首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of neuropathic pain by a potent disintegrin--triflavin   总被引:1,自引:0,他引:1  
Injury to peripheral nerves may result in severe and intractable neuropathic pain. Many efforts have been focused on the elucidation of the mechanisms of neuropathic pain. It was found here that integrin plays an important role in the induction of neuropathic pain and treatment of disintegrin is able to attenuate neuropathic pain. The rats were induced hyperalgesia by tightly ligating the L5 spinal nerve and cut just distal to the ligature on one side. Mechanical and thermal stimuli were applied in the middle dermatome of the hind paw. Epidural administration of triflavin (TFV), an arginine-glycine-aspartic acid (RGD) containing disintegrin, inhibited hyperalgesia induced by either mechanical or thermal stimulation. Immunohistochemistry showed that the sprouting of sympathetic nerves into DRG by neuropathic surgery was markedly inhibited by TFV. Beta 1 integrin mRNA of L5 DRG increased immediately 1 day after tight ligation and cut of L5 spinal nerve. However, beta 1 integrin mRNA in uninjured L4 DRG increased later on Day 3 after surgery. On the other hand, alpha-CGRP precursor mRNA decreased in ipsilateral L5 DRG but increased in L4 DRG after neuropathic surgery. Immunohistochemistry shows that beta 3 integrins of L5 as well as L4 increased in response to neuropathic surgery and administration of triflavin antagonized the increasing action. These results suggest that there is interaction between injured and uninjured neurons and the induction of neuropathic pain is related to neuronal sprouting. Disintegrin is able to inhibit neuronal sprouting and the induction of hyperalgesia induced by peripheral nerve injury and may thus be a new category of drugs to be developed for the treatment of neuropathic pain.  相似文献   

2.
S O Ha  J K Kim  H S Hong  D S Kim  H J Cho 《Neuroscience》2001,107(2):301-309
Chronic constriction injury of the sciatic nerve and lumbar L5 and L6 spinal nerve ligation provide animal models for pain syndromes accompanying peripheral nerve injury and disease. In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat L4 and L5 dorsal root ganglia (DRG) and areas where afferents from the DRG terminates (the L4/5 spinal cord and gracile nuclei) in these experimental models of neuropathic pain. Chronic constriction injury induced significant increase in the percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral L4 and L5 DRG. Following spinal nerve ligation, the percentage of large BDNF-immunoreactive neurons increased significantly, and that of small BDNF-immunoreactive neurons decreased markedly in the ipsilateral L5 DRG, while that of BDNF-immunoreactive L4 DRG neurons of all sizes showed marked increase. Both chronic constriction injury and spinal nerve ligation induced significant increase in the number of BDNF-immunoreactive axonal fibers in the superficial and deeper laminae of the L4/5 dorsal horn and the gracile nuclei on the ipsilateral side.Considering that BDNF may modulate nociceptive sensory inputs and that injection of antiserum to BDNF significantly reduces the sympathetic sprouting in the DRG and allodynic response following sciatic nerve injury, our results also may suggest that endogenous BDNF plays an important role in the induction of neuropathic pain after chronic constriction injury and spinal nerve ligation. In addition, the increase of BDNF in L4 DRG may contribute to evoked pain which is known to be mediated by input from intact afferent from L4 DRG following L5 and L6 spinal nerve ligation.  相似文献   

3.
Inflammation of the primary afferent proximal to the dorsal root ganglion (DRG) and the DRG itself is known to produce radicular pain. Here, we examined pain-related behaviors and the activation of extracellular signal-regulated protein kinase (ERK) in the DRG after inflammation near the DRG somata. Inflammation of the L4/5 nerve roots and DRG induced by complete Freund's adjuvant (CFA) produced mechanical allodynia on the ipsilateral hindpaw and induced an increase in the phosphorylation of ERK, mainly in tyrosine kinase (trk) A-expressing small- and medium-size neurons. This CFA-induced increase in ERK phosphorylation was mediated through trk receptors, because intrathecal treatment with the tyrosine kinase inhibitor, K252a, reduced the activation of ERK. On the other hand, an increase in brain-derived neurotrophic factor (BDNF) mRNA/protein in the DRG concomitant with the ERK activation was also observed. Furthermore, we found that nerve growth factor (NGF) injection directly into the L4/5 nerve roots and DRG produced mechanical allodynia, and an increase in the phosphorylation of ERK and BDNF expression in the DRG, but the mitogen-activated protein kinase (MAPK) kinase1/2 inhibitor, U0126, inhibited the effects induced by NGF. Therefore, we suggest that after inflammation near the cell body, NGF synthesized within the nerve root and DRG induces BDNF expression through trkA receptors and intracellular ERK-MAPK. The activation of MAPK in the primary afferents may be involved in the pathophysiological mechanisms of inflammation-induced radiculopathy and MAPK pathways in the primary afferents may be potential targets for pharmacological intervention for neuropathic pain produced by inflammation near the DRG somata.  相似文献   

