首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We have described previously a selective serotonin transporter (SERT) radioligand, [123I]IDAM. We now report a similarly potent, but more stable IDAM derivative, 5-iodo-2-[2-[(dimethylamino)methyl]phenoxy]benzyl alcohol ([123I]ODAM). The imaging characteristics of this radioligand were studied and compared against [123I]IDAM. Dynamic sequences of single-photon emission tomography (SPET) scans were obtained on three female baboons after injection of 375 MBq of [123I]ODAM. Displacing doses (1 mg/kg) of the selective SERT ligand (+)McN5652 were administered 120 min after injection of [123I]ODAM. Total integrated brain uptake of [123I]ODAM was about 30% higher than [123I]IDAM. After 60–120 min, the regional distribution of tracer within the brain reflected the characteristic distribution of SERT. Peak specific binding in the midbrain occurred 120 min after injection, with an equilibrium midbrain to cerebellar ratio of 1.50±0.08, which was slightly lower than the value for [123I]IDAM (1.80± 0.13). Both the binding kinetics and the metabolism of [123I]ODAM were slower than those of [123I]IDAM. Following injection of a competing SERT ligand, (+)McN5652, the tracer exhibited washout from areas with high concentrations of SERT, with a dissociation kinetic rate constant k off=0.0085±0.0028 min–1 in the midbrain. Similar studies using nisoxetine and methylphenidate showed no displacement, consistent with its low binding affinity to norepinephrine and dopamine transporters, respectively. These results suggest that [123I]ODAM is suitable for selective SPET imaging of SERT in the primate brain, with higher uptake and slower kinetics and metabolism than [123I]IDAM, but also a slightly lower selectivity for SERT. Received 1 May and in revised form 31 May 1999  相似文献   

2.
A new radioligand, 5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio]benzyl alcohol ([(123)I]IDAM), has been developed for selective single-photon emission tomography (SPET) imaging of SERT. In vitro binding studies suggest a high selectivity of IDAM for SERT (K(i)=0.097 nM), with considerably lower affinities for norepinephrine and dopamine transporters (NET K(i)= 234 nM and DAT K(i)>10 microM, respectively). In this study the biodistribution of SERT in the baboon brain was investigated in vivo using [(123)I]IDAM and SPET imaging. Dynamic sequences of SPET scans were performed on three female baboons (Papio anubis) after injection of 555 MBq of [(123)I]IDAM. Displacing doses (1 mg/kg) of the selective SERT ligand (+)McN5652 were administered 90-120 min after injection of [(123)I]IDAM. Similar studies were performed using a NET inhibitor, nisoxetine, and a DAT blocker, methylphenidate. After 60-120 min, the regional distribution of tracer within the brain reflected the characteristic distribution of SERT, with the highest uptake in the midbrain area (hypothalamus, raphe nucleus, substantia nigra), and the lowest uptake in the cerebellum (an area presumed free of SERT). Peak specific binding in the midbrain occurred at 120 min, with a ratio to the cerebellum of 1.80+/-0.13. At 30 min, 85% of the radioactivity in the blood was metabolite. Following injection of a competing SERT ligand, (+)McN5652, the tracer exhibited rapid washout from areas with high concentrations of SERT (dissociation rate constant in the midbrain, averaged over three baboons, k(off)=0. 025+/-0.002 min(-1)), while the cerebellar activity distribution was undisturbed (washout rate 0.0059+/- 0.0003 min(-1)). Calculation of tracer washout rate pixel-by-pixel enabled the generation of parametric images of the dissociation rate constant. Similar studies using nisoxetine and methylphenidate had no effect on the distribution of [(123)I]IDAM in the brain. These results suggest that [(123)I]IDAM is suitable for selective SPET imaging of SERT in the primate brain, with high contrast, favorable kinetics, and negligible binding to either NET or DAT.  相似文献   

