共查询到20条相似文献,搜索用时 15 毫秒
1.
Furuta H Osawa K Shin M Ishikawa A Matsuo K Khan M Aoki K Ohya K Okamoto M Tominaga K Takahashi T Nakanishi O Jimi E 《International journal of cancer. Journal international du cancer》2012,131(5):E625-E635
Nuclear factor-κB (NF-κB) is constitutively activated in many cancers, including oral squamous cell carcinoma (OSCC), and is involved in the invasive characteristics of OSCC, such as growth, antiapoptotic activity and protease production. However, the cellular mechanism underlying NF-κB's promotion of bone invasion by OSCC is unclear. Therefore, we investigated the role of NF-κB in bone invasion by OSCC in vivo. Immunohistochemical staining of OSCC invading bone in 10 patients indicated that the expression and nuclear translocation of p65, a main subunit of NF-κB, was increased in OSCC compared with normal squamous epithelial cells. An active form of p65 phosphorylated at serine 536 was present mainly in the nucleus in not only differentiated tumor cells but also tumor-associated stromal cells and bone-resorbing osteoclasts. We next injected mouse OSCC SCCVII cells into the masseter region of C(3) H/HeN mice. Mice were treated for 3 weeks with a selective NF-κB inhibitor, NBD peptide, which disrupts the association of NF-κB essential modulator (NEMO) with IκB kinases. NBD peptide treatment inhibited TNFα-induced and constitutive NF-κB activation in SCCVII cells in vitro and in vivo, respectively. Treatment with NBD peptide decreased zygoma and mandible destruction by SCCVII cells, reduced number of osteoclasts by inhibiting RANKL expression in osteoblastic cells and SCCVII cells, increased apoptosis and suppressed the proliferation of SCCVII cells. Taken together, our data clearly indicate that inhibition of NF-κB is useful for inhibiting bone invasion by OSCC. 相似文献
2.
Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8-48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo. 相似文献
3.
Yutaro Kondo Susumu Suzuki Taishi Takahara Shoya Ono Mitsuo Goto Satoru Miyabe Yoshihiko Sugita Tetsuya Ogawa Hideaki Ito Akira Satou Toyonori Tsuzuki Kazuhiro Yoshikawa Ryuzo Ueda Toru Nagao 《Cancer science》2021,112(10):4037-4049
Immunotherapy with immune-checkpoint therapy has recently been used to treat oral squamous cell carcinomas (OSCCs). However, improvements in current immunotherapy are expected because response rates are limited. Transforming growth factor-β (TGF-β) creates an immunosuppressive tumor microenvironment (TME) by inducing the production of regulatory T-cells (Tregs) and cancer-associated fibroblasts and inhibiting the function of cytotoxic T-lymphocytes (CTLs) and natural killer cells. TGF-β may be an important target in the development of novel cancer immunotherapies. In this study, we investigated the suppressive effect of TGF-β on CTL function in vitro using OSCC cell lines and their specific CTLs. Moreover, TGFB1 mRNA expression and T-cell infiltration in 25 OSCC tissues were examined by in situ hybridization and multifluorescence immunohistochemistry. We found that TGF-β suppressed the function of antigen-specific CTLs in the priming and effector phases in vitro. Additionally, TGF-β inhibitor effectively restored the CTL function, and TGFB1 mRNA was primarily expressed in the tumor invasive front. Interestingly, we found a significant negative correlation between TGFB1 mRNA expression and the CD8+ T-cell/Treg ratio and between TGFB1 mRNA expression and the Ki-67 expression in CD8+ T-cells, indicating that TGF-β also suppressed the function of CTLs in situ. Our findings suggest that the regulation of TGF-β function restores the immunosuppressive TME to active status and is important for developing new immunotherapeutic strategies, such as a combination of immune-checkpoint inhibitors and TGF-β inhibitors, for OSCCs. 相似文献
4.
5.
