首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiolabeled microspheres were used to examine the effects of paralytic intrathecal doses of dynorphin A (Dyn A1–13) and Dyn A3–13 on rat brain and spinal cord blood flows and cardiac output. Dyn A1–13 produced significant dose-related reductions in blood flow to lumbosacral and thoracic spinal cord without altering cardiac output and blood flow to brain and cervical spinal cord. Naloxone failed to block these effects. Dyn A3–13, which lacks opioid activity, also significantly reduced blood flow in lumbosacral spinal cord. Thus, the paralytic effects of Dyn A in the rat may involve reductions in spinal cord resulting from non-opioid actions of Dyn A.  相似文献   

2.
The effects of adenosine analogues on pain have been shown to depend on the subtype receptor involved as well as on the nociceptive stimuli and on the route of administration. In the first experiment of the present study intraperitoneal administration of the A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) (0.015, 0.03, 0.09, 0.15, 0.21, 0.3 mg/kg) induced dose-dependent analgesia to formalin pain in both phases characterizing the test. The A(2a) receptor agonist 2-[p-2-(carbonyl-ethyl)-phenyethylamino]-5'-N-ethylcarboxaminoadenosine (CGS21680) (0.025, 0.05, 0.1, 0.15 mg/kg) significantly affected behavioral responses to formalin only during the early phase. In the second experiment the interaction between adenosine and the opioid system was investigated through both behavioral and neurochemical studies. The opioid antagonist naltrexone (0.1 mg/kg) did not affect the antinociception induced by CPA (0.21 mg/kg) and CGS21680 (0.05 mg/kg). Autoradiographic studies showed that formalin administration significantly modified mu-opioid receptor density in the superficial laminae of the spinal cord and in the paracentral thalamic nucleus, contralateral to the side of formalin injection. CPA and CGS21680 counteracted these effects induced by formalin. In conclusion the present study confirms and extends the role of A(1) and A(2a) adenosine receptors in the modulation of inflammatory pain and their interaction with the mu-opioid system, and suggests further investigation of these purinergic receptors from a therapeutic perspective.  相似文献   

3.
4.
Many of the analgesic effects of opiate drugs and of endogenous opioid ligands, such as Leu5-enkephalin (LE) are thought to be mediated in part by μ-opioid receptors (MOR) in the dorsal horn of the spinal cord. To establish the cellular sites for the spinally mediated analgesic effects of MOR activation and potential anatomical substrates for interactions with LE, we examined the ultrastructural localization of MOR and LE immunoreactivities in the adult rat cervical spinal cord (C3-C5). Anti-MOR sera recognizing the car☐yl terminal domain of MOR was localized using immunoperoxidase and immunogold-silver methods. μ-opioid receptor-like immunoreactivity (MOR-LI) was observed mainly in the superficial layers of the dorsal horn. Electron microscopy of this region revealed that small unmyelinated axons and axon terminals constituted 48% 91/189 and 15% (28/189), respectively, while dendrites comprised 36% (68/189) of the total population of neuronal profiles containing MOR. MOR-LI was localized mainly along extrasynaptic portions of the plasma membrane in both axons and dendrites. In sections dually labeled for MOR and LE, 21% (14/68) of the dendrites containing MOR-LI closely apposed or received synaptic contact from axon terminals exhibiting LE reaction product. The results provide the first ultrastructural evidence that within the dorsal horn of the spinal cord, LE, as well as exogenous opiates may alter both axonal release of neurotransmitters and postsynaptic responsiveness of target neurons to afferent input through activation of extrasynaptic MOR.  相似文献   