3.
Development of selective serotonin transporter (SERT) tracers for single-photon emission tomography (SPET) is important for studying the underlying pharmacology and interaction of specific serotonin reuptake site inhibitors, commonly used antidepressants, at the SERT sites in the human brain. In search of a new tracer for imaging SERT, IDAM (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio]benzyl alcohol) was developed. In vitro characterization of IDAM was carried out with binding studies in cell lines and rat tissue homogenates. In vivo binding of [125I]IDAM was evaluated in rats by comparing the uptakes in different brain regions through tissue dissections and ex vivo autoradiography. In vitro binding studyshowed that IDAM displayed an excellent affinity to SERT sites (K i=0.097 nM, using membrane preparations of LLC-PK1 cells expressing the specific transporter) and showed more than 1000-fold of selectivity for SERT over norepinehrine and dopamine (expressed in the same LLC-PK1 cells). Scatchard analysis of [125I]IDAM binding to frontal cortical membrane homogenates prepared from control or p-chloroamphetamine (PCA)-treated rats was evaluated. As expected, the control membranes showed a K d value of 0.25 nM±0.05 nM and a B max value of 272±30 fmol/ mg protein, while the PCA-lesioned membranes displayed a similar K d, but with a reduced B max (20±7 fmol/ mg protein). Biodistribution of[125I]IDAM (partition coefficient =473; 1-octanol/buffer) in the rat brainshowed a high initial uptake (2.44%dose at 2 min after i.v. injection) with the specific binding peaked at 60 min postinjection (hypothalamus-cerebellum/cerebellum =1.75). Ex vivo autoradiographs of rat brain sections (60 min after i.v. injection of [125I]IDAM) showed intense labeling in several regions (olfactory tubercle, lateral septal nucleus, hypothalamic and thalamic nuclei, globus pallidus, central gray, superior colliculus, substantia nigra, interpeduncular nucleus, dorsal and median raphes and locus coeruleus), which parallel known SERT density. This novel tracer has excellent characteristics for in vivo SPET imaging of SERT in the brain. Received: 1 February / Revised: 11 March 1999  相似文献   

4.
Several studies have shown that impulsive violent and suicidal behaviour is associated with a central serotonin deficit, but until now it has not been possible to use laboratory tests with high sensitivity and specificity to study this kind of deficit or to localize the sites of serotonergic abnormalities in the living human brain. The aim of this study was to test the hypothesis that monoamine transporter density in brain is decreased in subjects with impulsive violent behaviour. We studied serotonin (5-HT) and dopamine (DA) transporter specific binding in 52 subjects (21 impulsive violent offenders, 21 age- and sex-matched healthy controls, and ten non-violent alcoholic controls) with single-photon emission tomography (SPET) using iodine-123-labelled 2β-carbomethoxy-3β(4-iodophenyl)tropane ([123I]β-CIT) as the tracer. The blind quantitative analysis revealed that the 5-HT specific binding of [123I]β-CIT in the midbrain of violent offenders was lower than that in the healthy control subjects (P<0.005; t test) or the non-violent alcoholics (P<0.05). The results imply that habitual impulsive aggressive behaviour in man is associated with a decrease in the 5-HT transporter density. Received 14 March and in revised form 20 June 1997  相似文献   