4.
The rat L(5) dorsal root ganglion (DRG) was chronically compressed by inserting a hollow perforated rod into the intervertebral foramen. The DRG was constantly perfused through the hollow rod with either lidocaine or normal saline delivered by a subcutaneous osmotic pump. Behavioral evidence for neuropathic pain after DRG compression involved measuring the incidence of hindlimb withdrawals to both punctate indentations of the hind paw with mechanical probes exerting different bending forces (hyperalgesia) and to light stroking of the hind paw with a cotton wisp (tactile allodynia). Behavioral results showed that for saline-treated control rats: the withdrawal thresholds for the ipsilateral and contralateral paws to mechanical stimuli decreased significantly after surgery and the incidence of foot withdrawal to light stroking significantly increased on both ipsilateral and contralateral hind paws. Local perfusion of the compressed DRG with 2% lidocaine for 7 days at a low flow-rate (1 microl/h), or for 1 day at a high flow-rate (8 microl/h) partially reduced the decrease in the withdrawal thresholds on the ipsilateral foot but did not affect the contralateral foot. The incidence of foot withdrawal in response to light stroking with a cotton wisp decreased significantly on the ipsilateral foot and was completely abolished on the contralateral foot in the lidocaine treatment groups. This study demonstrated that compression of the L(5) DRG induced a central pain syndrome that included bilateral mechanical hyperalgesia and tactile allodynia. Results also suggest that a lidocaine block, or a reduction in abnormal activity from the compressed ganglia to the spinal cord, could partially reduce mechanical hyperalgesia and tactile allodynia.  相似文献   

5.
6.
There is an increasing evidence that unilateral nerve injury induces cellular and molecular changes in the associated DRG not only on the ipsilateral but also in the contralateral side. In this investigation, ED-1+ macrophages were quantified by image analysis in the naïve L5 DRG (nDRG) and compared with the ipsi- and contralateral ones 2 and 4 weeks after unilateral sciatic nerve ligature and ventral root transection (VRT). A few ED-1+ macrophages were found in nDRG but not closely associated with the neuronal bodies. In contrast, following nerve injuries ED-1+ macrophages and their processes were frequently located close neuronal bodies and became their satellite cells. Moreover, an increased number of ED-1+ cells was found in the ipsilateral DRG 2 weeks after unilateral sciatic nerve ligature or VRT, but no significant differences were measured between 2 and 4 weeks after both types of nerve lesion. Contralateral DRG displayed a significant enhanced number of ED-1+ cells no sooner than 4 weeks from sciatic nerve ligature. In contrast, VRT induced a significant increased invasion of the ED-1+ cells in the contralateral DRG as early as 2 weeks after operation. Our experiments indicate that a significantly higher number of ED-1+ macrophages remained in both ipsi- and contralateral DRG up to 4 weeks from nerve injury. Based on results from different models of nerve injury, we suggest that more than one mechanism operates to stimulate the invasion of ED-1+ macrophages into the DRG including retrograde transport of factors produced during Wallerian degeneration or their delivery by blood flow. Signaling for macrophage invasion into DRG contralateral to nerve injury may be mediated by lost motoneurons or by interneurones.  相似文献   