Tanaka T Nakayama H Yoshitake Y Irie A Nagata M Kawahara K Takamune Y Yoshida R Nakagawa Y Ogi H Shinriki S Ota K Hiraki A Ikebe T Nishimura Y Shinohara M 《Cancer science》2012,103(3):455-463
Nuclear factor-κB (NF-κB) activation contributes to the development of metastasis, thus leading to a poor prognosis in many cancers, including OSCC. However, little in vivo experimental data are available about the effects of NF-κB inhibition on OSCC metastasis. OSCC sublines were established from a GFP-expressing parental cell line, GSAS, and designated GSAS/N3 and N5 according to the in vivo passage number after cervical lymph node metastasis by a serial orthotopic transplantation model. In vitro migration and invasion were assessed in these cells, and the NF-κB activities and expression of NF-κB-regulated metastasis-related molecules were also examined. In in vivo experiments, the metastasis and survival of tumor-engrafted mice were monitored. Furthermore, the effects of a selective NF-κB inhibitor, NEMO-binding domain (NBD) peptide, on metastasis in GSAS/N5-engrafted mice were assessed, and engrafted tongue tumors were immunohistochemically examined. Highly metastatic GSAS/N3 and N5 cells showed an enhanced NF-κB activity, thus contributing to increased migration, invasion, and a poor prognosis compared with the parent cells. Furthermore, the expression levels of NF-κB-regulated metastasis-related molecules, such as fibronectin, β1 integrin, MMP-1, -2, -9, and -14, and VEGF-C, were upregulated in the highly metastatic cells. The NBD peptide suppressed metastasis and tongue tumor growth in GSAS/N5-inoculated mice, and was accompanied by the downregulation of the NF-κB-regulated metastasis-related molecules in engrafted tongue tumors. Our results suggest that the selective inhibition of NF-κB activation by NBD peptide may provide an effective approach for the treatment of highly metastatic OSCC. 相似文献
6.
7.
8.
Nishikawa Y Miyazaki T Nakashiro K Yamagata H Isokane M Goda H Tanaka H Oka R Hamakawa H 《Oncology reports》2011,26(3):587-592
FAT1 [Homo sapiens FAT tumor suppressor homolog?1 (Drosophila)] is an intrinsic membrane protein classified as a member of the cadherin superfamily. The FAT1 gene is a tumor suppressor in humans as well as being the pivotal gene for cell morphogenesis and migration. Deletion of this gene could play a role in the characteristics of oral squamous cell carcinomas (OSCCs), involving cell adhesion, migration and/or invasion. This study investigated the mechanisms by which FAT1 is involved in the biological behavior of OSCCs. First, a rat monoclonal antibody was developed against a FAT1 intra-cellular domain epitope, and used for an immunohistochemical study of FAT1 in clinically obtained OSCC samples. FAT1 was localized at lamellipodial edges or cell-cell boundaries in normal cells and well differentiated OSCCs, but showed a diffuse cytoplasmic and nuclear distribution in moderately-poorly differentiated OSCCs. FAT1-siRNA was transfected into OSCCs resulting in a drastic inhibition of cell migration and invasion based on the suppression of FAT1 expression and disorganized localization of β-catenin which is associated with cell polarity and migration. These results suggested that FAT1 may be involved in the migration and invasion mechanisms of OSCCs and, therefore, it could be an important target for the development of new therapeutic strategies. 相似文献
9.
10.
11.
