluated. EMD stimulated cell growth in dose-dependent and time-dependent manners. EMD was also stimulated to express IGF-I and TGF-beta 1 at protein and mRNA levels. The EMD-stimulated cell growth was partially suppressed by cotreatment with anti-hIGF-I or anti-hTGF-beta 1, and cell growth was also stimulated by treatment with rhIGF-I or rhTGF-beta 1. rhBMP-2 stimulated alkaline phosphatase (ALPase) activity and ALPase mRNA expression, and 1,25(OH)2D3 stimulated ALPase and osteocalcin mRNA expression. However, EMD showed no effect on the osteoblastic phenotypes expression. These results demonstrated that EMD has no appreciable effect on osteoblastic differentiation, however it stimulates cell growth and IGF-I and TGF-beta 1 production in HPLC, and that these endogenous growth factors partially relate to the EMD-stimulated cell growth in HPLC.  相似文献   

5.
6.
BACKGROUND: The ideal goal of clinical therapy in periodontal defects is regeneration of all lost structures. For regeneration to occur, cell proliferation, migration, and extracellular matrix synthesis are prerequisites. Attempts at regeneration of periodontal defects by guided tissue regeneration using bone grafts and membranes have not always yielded predictable results. Recently, attempts at engineering the defects using various materials have shown promising results. Two such approaches have been used to regenerate periodontal defects, one using extracellular matrix such as enamel matrix proteins and the other using growth factors. However, to our knowledge, no study has looked at combining these two approaches to achieve potentially even greater regeneration. METHODS: Primary human periodontal ligament (PDL) fibroblasts were explanted, and alkaline phosphatase (ALK PHOS) activity was determined. Phenotypically different cell lines were incubated for 1, 3, 6, and 10 days in 0.2% fetal bovine serum (FBS) media containing different concentrations of either enamel matrix derivative (EMD), amelogenin, platelet-derived growth factor-BB (PDGF-BB), EMD+PDGF-BB, or amelogenin+PDGF-BB. A culture of 0.2% FBS alone served as a negative control, and a culture of 10% FBS served as a positive control. Cell proliferation was measured using a Coulter counter to determine the cell number. The effects on a wound-fill model were evaluated by scraping a 3-mm wide cell-free zone in PDL monolayers across the diameter of the tissue-culture plate and determining PDL cell migration into the cell-free zone using computer assisted histomorphometry. RESULTS: Compared to the control, only EMD+PDGF-BB significantly increased PDL cell proliferation in an ALK PHOS (-) cell line (P<0.001), and EMD alone, EMD+PDGF-BB, and amelogenin+PDGF-BB significantly increased PDL cell proliferation in an ALK PHOS (+) cell line (P<0.001) with EMD+PDGF-BB showing a trend for greater proliferation than either PDGF or EMD alone. Individually, EMD and amelogenin had no significant effect on PDL cell proliferation. In the wound-fill experiment, all factors and their combinations except amelogenin significantly enhanced cell migration compared to the control (P<0.05) at the wound edge. In addition, EMD+PDGF-BB had additive effects on the ALK PHOS (-) cell line at the wound edge. At the center of the wound, neither EMD nor amelogenin had a significant wound-fill effect. However, the combination of EMD+PDGF-BB additively increased wound fill for both ALK PHOS (+) and ALK PHOS (-) cells. CONCLUSIONS: The combination of EMD and PDGF-BB produces greater proliferative and wound-fill effects on PDL cells than each by themselves. If these combined effects can be translated clinically, one may see greater regeneration in periodontal defects with this combination. However, amelogenin does not have significant effects on PDL cell proliferation or migration by itself. This may suggest that either another enamel matrix component in EMD may be responsible for some of its clinical effects, or that amelogenin alone may not trigger the regenerative potential of periodontal tissues and that it requires a combined interaction with other enamel matrix components of EMD to direct the regenerative process.  相似文献   