5.
We have described previously a selective serotonin transporter (SERT) radioligand, [(123)I]IDAM. We now report a similarly potent, but more stable IDAM derivative, 5-iodo-2-[2-[(dimethylamino)methyl]phenoxy]benzyl alcohol ([(123)I]ODAM). The imaging characteristics of this radioligand were studied and compared against [(123)I]IDAM. Dynamic sequences of single-photon emission tomography (SPET) scans were obtained on three female baboons after injection of 375 MBq of [(123)I]ODAM. Displacing doses (1 mg/kg) of the selective SERT ligand (+)McN5652 were administered 120 min after injection of [(123)I]ODAM. Total integrated brain uptake of [(123)I]ODAM was about 30% higher than [(123)I]IDAM. After 60-120 min, the regional distribution of tracer within the brain reflected the characteristic distribution of SERT. Peak specific binding in the midbrain occurred 120 min after injection, with an equilibrium midbrain to cerebellar ratio of 1. 50+/-0.08, which was slightly lower than the value for [(123)I]IDAM (1.80+/- 0.13). Both the binding kinetics and the metabolism of [(123)I]ODAM were slower than those of [(123)I]IDAM. Following injection of a competing SERT ligand, (+)McN5652, the tracer exhibited washout from areas with high concentrations of SERT, with a dissociation kinetic rate constant k(off)=0.0085+/-0.0028 min(-1) in the midbrain. Similar studies using nisoxetine and methylphenidate showed no displacement, consistent with its low binding affinity to norepinephrine and dopamine transporters, respectively. These results suggest that [(123)I]ODAM is suitable for selective SPET imaging of SERT in the primate brain, with higher uptake and slower kinetics and metabolism than [(123)I]IDAM, but also a slightly lower selectivity for SERT.  相似文献   

6.
[99mTc]TRODAT-1 was the first 99mTc-labeled imaging agent to show specific binding to dopamine transporters (DAT) in the striatum (STR) of human brain. Additionally, in vitro binding and autoradiographic experiments demonstrated that this tracer also binds to serotonin transporters (SERT) in the midbrain/hypothalamus (MB) area. In this study, [99mTc]TRODAT-1 was investigated as a potentially useful ligand to image SERT in the MB of living brain. A total of eight single-photon emission tomography (SPET) scans were performed in two baboons (Papio anubis) after intravenous (i.v.) injection of 740 MBq (20 mCi) of [99mTc]TRODAT-1 using a triple-head gamma camera equipped with ultra-high-resolution fan-beam collimators (scan time: 0–210 min). In four blocking studies, baboons were pretreated with (+)McN5652 (1 mg/kg, i.v.) or methylphenidate (1 mg/kg, i.v.) to specifically block SERT or DAT, respectively. After co-registration with magnetic resonance images of the same baboon, a region of interest analysis was performed using predefined templates to calculate specific uptake in the midbrain area and the striatum, with the cerebellum as the background region [(MB–CB)/CB, (STR–CB)/CB]. Additionally, two PET scans of the same baboons were performed after i.v. injections of 74–111 MBq (2–3 mCi) of [11C](+)McN5652 to identify the SERT sites. In [99mTc]TRODAT-1/SPET scans, the SERT sites in the MB region were clearly visualized. Semiquantitative analysis revealed a specific uptake in MB ([MB–CB]/CB) of 0.30±0.02, which was decreased to 0.040±0.005 after pretreatment with nonradioactive (+)McN5652, a selective SERT ligand. Pretreatment with methylphenidate reduced the specific binding of [99mTc]TRODAT-1 to DAT sites [(STR-CB)/CB] from 2.45±0.13 to 0.32±0.04 without any effect on its binding to SERT sites [(MB–CB)/CB], which was confirmed by the co-registration of the [11C](+)McN5652/PET scans. This preliminary study suggests that specific binding of [99mTc]TRODAT-1 to SERT sites can be detected by in vivo SPET imaging despite the low target to background ratio. These findings provide impetus for further development of similar compounds with improved binding affinity and selectivity to SERT sites. Received 15 September and in revised form 15 November 1998  相似文献   