5.
We have compared the ability of selective mu- and delta-opiate agonists to modulate nociceptive transmission at the level of the rat dorsal horn using electrophysiological approaches. Single-unit extracellular recordings were made from neurones in the lumbar dorsal horn of the intact rat under halothane anaesthesia. Neurones could be activated by both A- and C-fibre electrical stimulation (and by natural innocuous and noxious stimuli). Agonists were applied directly onto the cord in a volume of 50 microliters. The intrathecal administration of 3 agonists, Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO) (mu-selective) (2 X 10(-3)-10 nmol) Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET) (mu/delta) (7 X 10(-4)-70 nmol), and cyclic Tyr-D-Pen-Gly-Phe-D-Pen (DPDPE) (delta) (2 X 10(-2)-100 nmol) produced dose-dependent inhibitions of C-fibre-evoked neuronal activity whilst A-fibre activity was relatively unchanged. DAGO produced near-maximal inhibitions which could be completely reversed by naloxone (1.5 nmol) whilst DPDPE causes less marked inhibitions which could only be partially reversed by naloxone (1.5-13.5 nmol). DTLET produced effects intermediate to those of DAGO and DPDPE. The results suggest that both mu- and delta-opioid receptors can modulate the transmission of nociceptive information in the rat spinal cord.  相似文献   

6.
7.
The distribution of immunoreactive (ir)-dynorphin A1-8 (Dyn A1-8) in 78 microdissected rat brain areas as well as in the neurointermediate lobe of pituitary gland was determined using a highly specific radioimmunoassay. The highest concentrations of Dyn A1-8 in brain were found in substantia nigra (673.8 fmol/mg protein) and lateral preoptic area (565.1 fmol/mg protein). High concentrations of ir-Dyn A1-8 (greater than 240 fmol/mg protein) were found in 5 nuclei: ventral premamillary nucleus, anterior hypothalamic nucleus, dorsomedial nucleus, arcuate nucleus, and medullary reticular nuclei. Moderate concentrations of the peptide (between 120 and 240 fmol/mg protein) were found in 55 brain nuclei such as septal and amygdaloid nuclei, most diencephalic structures, mesencephalic nuclei, pons and medulla oblongata nuclei and others. Low concentrations of ir-Dyn A1-8 (less than 120 fmol/mg protein) were found in 16 regions, e.g. frontal cortex, hippocampus, caudate-putamen cortical amygdaloid nucleus, several thalamic nuclei, mamillary body superior and inferior colliculi, cerebellar nuclei and others. The posterior thalamic nucleus has the lowest ir-Dyn A1-8 concentration (62.0 fmol/mg protein). The neurointermediate lobe of the pituitary gland is extremely rich in ir-Dyn A1-8 (4063.0 fmol/mg protein).  相似文献   

8.
Mice deficient in the κ-opioid receptor (KOR) gene have recently been developed by the technique of homologous recombination and shown to lack behavioural responses to the selective κ1-receptor agonist U-50,488H. We have carried out quantitative autoradiography of μ-, δ- and κ1 receptors in the brains of wild-type (+/+), heterozygous (+/−) and homozygous (−/−) KOR knockout mice to determine if there is any compensatory expression of μ- and δ-receptor subtypes in mutant animals. Adjacent coronal sections were cut from the brains of +/+, +/− and −/− mice for the determination of binding of [3H]CI-977, [3H]DAMGO ( -Ala2-MePhe4-Gly-ol5 enkephalin) or [3H]DELT-I ( -Ala2 deltorphin I) to κ1-, μ- and δ-receptors, respectively. In +/− mice there was a decrease in [3H]CI-977 binding of approximately 50% whilst no κ1-receptors could be detected in any brain region of homozygous animals confirming the successful disruption of the KOR gene. There were no major changes in the number or distribution of μ- or δ-receptors in any brain region of mutant mice. There were, however some non-cortical regions where a small up-regulation of δ-receptors was observed in contrast to an opposing down-regulation of δ-receptors evident in μ-knockout brains. This effect was most notable in the nucleus accumbens and the vertical limb of the diagonal band, and suggests there may be functional interactions between μ- and δ-receptors and κ1- and δ-receptors in mouse brain.  相似文献   

9.
10.
We have used specific radioimmunoassay to describe the distribution of diazepam binding inhibitor-like immunoreactivity (DBI-IR(51–70)) in human post-mortem tissues. In brain, highest concentrations were found in the cerebellum, amygdala, hippocampus, hypothalamus and substantia nigra. In the spinal cord, DBI-IR(51–70) was evenly distributed. In peripheral tissues, highest concentrations were found in the liver and kidney. Chromatographic analysis revealed several molecular forms of DBI-IR(51–70) the major form being of greater molecular weight and hydrophobicity than the synthetic fragment peptide. In peripheral tissues, but not in the CNS, a small peak of immunoreactivity was indistinguishable form the synthetic peptide. DBI-IR(51–70) is therefore widespread, but tissue processing may be different.  相似文献   