7.
8.
OBJECTIVE: Enamel extracellular matrix proteins in the form of the enamel matrix derivative EMDOGAIN (EMD) have been successfully employed to mimic natural cementogenesis to restore fully functional periodontal ligament, cementum and alveolar bone in patients with severe periodontitis. When applied to denuded root surfaces EMD forms a matrix that locally facilitates regenerative responses in the adjacent periodontal tissues. The cellular mechanism(s), e.g. autocrine growth factors, extracellular matrix synthesis and cell growth, underlying PDL regeneration with EMD is however poorly investigated. MATERIAL AND METHODS: Human periodontal ligament (PDL) cells were cultured on EMD and monitored for cellular attachment rate, proliferation, DNA replication and metabolism. Furthermore, intracellular cyclic-AMP levels and autocrine production of selected growth factors were monitored by immunological assays. Controls included PDL and epithelial cells in parallel cultures. RESULTS: PDL cell attachment rate, growth and metabolism were all significantly increased when EMD was present in cultures. Also, cells exposed to EMD showed increased intracellular cAMP signalling and autocrine production of TGF-beta1, IL-6 and PDGF AB when compared to controls. Epithelial cells increased cAMP and PDGF AB secretion when EMD was present, but proliferation and growth were inhibited. CONCLUSION: Cultured PDL cells exposed to EMD increase attachment rate, growth rate and metabolism, and subsequently release several growth factors into the medium. The cellular interaction with EMD generates an intracellular cAMP signal, after which cells secrete TGF-beta1, IL-6 and PDGF AB. Epithelial cell growth however, is inhibited by the same signal. This suggest that EMD favours mesenchymal cell growth over epithelium, and that autocrine growth factors released by PDL cells exposed to EMD contribute to periodontal healing and regeneration in a process mimicking natural root development.  相似文献   

9.
AIM: The objective of this study was to evaluate the effects of enamel matrix derivative (EMD), transforming growth factor-beta1 (TGF-beta1), and a combination of both factors (EMD+TGF-beta1) on periodontal ligament (PDL) fibroblasts. MATERIAL AND METHODS: Human PDL fibroblasts were obtained from three adult patients with a clinically healthy periodontium, using the explant technique. The effects of EMD, TGF-beta1, or a combination of both were analysed on PDL cell proliferation, adhesion, wound healing, and total protein synthesis, and on alkaline phosphatase (ALP) activity and bone-like nodule formation. RESULTS: Treatment with EMD for 4, 7, and 10 days increased cell proliferation significantly compared with the negative control (p<0.05). At day 10, EMD and EMD+TGF-beta1 showed a higher cell proliferation compared with TGF-beta1 (p<0.01). Cell adhesion was significantly up-regulated by TGF-beta1 compared with EMD and EMD+TGF-beta1 (p<0.01). EMD enhanced in vitro wound healing of PDL cells compared with the other treatments. Total protein synthesis was significantly increased in PDL cells cultured with EMD compared with PDL cells treated with TGF-beta1 or EMD+TGF-beta1 (p<0.05). EMD induced ALP activity in PDL fibroblasts, which was associated with an increase of bone-like nodules. CONCLUSION: These findings support the hypothesis that EMD and TGF-beta1 may play an important role in periodontal regeneration. EMD induced PDL fibroblast proliferation and migration, total protein synthesis, ALP activity, and mineralization, while TGF-beta1 increased cellular adhesion. However, the combination of both factors did not positively alter PDL fibroblast behaviour.  相似文献   

10.
BACKGROUND: Simvastatin is one of the cholesterol lowering drugs. Recent studies demonstrated that it has a bone stimulatory effect. Periodontal ligament (PDL) cells are believed to play an important role in periodontal regeneration; that is, they may differentiate into specific cells which make cementum, bone, and attachment apparatus. It would be of interest whether simvastatin has a positive effect on PDL cells. Therefore, effects of simvastatin on cell proliferation and osteoblastic differentiation in PDL cells were analyzed. METHODS: Human PDL cells were cultured in monolayer with simvastatin for 24 and 72 hours and cell metabolism and proliferation were determined. To analyze osteoblastic differentiation, human PDL cells were cultured in organoid culture for 7, 14, and 21 days and alkaline phosphatase (ALP) activity, osteopontin (OPN), bone morphogenetic protein (BMP) -2, osteocalcin (OCN), and calcium contents were measured. They were co-treated by simvastatin and mevalonate. RESULTS: Simvastatin enhanced cell proliferation and metabolism dose-dependently after 24 hours. Simvastatin also stimulated ALP activity of human PDL cells dose-dependently, and maximum effect was obtained at the concentration of 10(8) M. In time dependent analysis, 10(8) M simvastatin stimulated ALP activity and osteopontin content after 7 days and calcium contents after 21 days. BMP-2 and OCN contents were not detected. Moreover this statin-enhanced ALP activity was abolished by mevalonate. CONCLUSION: These results suggest that at low concentration, simvastatin exhibits positive effect on proliferation and osteoblastic differentiation of human PDL cells, and these effects may be caused by the inhibition of the mevalonate pathway.  相似文献   