7.
This study reports on the biodistribution and radiation dosimetry of iodine-123-labelled N-ω-(flu- oropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)tropane ([123I]FP-CIT), a promising radioligand for the imaging of dopamine transporters. In 12 healthy volunteers, conjugate whole-body scans were performed up to 48 h following intravenous injection of approximately 100 MBq [123I]FP-CIT. Attenuation correction was performed using a transmission whole-body scan obtained prior to injection of the radioligand, employing a 123I flood source. Blood samples were taken and urine was freely collected up to 48 h after injection of the radiotracer. For each subject, the percentage of injected activity measured in regions of interest over brain, striatum, lungs and liver were fitted to a multicompartmental model to give time-activity curves. The cumulative urine activity curve was used to model the urinary excretion rate and, indirectly, to predict faecal excretion. Using the MIRD method, nine source organs were considered in estimating absorbed radiation doses for organs of the body. The images showed rapid lung uptake and hepatobiliary excretion. Diffuse uptake and retention of activity was seen in the brain, especially in the striatum. At 48 h following the injection of [123I]FP-CIT, mean measured urine excretion was 60%±9% (SD), and mean predicted excretion in faeces was 14%±1%. In general, the striatum received the highest absorbed dose (average 0.23 mGy/MBq), followed by the urinary bladder wall (average 0.054 mGy/MBq) and lungs (average 0.043 mGy/MBq). The average effective dose equivalent of [123I]FP-CIT was estimated to be 0.024 mSv/MBq. The amount of [123I]FP-CIT required for adequate dopamine transporter imaging results in an acceptable effective dose equivalent to the patient. Received 14 July and in revised form 26 September 1997  相似文献   

8.
Iodine-123 labelled epidepride is a novel radiopharmaceutical for the study of cerebral dopamine D2 receptors using single-photon emission tomography (SPET). A lipophilic labelled metabolite of [123I]epidepride which may enter the brain and hamper the quantitation of receptors has been observed in human plasma. In the present study, gradient high-performance liquid chromatography (HPLC) was used to investigate the plasma concentration of the lipophilic labelled metabolite and its correlation to SPET imaging of striatal dopamine D2 receptors. A linear regression fit showed a negative correlation between the amount of the lipophilic labelled metabolite and the striatum to cerebellum ratio (n=16, R=–0.58, P<0.02), suggesting that plasma metabolite analysis is essential when imaging dopamine D2 receptors with SPET using [123I]epidepride. Received 6 September and in revised form 21 October 1999  相似文献   

9.
The iodine-123 labelled selective ligand N-(3-iodoprop-2E-enyl)-2-β-carbomethoxy-3β-(4-methylphenyl)nortropane ([123I]PE2I) was evaluated as a probe for in vivo dopamine transporter imaging in the human brain. Six healthy subjects were imaged with a high-resolution single-photon emission tomography scanner. Striatal radioactivity peaked at 1 h after injection. The background radioactivity was low. The volume of distribution in the striatum was 94±24 ml/ml. The results were compared with those of [123I]β-CIT imaging. There was no significant uptake of [123I]PE2I in serotonin-rich regions such as the midbrain, hypothalamus and anterior gingulus, suggesting that in vivo binding is specific for the dopamine transporter. One main polar metabolite of [123I]PE2I was found in plasma, and the parent plasma concentration decayed rapidly. Radiation exposure to the study subject is 0.022±0.004 mSv/MBq (effective dose). The preliminary results suggest that [123I]PE2I is a selective SPET ligand for imaging striatal dopamine transporter density. Received 9 December 1997 and in revised form 20 February 1998  相似文献   