Emerging evidence has demonstrated that high-temperature requirement protein A1 (HtrA1) appears to be involved in several important biological processes in mammals such as growth, apoptosis, embryogenesis, invasion, metastasis, and cancer and has been verified to be reduced in a variety of human tumors. However, its precise functions and molecular mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we detected HtrA1 level in ESCC tissues and cells and investigated the biological roles of HtrA1 in ESCC. We found that expressions of HtrA1 mRNA and protein in ESCC tissues and cells were significantly lower than those in normal esophageal epithelial tissues and cells (P?<?0.05). Expressions of HtrA1 mRNA and protein were closely associated with TNM staging and lymph node metastasis (P?<?0.05). Additionally, the survival rate of patients with low HtrA1 level was lower than those patients with high HtrA1 level (P?<?0.05). Elevated HtrA1 level markedly inhibited cell proliferation in vitro and in vivo, reduced cell invasion in vitro, and induced cell apoptosis. Notably, HtrA1 overexpression inhibited phosphorylation levels of IκBα and p65 subunit of the NF-κB signaling pathway, but increased total IκBα level, coupled with decreases of Ki-67, Bcl-2, Bcl-xL, cyclin D1, and MMP-9 proteins and increase of caspase-3 activity. Overall, these data suggest that HtrA1 may play critical roles in the tumorgenesis and progression of ESCC, and HtrA1 overexpression exerts its anti-tumor effect by blocking the NF-κB signaling pathway; thus, manipulation of HtrA1 may be an effective molecular target for ESCC treatment. 相似文献
12.
13.
Anwar B. Beshir Gang Ren Anniefer N. Magpusao Lauren M. Barone Kam C. Yeung Gabriel Fenteany 《Cancer letters》2010
Accumulating evidence suggests that Raf kinase inhibitor protein (RKIP), which negatively regulates multiple signaling cascades including the Raf and nuclear factor-κB (NF-κB) pathways, functions as a metastasis suppressor. However, the basis for this activity is not clear. We investigated this question in a panel of breast cancer, colon cancer and melanoma cell lines. We found that RKIP negatively regulated the invasion of the different cancer cells through three-dimensional extracellular matrix barriers by controlling the expression of matrix metalloproteinases (MMPs), particularly, MMP-1 and MMP-2. Silencing of RKIP expression resulted in a highly invasive phenotype and dramatically increased levels of MMP-1 and MMP-2 expression, while overexpression of RKIP decreased cancer cell invasion in vitro and metastasis in vivo of murine tumor allografts. Knockdown of MMP-1 or MMP-2 in RKIP-knockdown cells reverted their invasiveness to normal. In contrast, when examining migration of the different cancer cells in a two-dimensional, barrier-less environment, we found that RKIP had either a positive regulatory activity or no activity, but in no case a negative one (as would be expected if RKIP suppressed metastasis at the level of cell migration itself). Therefore, RKIP’s function as a metastasis suppressor appears to arise from its ability to negatively regulate expression of specific MMPs, and thus invasion through barriers, and not from a direct effect on the raw capacity of cells to move. The NF-κB pathway, but not the Raf pathway, appeared to positively control the invasion of breast cancer cells. A regulatory loop involving an opposing relationship between RKIP and the NF-κB pathway may control the level of MMP expression and cell invasion. 相似文献
14.
The transforming growth factor-β1 (TGF-β1) signaling pathway is important in human oral squamous cell carcinoma (OSCC). Accordingly, the aims of this study were to evaluate the effect of antisense TGF-β1 oligonucleotides (ODNs) on OSCC in cell culture and in a xenograft model, as well as to evaluate any effects ODNs have on proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase-2 (MMP-2) expression in the xenograft model. We performed real-time cell electronic sensing (RT-CES) to determine the effect of antisense TGF-β1 ODNs on SCC-9?cell growth. To examine the in?vivo effect of antisense TGF-β1 ODN therapy, SCC-9?cells were grafted into nude mice. Antisense ODNs were injected into the mass daily. Tumor size, body weight and duration of survival were assessed daily. Specimens from the main mass were used for immunohistochemical staining to analyze PCNA and MMP-2 expression. In?vitro treatment with antisense TGF-β1 ODNs decreased TGF-β1 expression and growth of SCC-9?cells. In the xenograft model, the antisense TGF-β1 ODN group exhibited a significantly decreased tumor growth rate compared to the control, which received Dulbecco's modified Eagle's medium (DMEM) (P=0.022). However, mean survival time and body weights were not significantly different between the groups (P>0.05). Immunohistochemistry showed that tumors from animals that received antisense TGF-β1 ODNs had significantly lower expression levels of PCNA and MMP-2 compared to tumors from animals in the DMEM group (P<0.05). In conclusion, antisense TGF-β1 ODN therapy significantly inhibits tumor growth compared to controls, however, there are no significant differences between groups with respect to changes in body weight. 相似文献
15.
