首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
[目的]制备黄芩素聚(乳酸-羟基乙酸)共聚物(PLGA)纳米粒,并对其理化性质、体外释药以及体外角膜细胞相容性进行研究。[方法]使用乳化溶剂挥发法制备黄芩素PLGA纳米粒,评价其性质和体外缓释效果,主要包括:纳米粒粒径,纳米粒包封率,药物载药量和体外缓释曲线等。采用细胞增殖实验评价黄芩素PLGA纳米粒的细胞毒性。[结果]黄芩素PLGA纳米粒粒径(92.5±2.35)nm、Zeta电位(-21.1±2.5)mV、包封率(92.5±2.35)%、载药量(23.12±1.45)%。体外缓释实验提示:突释阶段黄芩素释放率在1 d内达(8.37±0.31)%,缓释阶段纳米粒可稳定释放,在10 d时释放达(51.30±0.50)%,细胞增殖实验提示黄芩素PLGA纳米粒对细胞体外生长无不良影响,细胞相容性好。[结论]采用乳化溶剂挥发法制备的黄芩素PLGA纳米粒具有良好的缓释效应和良好的细胞相容性。  相似文献   

2.
目的淫羊藿苷固体脂质纳米粒制备方法及处方研究并考察其体外释放情况。方法采用超声分散与高温融溶低温固化结合法制备淫羊藿苷固体脂质纳米粒,考察大豆卵磷脂、胆固醇、投药量、PEG-2000、F-68的用量对包封率、载药量的影响以确定出较优处方配比;用HPLC测定了淫羊藿苷溶液及固体脂质纳米粒在30%甲醇PBS溶液中的体外释放百分率。结果制得的淫羊藿苷固体脂质纳米粒包封率为(98.07±0.15)%,载药量为(6.47±0.14)%;在30%甲醇PBS溶液,淫羊藿苷溶液9 h释放99.97%;淫羊藿苷固体脂质纳米粒72 h累积释放89.75%。结论通过改进后的制备方法优化处方制得固体脂质纳米粒具有较高包封率和载药量,淫羊藿苷固体脂质纳米粒可使淫羊藿苷具有良好的缓释效果。  相似文献   

3.
目的 制备环丙沙星固体脂质纳米粒并检测其抑菌效果。方法 以胆固醇为脂质,以吐温80为表面活性剂,采用乳化-低温固化法制备固体脂质纳米粒并对其进行表征,包括粒径、Zeta电位、载药量、包封率、分散性以及体外缓释。使用二倍稀释法测定药物对大肠杆菌的最低抑菌浓度。结果 透射电镜扫描可见环丙沙星-固体脂质纳米粒粒径呈球形,直径40~70nm;Zeta电位(-21.8±1.3) mV;包封率为77.54%;载药量31.10%;紫外-可见光谱见纳米粒中环丙沙星280nm处特征性吸收波峰;体外缓释72h的累计释放度为78.6%。环丙沙星固体脂质纳米粒的最低抑菌浓度为0.8μg/mL,环丙沙星最低抑菌浓度为1.6μg/mL。结论 采用乳化-低温固化法成功制备环丙沙星固体脂质纳米粒,方法简便。固体脂质纳米可提高环丙沙星抑菌效果。  相似文献   

4.
[目的]以单硬脂酸甘油酯为载体材料制备姜黄素固体脂质纳米粒及其体外释放行为的研究。[方法]采用乳化蒸发-低温固化法制备姜黄素固体脂质纳米粒,高速离心法测其包封率,激光粒径仪测定其粒径、电位,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中姜黄素的体外释放行为。[结果]姜黄素固体脂质纳米粒的平均粒径为(89.24±2.06)nm,Zeta电位为(-18.77±1.27)m V,药物平均包封率为(89.55±1.84)%,DSC结果表明其理化性质稳定可靠,体外12 h累计释放率为(43.12±1.02)%。[结论]制备的姜黄素固体脂质纳米粒粒径小且分布均匀,具有良好的缓释作用。  相似文献   