10.
IPT [N-(3-iodopropen-2-yl)-2-carbome-thoxy-3-(4-chlorophenyl) tropane] is a new cocain analogue which allows the presynaptic dopamine transporters to be imaged with single-photon emission tomography (SPET) as early as 1–2 h post injection. In the present study [123I]IPT SPET was performed in patients with Parkinson's disease (PD) to analyse the relationship between specific dopamine tansporter binding and clinical features of the disease. Twenty-six PD patients (Hoehn and Yahr stages I-IV, age range 40–79 years) and eight age-matched controls were studied. SPET imaging was performed 90–120 min after injection of 160–185 MBq [123I]IPT using a triple-head camera. For semiquantitative evaluation of specific [123I]IPT binding, ratios between caudate, putamen and background regions were calculated. Specific [123I]IPT uptake was significantly reduced in PD patients compared to controls. Most patients showed a marked asymmetry with a more pronounced decrease in [123I]IPT binding on the side contralateral to the predominant clinical findings. The putamen was always more affected than the caudate. [123I]IPT binding was significantly correlated with disease duration (r=–0.7,P<0.0001) but not with the age of PD patients (r=–0.10,P=0.61). Specific [123I]IPT uptake in the caudate and putamen, and putamen to caudate ratios, decreased with increasing Hoehn and Yahr stage. Our findings indicate that [123I]IPT SPET may be a useful technique to estimate the extent of nigrostriatal degeneration in PD patients. Close relationships between striatal [123I]IPT binding and clinical features of the disease suggest that this method can be used to objectively follow the course and progression of PD. The reduced putamen to caudate ratios observed even in patients with mild, newly recognized symptoms indicate that particularly this parameter may help to establish the correct diagnosis in the early course of PD.  相似文献   

11.
Iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl) (nor-β-CIT) is an analogue of β-CIT, which has high affinity to the serotonin transporter. Initial single-photon emission tomography (SPET) studies with [123I]nor-β-CIT were performed in five healthy volunteers. In addition, its metabolism in plasma was investigated with gradient high performance liquid chromatography. [123I]nor-β-CIT was prepared by a method which gave a specific radioactivity of more than 180 GBq/μmol. Unchanged [123I]nor-β-CIT in plasma accounted for 43% and 19% of total radioactivity after 30 and 180 min, respectively. The dynamic SPET studies demonstrated a high and rapid uptake of radioactivity in the brain (6%/ID at 30 min). Highest accumulation was observed in the striatum, the mid-brain and the thalamus. The specific binding in the mid-brain was 33% higher compared with that of [123I]β-CIT. The high radioactivity in the mid-brain is assumed to represent the accumulation of [123I]nor-β-CIT in the serotonin transporter-rich regions, which indicates that [123I]nor-β-CIT might be a potential tracer for visualization of serotonin transporter sites in the human brain with SPET. Received 23 May and in revised form 2 September 1997  相似文献   

12.
The iodine-123 labelled ligand benzamide epidepride was evaluated as a probe for in vivo imaging of striatal and extrastriatal dopamine D2 receptor sites in the human brain. Four healthy males were imaged with a high-resolution single-photon emission tomography scanner. Striatal radioactivity peaked at 3 h after injection. The specific binding in the striatum was 0.91±0.03 at 3 h and this ratio steadily increased with time. Extrastriatal radioactivity was highest in the thalamus, in the midbrain and in the temporal cortex, and peaked at 45–60 min after injection of tracer. A smaller amount of radioactivity was found in the parietal, frontal and occipital cortices. Two radioactive metabolites were observed, of which one was more lipophilic than the parent compound. The radiation burden to the patient was 0.035 mSv/MBq (effective dose equivalent). The preliminary results showed that [123I]epidepride can be used for imaging striatal and extrastriatal dopamine D2 receptor sites in the living human brain.  相似文献   

13.
Dopamine transporter imaging is a valuable tool to investigate the integrity of the dopaminergic neurons. To date, several reports have shown an age-associated decline in dopamine transporters in healthy volunteers. Although animal studies suggest an effect of gender on dopamine transporter density, this gender effect has not yet been confirmed in human studies. To study the influence of age and gender on dopamine transporter imaging in healthy volunteers, we performed single-photon emission tomography imaging with [123I]FP-CIT to quantify dopamine transporters. Forty-five healthy volunteers (23 males and 22 females) were included, ranging in age from 18 to 83 years. SPET imaging was performed 3 h after injection of ±110 MBq [123I]FP-CIT. An operator-independent volume of interest analysis was used for quantification of [123I]FP-CIT binding in the striatum. The ratio of specific striatal to non-specific [123I]FP-CIT binding was found to decrease significantly with age. Moreover, we found a high variance in [123I]FP-CIT binding in young adults. Finally, females were found to have significantly higher [123I]FP-CIT binding ratios than males. This effect of gender on [123I]FP-CIT binding ratios was not related to age. The results of this study are consistent with findings from previous studies, which showed that dopamine transporter density declines with age. The intriguing finding of a higher dopamine transporter density in females than in males is in line with findings from animal studies. Received 29 January 2000 and in revised form 27 March 2000  相似文献   