7.
One subtype of ATP-gated ion channel, the P2X3 receptor, is expressed primarily on peripheral sensory neurons. While it is known that P2X3 receptors can participate in certain forms of nociceptive signaling, their involvement in neuropathic pain transmission is not known. We have examined the expression and function of P2X3 receptors in a rat spinal nerve ligation model of neuropathic pain. Fourteen days following L5/L6 spinal nerve ligation, the corresponding dorsal root ganglia (DRG) were removed from animals exhibiting mechanical allodynia, and these were studied using immunohistochemical and electrophysiological techniques. Using a polyclonal antibody to label the P2X3 receptor, a significant reduction in neuronal P2X3 immunoreactivity was observed in the ipsilateral (injured) L5 and L6 DRG following nerve ligation. In vitro electrophysiological analysis of acutely isolated DRG neurons revealed a similar decrease in functional P2X3-containing receptors. In small diameter (22–25 μm) neurons, a significant reduction in the number of cells exhibiting a response to α,β-meATP was observed. However, a subset of small diameter neurons retained P2X3 responses of equal amplitude to those recorded from naive and sham control DRG neurons. Interestingly, P2X3 immunoreactivity and P2X3-like responses were also detected in a subset of larger diameter (50 μm) neurons and the number and amplitude of these responses were unchanged after spinal nerve ligation. These results suggest that, while there appears to be a decrease in fast desensitizing P2X3 receptors following L5/L6 nerve ligation injury, certain subsets of small and large DRG neurons maintain normal P2X3 receptor expression and function. These remaining receptors may provide a P2X3 receptor-mediated component to neuropathic pain. Electronic Publication  相似文献   

8.
Wang JY  Zhao M  Yuan YK  Fan GX  Jia H  Tang JS 《Neuroscience》2006,138(4):1319-1327
Previous studies have indicated that thalamic nucleus submedius is involved in opioid-mediated antinociception in tail flick test and formalin test. The current study examined the effects of opioids microinjected into the thalamic nucleus submedius on the allodynia developed in neuropathic pain model rats, and determined the roles of different subtypes of opioid receptors in the thalamic nucleus submedius opioid-evoked antiallodynia. The allodynic behaviors induced by L5/L6 spinal nerve ligation were assessed by mechanical (von Frey filaments) and cold (4 degrees C plate) stimuli. Morphine (1.0, 2.5, and 5.0 microg) microinjected into the thalamic nucleus submedius contralateral to the nerve injury paw produced a dose-dependent inhibition of the mechanical and cold allodynia, and these effects were reversed by microinjection of the non-selective opioid receptor antagonist naloxone (1.0 microg) into the same site. Microinjection of endomorphin-1 (5.0 microg), a highly selective mu-opioid receptor agonist, and [D-Ala2, D-Leu5]-enkephalin (10 microg), a delta-/mu-opioid receptor agonist, also inhibited the allodynic behaviors, and these effects were blocked by selective mu-opioid receptor antagonist beta-funaltrexamine hydrochloride (3.75 microg). However, the [D-Ala2, D-Leu5]-enkephalin-evoked antiallodynic effects were not influenced by the selective delta-opioid receptor antagonist naltrindole (5.0 microg). Microinjection of the selective kappa-receptor agonist spiradoline mesylate salt (100 microg) into the thalamic nucleus submedius failed to alter the allodynia induced by spinal nerve ligation. These results suggest that the thalamic nucleus submedius is involved in opioid-evoked antiallodynia which is mediated by mu- but not delta- and kappa-opioid receptor in the neuropathic pain model rats.  相似文献   

9.
The saphenous partial ligation (SPL) model is a new, easily performed, rodent model of neuropathic pain that consists of a unilateral partial injury to the saphenous nerve. The present study describes behavioral, pharmacological and molecular properties of this model. Starting between 3 and 5 days after surgery, depending on the modality tested, animals developed clear behaviors indicative of neuropathic pain such as cold and mechanical allodynia, and thermal and mechanical hyperalgesia compared with naive and sham animals. These pain behaviors were still present at 1 month. Signs of allodynia also extended to the sciatic nerve territory. No evidence of autotomy or bodyweight loss was observed. Cold and mechanical allodynia but not thermal and mechanical hyperalgesia was reversed by morphine (4 mg/kg i.p.). The cannabinoid receptor agonist WIN 55,212-2 (5 mg/kg i.p.) improved signs of allodynia and hyperalgesia tested except for mechanical hyperalgesia. Gabapentin (50 mg/kg i.p.) was effective against cold and mechanical allodynia but not hyperalgesia. Finally, amitriptyline (10 mg/kg i.p.) failed to reverse allodynia and hyperalgesia and its administration even led to hyperesthesia. Neurobiological studies looking at the expression of mu opioid receptor (MOR), cannabinoid CB(1) and CB(2) receptors showed a significant increase for all three receptors in ipsilateral paw skin, L3-L4 dorsal root ganglia and spinal cord of neuropathic rats compared with naive and sham animals. These changes in MOR, CB(1) and CB(2) receptor expression are compatible with what is observed in other neuropathic pain models and may explain the analgesia produced by morphine and WIN 55,212-2 administrations. In conclusion, we have shown that the SPL is an adequate model that will provide a new tool for clarifying peripheral mechanisms of neuropathic pain in an exclusive sensory nerve.  相似文献   