5.
[目的] 研究麦角甾苷眼用固体脂质纳米粒的制备方法及其体外释放的情况。[方法] 采用乳化蒸发-低温固化法制备麦角甾苷固体脂质纳米粒,超滤离心法测其包封率,并对其粒径、电位、进行进一步考察,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中麦角甾苷的体外释放行为。[结果] 麦角甾苷固体脂质纳米粒的平均粒径为85.56 nm,Zeta 电位约为-20.97 mV,药物平均包封率为88.31 %,DSC 表明其理化性质稳定可靠,体外12 h 累计释放率62.46 %。[结论] 制备的麦角甾苷固体脂质纳米粒包封率较高,粒径小且分布均匀,有良好的缓释作用。  相似文献   

6.
目的为解决伊曲康唑(ITZ)的分散性,制备伊曲康唑固体脂质纳米粒(ITZ-SLN),并考察其体外释放规律。方法采用微乳法-低温固化法制备ITZ-SLN;用马尔文激光粒度仪测定纳米粒的Zeta电位与粒度分布,低温高速超滤离心分离SLN与未包封的药物,反相高效液相色谱法(RP-HPLC)测定包封率及其载药量,采用扩散法-超滤法测定纳米粒(ITZ-SLN)的体外释放行为。结果纳米粒的粒径为(15.23±2.10)nm,Zeta为(-22. 65±0.91)mV,包封率为(96.02±2.10)%,载药量为(0.15±0. 02)%,其体外释放规律符合一级释放动力学方程。结论该制剂处方设计和工艺方法可行,可达到缓释效果。  相似文献   

7.
目的 研制蒿甲醚-蔗糖铁脂质纳米粒且表征其理化性质.方法 以大豆卵磷脂和大豆油为载体,采用薄膜分散-高压乳匀法制备蒿甲醚-蔗糖铁脂质纳米粒.用高效液相色谱法测定包封率和载药量,用电子显微镜观察形态,用激光粒度仪测定粒径.结果 制得的脂质纳米粒呈类球状,粒径较均匀,平均粒径为(161±17.4) nm,包封率为(85.1±0.83)%,载药量为(5.3±0.2)%.体外释放实验表明,脂质纳米粒具有良好的缓释特征.结论 该制备工艺简单可行,制得的纳米粒分散均匀,包封率较高.  相似文献   

8.
制备丹参酮ⅡA长循环固体脂质纳米粒(TA-LSLN)并考察其理化性质。方法:以乳化,溶剂挥发法制备丹参酮ⅡA固体脂质纳米粒,测定其粒径、Zeta电位和药物包封率,以透射电镜观察纳米粒形态,考察了纳米粒的稳定性,并进行TA-LSLN的体外释放试验。结果:纳米粒平均粒径为107.6nm,Zeta电位为-34.5mV,包封率为82.3%。4℃放置1个月粒径和包封率无变化。体外释药试验表明TA-LSLN开始阶段释放较快,10h时释放了41%,之后缓慢释放;体外释药结果符合Weibull方程。结论:制备的TA-LSLN平均粒径和包封率较为理想,能使药物缓慢释放。  相似文献   

9.
目的探究制备聚乳酸-羟基乙酸共聚物(PLGA)纳米粒的优化条件,构建肝细胞生长因子(HGF)纳米粒,评价其包封率、 载药量、回收率、释放度和生物学活性。方法采用复乳溶剂挥发法制备牛血清白蛋白(BSA)PLGA纳米粒,通过正交试验设计, 以粒径较小,包封率、载药量和回收率较高为考察指标,优化纳米粒的制备条件;选取优化条件制备HGF纳米粒,分别采用BCA 试剂盒和HGF-ELISA试剂盒检测BSA纳米粒和HGF纳米粒的包封率、载药量和释放度,通过CCK8增殖实验评价HGF纳米粒 的生物活性。结果优化条件下制备的HGF 纳米粒大小均匀,粒径234.4±4.8 nm,包封率(77.75±3.04)%,回收率(49.33± 9.34)%,体外释放度曲线表现为先突释,后缓释;HGF纳米粒可以促进角质形成细胞的增殖。结论复乳溶剂挥发法-优化条件 下制备的HGF纳米粒具有较高包封率,良好的缓释效果和生物学活性。  相似文献   