14.
Functional imaging of the presynaptic dopaminergic activity using single-photon emission tomography (SPET) and iodine-123 labelled 2-β-carboxymethoxy-3-β-(4-iodophenyl)tropane ([123I]β-CIT) is important for the assessment of disease severity and progression in patients with Parkinson’s disease (PD). However, its capability to discriminate between different extrapyramidal disorders has not yet been assessed. The aim of this study was to evaluate the possibility of differentiating patients with PD and with progressive supranuclear palsy (PSP) by means of this method. The distribution of [123I]β-CIT in the basal ganglia was assessed in six normal subjects, 13 petients with PD and five patients with PSP in whom the disease was mild. SPET images were obtained 24±2 h after i.v. injection of the tracer using a brain-dedicated system (CERASPECT). MR and SPET images were co-registered in four normal subjects and used to define a standard set of 16 circular regions of interest (ROIs) on the slice showing the highest striatal activity. The basal ganglia ROIs corresponded to (1) the head of caudate, (2) a region of transition between the head of caudate and the anterior putamen, (3) the anterior putamen and (4) the posterior putamen. A ratio of specific to non-displaceable striatal uptake was calculated normalising the activity of the basal ganglia ROIs to that of the occipital cortex (V3′′). ANOVA revealed a global reduction of V3′′ in all ROIs of PD and PSP patients compared with normal controls (P<0.0001). A Mann-Whitney U test showed that the difference between PD and PSP patients was statistically significant for the caudate region only (Z value: 2.6; P<0.01). By subtracting V3′′ caudate values from those of the putamen, differentiation from PSP was possible in 10/13 PD patients. In conclusion, analysis of [123I]β-CIT distribution in discrete striatal areas provides information on the relative caudate-putamen damage, with different values being obtained in patients clinically diagnosed as having either PD or PSP. Received 1 February and in revised form 7 May 1998  相似文献   

15.
Loss of striatal dopamine (DA) transporters in Parkinson's disease (PD) has been accurately assessed in vivo by single-photon emission tomography (SPET) studies using [123I]-CIT. However, these studies have also shown that adequate imaging of the striatal DA transporter content can be performed only 20–30 h following the injection of [123I]-CIT, which is not convenient for routine out-patient evaluations. Recently, a new ligand,N--fluoropropyl-2-carbomethoxy-3-(4-iodophenyl)tropane (FP-CIT), became available for in vivo imaging of the DA transporter. The faster kinetics of [123I]FP-CIT have been shown to allow adequate acquisition as early as 3 h following injection. In the present study, loss of striatal DA transporters in five non-medicated PD patients was assessed on two consecutive SPET scans, one with [123I]-CIT (24 h following injection) and one with [123I]FP-CIT (3 h following injection). The ratios of specific to non-specific [123I]FP-CIT uptake in the caudate nucleus and putamen were consistently 2.5-fold lower than those of [123I]-CIT. However, when the uptake ratio of both ligands in these brain regions of patients was expressed as a percentage of the uptake ratio found in healthy controls, both the decrease and the variation of the data were similar. It is concluded on the basis of these findings that [123I]FP-CIT seems as good as [123I]-CIT for the assessment of the dopaminergic deficit in PD. The faster kinetics of [123I]FP-CIT are a clear advantage.  相似文献   