11.
The expression of parkinsonian motor symptoms may be partly attributed to an increase in GABAergic neurotransmission from hyperactive GABA/enkephalinergic striatopallidal efferents. The present study measured pallidal GABA(A) and mu-opioid receptor binding in normal cats and cats symptomatic for and recovered from MPTP-induced parkinsonism. GABA(A) receptor binding was significantly decreased in the globus pallidus (GP) in symptomatic cats and returned to normal levels in spontaneously recovered cats. Mu-opioid receptor binding in the GP was significantly decreased in symptomatic cats and remained significantly decreased in recovered cats. These results suggest that GABA(A) but not mu-opioid receptor binding may correlate with the expression of parkinsonian motor deficits and may reflect increased pallidal GABA and ENK release in parkinsonian animals. Upon recovery from experimental parkinsonism, however, pallidal GABA(A) receptor binding returns to normal levels while mu-opioid receptor binding reflecting enkephalin release remains elevated.  相似文献   

12.
13.
14.
A number of neuroactive peptides including calcitonin gene-related peptide (CGRP), substance P, neurokinin B, opioids, somatostatin (SRIF), galanin, neurotensin and vasoactive intestinal polypeptide (VIP) have been localized in adult rat spinal cord and are considered to participate either directly and/or indirectly in the processing of sensory, motor and autonomic functions. Most of these peptides appear early during development, leading to the suggestion that peptides, in addition to their neurotransmitter/neuromodulator roles, may possibly be involved in the normal growth and maturation of the spinal cord. To provide an anatomical substrate for a better understanding of the possible roles of peptides in the ontogenic development of the cord, we investigated the topographical profile as well as variation in densities of [125I]hCGRPα, [125I]substance P/neurokinin-1 (NK-1), [125I]eledoisin/neurokinin-3 (NK-3), [125I]FK 33–824 ([D-Ala2, Me-Phe4, Met(O)ol5]enkephalin)/μ-opioid, [125I]galanin, [125I]T0D8-SRIF14 (an analog of sornatostatin), [125I]neurotensin and [125I]VIP binding sites in postnatal and adult rat spinal cord using in vitro quantitative receptor autoradiography. Receptor binding sites recognized by each radioligand are found to be distributed widely during early stages of postnatal development and then to undergo selective modification to attain their adult profile of distribution during the third week of postnatal development. The apparent density of various receptor sites, however, are differently regulated depending on the lamina and the stage of development studied. For example, the density of μ-opioid binding sites, following a peak at postnatal day 4 (N), declines gradually in almost all regions of the spinal cord with the increasing age of the animal [125I]substance P/NK-1 binding sites, on the other hand, show very little variation until P14 and then subsequently decrease as the development proceeds. In the adult rat, most of these peptide receptor binding sites are localized in relatively high amounts in the superficial laminae of the dorsal horn. To varying extents, moderate to low density of various peptide receptor binding sites are also found to be present in the ventral horn, intermediolateral cell column and around the central canal. Taken together, these results suggest that each receptor-ligand system is regulated differently during development and may each uniquely be involved in cellular growth, differentiation and in maturation of the normal neural circuits of the spinal cord, Furthermore, the selective localization of various receptor binding sites in adult rat spinal cord over a wide variety of functionally distinct regions reinforces the neurotransmitter/ modulator roles of these peptides in sensory, motor and autonomic functions associated with the spinal cord. © 1995 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
19.
20.
Immunoreactive arginine-8-vasopressin (AVP) and oxytocin (OXT) were measured in rat hypothalamic and limbic brain regions after the intracerebroventricular administration of β-endorphin fragment 2–9 (βE2–9). The peptide decreased the AVP content of the hippocampus and the OXT levels in the septum and amygdala. The present data favor the view that βE2–9 interacts with limbic AVP- and OXT-systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号