10.
目的:优选制备黄芩总黄酮固体脂质纳米粒的处方工艺。方法:采用星点设计-效应面优化法筛选处方,以黄芩总黄酮固体脂质纳米粒包封率及载药量作为评价指标,考察黄芩总黄酮用量百分数、硬脂酸用量百分数、吐温-80用量的影响。采用高压均质法制备黄芩总黄酮固体脂质纳米粒。结果:高压均质法能有效制备固体脂质纳米粒,优选的最佳处方为黄芩总黄酮0. 35%,硬脂酸0. 5%,吐温-80 2. 46%,黄芩总黄酮固体脂质纳米粒载药量为8. 7%,包封率90. 2%。结论:星点设计-效应面法能有效优选黄芩总黄酮固体脂质纳米粒处方包封率高,方法简便。  相似文献   

11.
目的优化筛选葛根素纳米脂质体(puerarin nano-liposomes carriers,Pue-NLC)的制备工艺,并考察其体外释放特性。方法采用高压均质法制备Pue-NLC,正交设计优化筛选处方,HPLC法测定含量,超高速离心法结合甲醇提取法测定包封率和载药量,透射电镜观察外观,激光粒度测定仪测定其平均粒径和Zeta电位,透析袋法考察体外释放特性。结果最优工艺处方为葛根素(Pue)50 mg,2.0%单硬脂酸甘油酯(GP)∶辛酸葵酸三甘油酯(LLW)为200∶160(W/W),0.5%泊洛沙姆(F68)水溶液,制备的Pue-NLC外观呈圆形或椭圆形,平均粒径为(102.4±5.6)nm,多分散系数为0.214±0.027,Zeta电位为(-18.8±2.7)mV,包封率为(45.9±1.43)%,载药量为(0.81±0.05)%,在生理盐水中的体外释药行为符合Weibull方程:In[In(1/1-Q)]=1.143 3 Int-0.547 0,r=0.986 0,24 h释放率为88.15%。结论高压均质法成功制备了Pue-NLC,粒径小,载药量和包封率高,具有缓释特性,具有一定的开发前景,为葛根素新型给药系统的研究提供理论基础和实践指导。  相似文献   

12.
目的 以离子凝胶法制备黄芩苷-血根碱离子对壳聚糖纳米粒(BSI-CS-NPs)。方法 以单因素为主要考察方法,筛选最佳处方和制备工艺;采用透射电子显微镜(TEM)观察BSI-CS-NPs的形态,激光粒度分析仪测定粒径大小和Zeta电位,HPLC法检测包封率和载药量。结果 所制BSI-CS-NPs外观圆整,粒度分布均匀,平均粒径为326.4 nm,Zeta电位为45.7 mV,包封率为68.73%,载药量为26.68%。相比黄芩苷-血根碱离子对原料药,BSI-CS-NPs 2 h的药物累积释放率减少了约36.51%,12 h累积释放率为92.29%。结论 离子凝胶法适用于BSI-CS-NPs的制备,且具有缓释性能。  相似文献   

13.
[目的]以丹酚酸B(salB)为模型药物制备立方液晶纳米粒,并对其大鼠在体肠吸收进行考察。[方法]采用高压均质法制备丹酚酸B立方液晶纳米粒,以粒径、包封率为指标进行处方优化;透射电镜观察其形态;单向灌流法考察其大鼠在体肠吸收。[结果]纳米粒平均粒径为(172.2±5)nm,Zeta电位为(-14.8±2)mV,包封率为(38.6±3)%。肠吸收实验表明丹酚酸B溶液与纳米粒在全肠段均有吸收,且在十二指肠吸收最好,纳米粒的大鼠小肠吸收优于丹酚酸B溶液(P0.05)。[结论]丹酚酸B立方液晶纳米粒能够促进其在大鼠小肠的吸收。  相似文献   

14.
目的制备姜黄素乳酸羟基乙酸共聚物-水溶性维生素E纳米粒(CM-PLGA-TPGS-NPs,简称CPTN)并评价其质量。方法用自制的PLGA-TPGS为载体材料,采用超声乳化-溶剂挥发法制备CPTN,通过粒径、Zeta电位、载药量、包封率和体外释放度控制其质量。采用RP-HPLC法,色谱柱为KROMASIL柱(4.6 mm×250 mm,5μm),用乙腈-2%冰醋酸溶液(58∶42)为流动相,检测波长为430 nm。结果自制CPTN的平均粒径为(197.9±6.2)nm,Zeta电位为(-22.3±1.8)mV,载药量为(13.2±0.9)%和包封率为(79.3±1.6)%。体外姜黄素在含0.5%十二烷基硫酸钠的磷酸盐缓冲液(pH7.4)中呈两相释放,30 d时累积释放率为91.3%。结论 CPTN质量稳定可控,体外试验显示具有明显的缓释作用。  相似文献   