16.
Regional cerebral blood flow (rCBF) was measured in five Japanese patients who were clinically diagnosed as having Joseph disease, also called Machado-Joseph disease or Azorean disease, using N-isopropyl p-[123I]iodoamphetamine (IMP) and single-photon emission tomography (SPET). Cerebellar atrophy was evaluated by a five-step rating scale as defined on X-ray computed tomography (X-CT). Compared with ten age-matched normal controls (mean cerebellar CBF ± SD: 66.9 ± 6.6 ml/100 g/min), rCBF in patients with Joseph disease was significantly decreased in the cerebellum (mean ± SD: 50.2 ± 7.3 m1/100 g/min). No significant relationship, however, was found between the decrease in rCBF in the cerebellum and the degree of cerebellar atrophy on X-CT. rCBF in the cerebellum was minimally decreased in one patient who had severe cerebellar atrophy and in two patients with moderate atrophy. These data may support the findings that Purkinje cells in the cerebellum are almost normal in Joseph disease, and that the granular and molecular layers remain intact in spite of cortical atrophy of the cerebellum. It is concluded that [123I]-IMP SPET is able to identify pathological and metabolic changes in the cerebellum that do not appear on X-CT or magnetic resonance imaging, and thus is useful for the diagnosis of Joseph disease. Correspondence to: N. Takahashi  相似文献   

17.
Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes.  相似文献   

18.
The iodine-123 labelled selective ligand N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ([123I]PE2I) has been developed and has been shown to be suitable for single-photon emission tomography imaging of the dopamine transporter. In this study the influence of age on ligand binding was investigated in 16 healthy males with an age range of 23– 75 years. Single-photon emission tomography (SPET) imaging was performed with a triple-headed gamma camera. A simplified reference region model, in which the input function was derived from the non-displaceable cerebellar compartment, was used to calculate the volume of distribution in the striatum. The volume of distribution was shown to decline with age (–0.4%/year; P<0.005). The results were in agreement with in vivo and in vitro findings of a decline in dopamine transporter binding with age. The findings confirm the suitability of [123I]PE2I for SPET imaging in clinical routine but emphasize the necessity of using age-matched controls in patient studies. Received 1 June and in revised form 12 June 1999  相似文献   

19.
Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were co-registered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k 3 /k 4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k 3 /k 4 for the three different analysis techniques for each baboon were: 1.17±0.21 and 1.12±0.13 (full kinetic model), 0.93±0.13 and 0.90±0.07 (reference region model), and 0.97±0.18 and 0.92±0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k 3 /k 4 correlated very strongly with the full kinetic analysis (r 2 = 0.992, P<0.001), and with the equilibrium model (r 2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups. Received 26 October 1998 and in revised form 11 January 1999  相似文献   

20.
Imaging of monoamine oxidase of subtype B (MAO B) is of interest in various neurological diseases. In the past non-invasive assessment of MAO B has only been possible with positron emission tomography (PET) ligands. Given the limited availability of PET, a single-photon emission tomography (SPET) ligand would be desirable. In this study SPET imaging with the new MAO B inhibitor [123I]Ro 43-0463 was performed in five volunteers and nine patients with temporal lobe epilepsy (TLE). In two volunteers a second study was performed 12 h following blockade with deprenyl. In the TLE patients the tracer was administered as bolus (n = 4) or as prolonged infusion (n = 5). The regional uptake pattern correlated well with the known distribution of MAO B. In the two blocking studies ligand uptake was substantially reduced compared with baseline. In the TLE patients increased uptake was found in the ipsilateral mesial temporal lobe and, surprisingly, in the ipsilateral putamen. This study indicates the potential of the new SPET ligand [123I]Ro 43-0463 to map MAO B concentration in the human brain. The new finding of increased MAO B in the putamen of TLE patients needs further studies to elucidate its exact pathophysiology. Received 2 October and in revised form 29 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号