16.
Kamdeo K. Pramanik Siddavaram Nagini Abhay K. Singh Prajna Mishra Tanushree Kashyap Nidhi Nath Manzar Alam Ajay Rana Rajakishore Mishra 《Cellular oncology (Dordrecht)》2018,41(1):47-60
Purpose
Oral squamous cell carcinoma (OSCC)-related deaths mainly result from invasion of the tumor cells into local cervical lymph nodes. It has been reported that progressive basement membrane loss promotes the metastatic and invasive capacities of OSCCs. Matrix metalloproteinase-9 (MMP-9) is known to play a central role in tumor progression and invasion. However, the role of MMP-9 in OSCC invasion has so far remained paradoxical and little is known about its regulation. Here, we aimed to assess MMP-9 expression regulation and its activation by glycogen synthase kinase-3β during human OSCC progression and invasion.Methods
In the present study, 178 human OSCC samples, including 118 fresh samples (18 adjacent normal, 42 noninvasive and 58 invasive tumor samples) and 60 archival human tissue microarray (TMA) tongue cancer samples, were included. mRNA expression, protein expression, MMP-9/-2 activity, protein-protein interaction and Snail, c-Myc, β-catenin and TIMP1 expression were assessed using RT-PCR, immunohistochemistry, Western blotting, co-immunoprecipitation and gelatin zymography analyses, respectively. Wnt5a and LPA mediated MMP-9 regulation was assessed in OCSCC-derived SCC-9 cells exogenously expressing GSK3β (WT) or non phosphoryable GSK3β (S9A).Results
We observed a progressive up-regulation/activation of MMP-9 at various stages of oral tumor progression/invasion. Positive correlations were observed between MMP-9 and c-Myc expression, MMP-9 and MMP-2 activity, MMP-9 and TIMP1 expression and MMP-9 activity and TIMP1-MMP-9 interaction. In contrast, a negative correlation between phosphorylated β-catenin and MMP-9 expression was observed. Conversely, we found that in oral tongue SCC MMP-9 expression was positively correlated with inactivation of GSK3 signaling. Finally, we found that Wnt5a and LPA mediated increased MMP-9 and decreased GSK3β activities in tongue SCC-derived SCC-9 cells. MMP-9 regulation by GSK3β was confirmed by using phosphoryable/regulatory GSK3β (WT construct) and not by non-phosphoryable GSK3β (S9A construct).Conclusions
Collectively, our results show that MMP-9 overexpression and activation are important events occurring during OSCC progression/invasion and that this overexpression/activation is regulated by c-Myc, active MMP-2 and inactive GSK3β mediated pathways.17.