11.
In vitro wound healing responses to enamel matrix derivative   总被引:8,自引:0,他引:8  
BACKGROUND: Enamel matrix derivative (EMD) contains a variety of hydrophobic enamel matrix proteins and is extracted from developing embryonal enamel of porcine origin. EMD has been associated with the formation of acellular cementum and it has been found to stimulate periodontal regeneration. The present study was established to investigate the influence of EMD on human periodontal ligament (PDL) cells, gingival fibroblasts (GF), and osteosarcoma (MG-63) cells on wound-fill rates using an in vitro wound model. METHODS: Wounds were created by making 3 mm incisions in cell monolayers across the length of tissue culture plates. The wounded PDL, GF, and MG-63 cell monolayers were treated with media containing EMD over a concentration range of 5 to 100 microg/ml, platelet-derived growth factor (PDGF-BB) at 20 ng/ml as a positive control and insulin-like growth factor (IGF-I) at 100 ng/ml as a negative control. PDL cell wounded monolayers also were treated in EMD coated tissue culture plates. After an incubation period (up to 9 days), the cells were fixed and stained and cellular fill was measured across the width of the wound by computer-assisted histomorphometry. RESULTS: When PDL, GF, and MG-63 cells were exposed to EMD in culture medium, an enhanced wound-fill was observed for all cells compared to untreated conditions. At early time points, PDL wound-fill rates in the presence of EMD were statistically greater than the rates of GF and MG-63 treated with EMD (P<0.001). There were no significant differences in wound-fill rates of PDL cells treated with EMD in medium versus EMD coated on culture plates. At days 3 and 6 post-wounding, PDL cells showed a significantly greater response to EMD than to PDGF-BB (P <0.001). EMD also had a greater effect on GF wound-fill rates than PDGF-BB at days 6 and 9. MG-63 cells were less responsive to PDGF-BB and EMD than PDL cells and GF. All 3 cell types treated with IGF-I showed no significant increase of wound-fill rates. CONCLUSION: The present data support the concept that clinical application of enamel matrix derivative may enhance periodontal wound regeneration by specifically modifying periodontal ligament cell proliferation and migration.  相似文献   

12.
Background: Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze‐dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. Methods: DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real‐time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. Results: Analysis of cell attachment revealed no significant differences among control, blood‐coated, and EMD‐coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood‐coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD‐coated DFDBA particles at 3, 7, and 14 days. Conclusion: The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.  相似文献   

13.
14.
Emdogain (EMD), a formulation of Enamel Matrix Proteins (EMP), is used clinically for periodontal regeneration, where it stimulates cementum formation and promotes gingival healing. In this study, we investigated the in vitro effects of EMD on rat bone marrow stromal cells (BMSC) and gingival fibroblasts (GF). EMD (at 25 micro g/mL) increased the osteogenic capacity of bone marrow, as evidenced by approximately three-fold increase in BMSC cell number and approximately two-fold increase in alkaline phosphatase (ALP) activity and mineralized nodule formation. The presence of EMD in the initial stages (first 48 hrs) of the culture was crucial for this effect. In contrast, EMD did not induce osteoblastic differentiation of GF (evidenced by lack of mineralization or ALP activity) but increased up to two-fold both their number and the amount of matrix produced. These in vitro data on BMSC and GF could explain the promotive effect of EMD on bone formation and connective tissue regeneration, respectively.  相似文献   