15.
目的制备硝酸毛果芸香碱纳米液晶制剂,以包封率(EE)和粒径为考察指标对处方进行单因素考察,然后以正交设计对处方进行筛选。方法处方前研究硝酸毛果芸香碱的平衡溶解度、油水分配系数,为剂型设计提供理论依据;选择高压均质法制备硝酸毛果芸香碱液晶纳米粒;以EE和粒径为考察指标对处方进行单因素考察,然后以正交设计对处方进行筛选。结果药物在水中易溶,溶解度约为146.87mg/mL,油水分配系数LogP约为-0.278。本研究通过单因素考察了单油酸甘油酯(GMO)/71(的比例、搅拌速度、滴加速度、均质压力和均质次数。综合考虑最大EE和粒径,选用的最佳处方工艺为:GMO:泊洛沙姆407:水=2:0.22:20,搅拌速度为1000r/min,均质压力为350bar,均质次数为3次。结论硝酸毛果芸香碱液晶纳米粒制备工艺简单,稳定性好,具有临床应用价值。  相似文献   

16.
α-常春藤皂苷丙烯酸树脂L100纳米粒的制备及其体外评价   总被引:1,自引:0,他引:1  
目的制备和评价α-常春藤皂苷-丙烯酸树脂EudragitL100纳米粒(SPD.L100.NPs)。方法采用改良乳化一溶剂扩散法制备纳米粒,以粒径大小、包封率(EE)和多分散指数(PI)为指标,通过单因素试验和正交试验设计优化制备工艺。通过红外光谱、X射线衍射、差示扫描量热分析、体外释放试验等对纳米粒的相关性质进行评价。结果所制备的纳米粒外观圆整,平均粒径为(65.2±1.6)nm,EE为(99.13±0.20)%,PI值为0.384±0.008。药物在纳米粒中均被载体材料有效包裹,其体外释放具有显著的pH依赖性。结论采用改良乳化-溶剂扩散法可制备出包封率高、大小均匀的pH依赖性纳米粒。  相似文献   

17.
目的 以生物可降解材料聚(乳酸-羟基乙酸)共聚物(PLGA)为载体,采用乳化-溶剂挥发法制备包载荧光标记物香豆素-6的纳米粒,考察有机溶剂组成对纳米粒制备的影响.方法 选用不同配比的二氯甲烷与乙酸乙酯混合溶剂作为有机相制备香豆素-6-PLGA纳米粒,测定纳米粒粒径与包封率.结果 纳米粒粒径随着乙酸乙酯比例增加而减小,包...  相似文献   

18.
目的探索用超声法和高压乳匀法将中药汉防己甲素(TET)制备成固体脂质纳米粒(SLN),并比较两种方法制备的TET-SLN的主要理化性质。方法采用超声法和高压乳匀法制备TET-SLN。在电镜下观察其形态,用Mastersizer2000粒度分析仪和ZetasizerNano电位分析仪测定其粒径和Zeta电位,用高效液相色谱法测定其包封率,并观察SLN的稳定性。结果两种方法制备的TET-SLN在透射电镜下均呈片状,形态不规则,但高压乳匀法制备的TET-SLN粒径较小。超声法制备的TET-SLN平均粒径为(92±6)nm,Zeta电位为(-21.11±2.12)mV,平均包封率为95.27%;高压乳匀法制备的TET-SLN平均粒径为(47±3)nm,Zeta电位为(-32.99±2.54)mV,平均包封率为97.82%。室温保存90d后,高压乳匀法制备的TET-SLN的粒径为(52±5)nm,与初始粒径比较差异无显著性(P>0.05);超声法制备的TET-SLN的粒径为(168±12)nm,显著大于初始粒径(P<0.05)。结论高压乳匀法制备的TET-SLN具有粒径小、稳定性和包封率高的特点,优于超声法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号