T Kinoshita N Nohata T Hanazawa N Kikkawa N Yamamoto H Yoshino T Itesako H Enokida M Nakagawa Y Okamoto N Seki 《British journal of cancer》2013,109(10):2636-2645
Background:
Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA-29s (miR-29s; miR-29a/b/c) were significantly downregulated in head and neck squamous cell carcinoma (HNSCC) and were putative tumour-suppressive miRNAs in human cancers. Our aim in this study was to investigate the functional significance of miR-29s in cancer cells and to identify novel miR-29s-mediated cancer pathways and responsible genes in HNSCC oncogenesis and metastasis.Methods:
Gain-of-function studies using mature miR-29s were performed to investigate cell proliferation, migration and invasion in two HNSCC cell lines (SAS and FaDu). To identify miR-29s-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-29s target genes.Results:
Restoration of miR-29s in SAS and FaDu cell lines revealed significant inhibition of cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that miR-29s modulated the focal adhesion pathway. Moreover, laminin γ2 (LAMC2) and α6 integrin (ITGA6) genes were candidate targets of the regulation of miR-29s. Luciferase reporter assays showed that miR-29s directly regulated LAMC2 and ITGA6. Silencing of LAMC2 and ITGA6 genes significantly inhibited cell migration and invasion in cancer cells.Conclusion:
Downregulation of miR-29s was a frequent event in HNSCC. The miR-29s acted as tumour suppressors and directly targeted laminin–integrin signalling. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and metastasis and suggests novel therapeutic strategies for the disease. 相似文献18.
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and deadly cancers worldwide, especially in Eastern Asia. It has been indicated that circular RNAs (circRNA) are the key regulators in the development and progression of human cancers. We therefore evaluated the expression and regulation effects of ciRS-7 on the progression of ESCC, which is a recently identified circRNA and acts as a natural competing endogenous RNA. The expression of ciRS-7 was significantly increased in the ESCC tissues and cells as compared with their corresponding controls. In vitro study showed that ciRS-7 can promote the migration and invasion of ESCC cells. Over expression of miR-7, one of well-known targets of ciRS-7, can attenuate ciRS-7 induced invasion of ESCC cells and over expression of matrix metalloproteinase 2 (MMP2). The expression of stem cell marker Kruppel-like factor-4 (KLF-4), which has been reported as the target of miR7, increased significantly in ciRS-7 transfected ESCC cells. Knockdown of KLF-4 also attenuated over expression of ciRS-7 induced cell invasion. In addition, BAY 11–7082, the inhibitor of NF-κB, partially reversed ciRS-7 induced cell invasion. Mechanically studies indicated that ciRS-7 increased the expression of p65 via increasing the phosphorylation of IKK-α. Collectively, our present study revealed that ciRS-7 can trigger the migration and invasion of ESCC cells via miR-7/KLF4 and NF-κB signals. Targeted inhibition of ciRS-7 might be a potential approach for ESCC treatment. 相似文献
19.
We present a novel gain-of-function mutation of TGF-β receptor II (TβRII) found in human oral squamous cell carcinoma (OSCC). Expression of E221V/N238I mutant TβRII enhanced TGF-β signaling. Mutation of TβRII conferred cells higher migratory and invasive capabilities and MMP-2 activity. In mouse tumor model, mutant tumors exhibited poor differentiation and E-cadherin relocalization to the cytosol. Lipid-raft-dependent endocytosis of TβRII was attenuated in mutant TβRII, suggesting that enhancement of TGF-β signaling by this mutation is due to delayed TβRII internalization. Taken together, our results show a novel gain-of-function TβRII mutation, which enhances TGF-β signaling leading to more invasive phenotypic changes in human OSCC. 相似文献
20.
Major histocompatibility complex (MHC) class I molecules have been found to be downmodulated in many tumors. The antigen-processing machinery (APM) genes, especially transporters associated with antigen processing (TAP)-1 and tapasin play important roles in the processing of class I antigens. In this study, we investigated the expression of TAP-1 and tapasin in oral squamous cell carcinoma (OSCC); the result indicated significant down-regulation in the expression of these genes. Interferon (IFN)-γ treatment was applied. After the addition of IFN-γ, unexpectedly, the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway was activated, which induced the proliferation of tumor cells. With the combined application of LY294002 (specific inhibitor of AKT signaling) and IFN-γ, tumor cell apoptosis was induced and the expression of TAP-1 and tapasin was still up-regulated. Hence, our method is a novel and efficient approach to use IFN-γ for rescuing the cells from immunosurveillance. 相似文献