15.
16.
Recent studies indicate that nanocrystalline hydroxyapatite (nano-HA) paste represents a promising class of bone graft substitute. However, the underlying molecular mechanisms of nano-HA function have not yet been determined. This study was conducted to investigate the proliferation of human periodontal ligament (PDL) cells cultured in the presence of nano-HA paste and to characterize associated changes in intracellular signaling pathways. Cultured PDL cells were stimulated with nano-HA paste and enamel matrix derivative (EMD) in a soluble form. Proliferation of PDL cells was determined by incorporation of bromodeoxyuridine (BrdU) in the DNA of proliferating cells. In order to understand the signaling mechanisms underlying the increased cell proliferation of PDL cells exposed to nano-HA, the phosphorylation status of the serine/threonine protein kinase Akt, of the signal regulated kinases ERK 1/2 and of the epidermal growth factor receptor (EGFR) was analyzed by Western blotting using phospho-specific antibodies. Nano-HA paste showed two-fold less proliferation potential than EMD, but both substrates increased the proliferation rate significantly (P < 0.05) as compared with the negative control. The increased proliferation rate of PDL cells in the presence of nano-HA paste was mechanistically linked to activation of the epidermal growth factor receptor (EGFR) and its downstream targets ERK1/2 and Akt. In conclusion, our findings suggest that nano-HA paste is a stimulator of cell proliferation, possibly contributing to the main processes of periodontal tissue regeneration.  相似文献   

17.
BACKGROUND: A number of procedures have been used to achieve periodontal regeneration. Recently, enamel matrix derivative (EMD) has been the subject of significant basic and clinical investigations. The precise molecular events involved in EMD modulation of periodontal wound healing are not completely understood; however, cDNA microarray technology may enable rapid and accurate examination of EMD-mediated changes in gene expression in periodontal ligament (PDL) cells in vitro. The present study was undertaken to explore the selective effects of EMD on the activities of 268 cytokine, growth factor, and receptor genes in PDL. METHODS: PDL cells were cultured in the absence and presence of EMD at a concentration of 100 microg/ml for 4 days. RNA was extracted and used to generate labeled cDNA probes. These were hybridized to cDNA arrays comprising 268 genes and exposed to x-ray films. Autoradiographs were digitized and analyzed. RESULTS: Forty-six percent (125 of 268) of the tested genes were found to be expressed by the PDL cells. Of these 125 genes, 38 were differentially expressed by PDL cells which had been cultured in the presence of EMD. Among the 38, 12 were found to be downregulated, notably mostly inflammatory genes, whereas 26 genes demonstrated upregulation, many of these coding for growth factors and growth factor receptors. CONCLUSIONS: The present study has shown that EMD down-regulates the expression of genes involved in the early inflammatory phases of wound healing while simultaneously upregulating genes encoding growth and repair-promoting molecules. This may partly explain the apparent efficacy of EMD application in periodontal regeneration.  相似文献   

18.
19.
Background: The clinical use of an enamel matrix derivative (EMD) has been shown to promote formation of new cementum, periodontal ligament (PDL), and bone and to significantly enhance the clinical outcomes after regenerative periodontal surgery. It is currently unknown to what extent the bleeding during periodontal surgery may compete with EMD adsorption to root surfaces. The aim of this study is to evaluate the effect of blood interactions on EMD adsorption to root surfaces mimicking various clinical settings and to test their ability to influence human PDL cell attachment and proliferation. Methods: Teeth extracted for orthodontic reasons were subjected to ex vivo scaling and root planing and treated with 24% EDTA, EMD, and/or human blood in six clinically related settings to determine the ability of EMD to adsorb to root surfaces. Surfaces were analyzed for protein adsorption via scanning electron microscopy and immunohistochemical staining with an anti‐EMD antibody. Primary human PDL cells were seeded on root surfaces and quantified for cell attachment and cell proliferation. Results: Plasma proteins from blood samples altered the ability of EMD to adsorb to root surfaces on human teeth. Samples coated with EMD lacking blood demonstrated a consistent even layer of EMD adsorption to the root surface. In vitro experiments with PDL cells demonstrated improved cell attachment and proliferation in all samples coated with EMD (irrespective of EDTA) when compared to samples containing human blood. Conclusion: Based on these findings, it is advised to minimize blood interactions during periodontal surgeries to allow better adsorption of EMD to root surfaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号