10.
Tatsumi S  Mabuchi T  Abe T  Xu L  Minami T  Ito S 《Neuroscience letters》2004,370(2-3):130-134
Neuropathic pain arising from peripheral nerve injury is a clinical disorder characterized by a combination of spontaneous pain, hyperalgesia and tactile pain (allodynia), and remains a significant clinical problem since it is often poorly relieved by conventional analgesics. To seek an analgesic compound(s) in Chinese herbs, we examined the effect of seven Chinese herbs that are routinely prescribed for pain management in two neuropathic pain models: allodynia induced by intrathecal administration of prostaglandin F2 (PGF2) and by selective L5 spinal nerve transection. The extracts of Moutan cortex and Coicis semen dose-dependently alleviated the PGF2-induced allodynia by oral administration 1 h before intrathecal injection of PGF2. When orally administrated every day for 7 days, these extracts attenuated neuropathic pain in the ipsilateral side, but not in the contralateral side, day 7 after L5 spinal nerve transection. The increase in NADPH diaphorase activity in the spinal cord associated with neuropathic pain was also blocked by these extracts. These results suggest that Moutan cortex and Coicis semen contain substances effective in neuropathic pain.  相似文献   

11.
We investigated electrophysiological changes in chronically axotomized and neighboring intact dorsal root ganglion (DRG) neurons in rats after either a peripheral axotomy consisting of an L5 spinal nerve ligation (SNL) or a central axotomy produced by an L5 partial rhizotomy (PR). SNL produced lasting hyperalgesia to punctate indentation and tactile allodynia to innocuous stroking of the foot ipsilateral to the injury. PR produced ipsilateral hyperalgesia without allodynia with recovery by day 10. Intracellular recordings were obtained in vivo from the cell bodies (somata) of axotomized and intact DRG neurons, some with functionally identified peripheral receptive fields. PR produced only minor electrophysiological changes in both axotomized and intact somata in L5 DRG. In contrast, extensive changes were observed after SNL in large- and medium-sized, but not small-sized, somata of intact (L4) as well as axotomized (L5) DRG neurons. These changes included (in relation to sham values) higher input resistance, lower current and voltage thresholds, and action potentials with longer durations and slower rising and falling rates. The incidence of spontaneous activity, recorded extracellularly from dorsal root fibers in vitro, was significantly higher (in relation to sham) after SNL but not after PR, and occurred in myelinated but not unmyelinated fibers from both L4 (9.1%) and L5 (16.7%) DRGs. We hypothesize that the changes in the electrophysiological properties of axotomized and intact DRG neurons after SNL are produced by a mechanism associated with Wallerian degeneration and that the hyperexcitability of intact neurons may contribute to SNL-induced hyperalgesia and allodynia.  相似文献   

12.
The aim of this investigation was to determine whether murine models of inflammatory, neuropathic and cancer pain are each characterized by a unique set of neurochemical changes in the spinal cord and sensory neurons. All models were generated in C3H/HeJ mice and hyperalgesia and allodynia behaviorally characterized. A variety of neurochemical markers that have been implicated in the generation and maintenance of chronic pain were then examined in spinal cord and primary afferent neurons.Three days after injection of complete Freund's adjuvant into the hindpaw (a model of persistent inflammatory pain) increases in substance P, calcitonin gene-related peptide, protein kinase C gamma, and substance P receptor were observed in the spinal cord. Following sciatic nerve transection or L5 spinal nerve ligation (a model of persistent neuropathic pain) significant decreases in substance P and calcitonin gene-related peptide and increases in galanin and neuropeptide Y were observed in both primary afferent neurons and the spinal cord. In contrast, in a model of cancer pain induced by injection of osteolytic sarcoma cells into the femur, there were no detectable changes in any of these markers in either primary afferent neurons or the spinal cord. However, in this cancer-pain model, changes including massive astrocyte hypertrophy without neuronal loss, increase in the neuronal expression of c-Fos, and increase in the number of dynorphin-immunoreactive neurons were observed in the spinal cord, ipsilateral to the limb with cancer.These results indicate that a unique set of neurochemical changes occur with inflammatory, neuropathic and cancer pain in C3H/HeJ mice and further suggest that cancer induces a unique persistent pain state. Determining whether these neurochemical changes are involved in the generation and maintenance of each type of persistent pain may provide insight into the mechanisms that underlie each of these pain states.  相似文献   

13.
目的:探讨盐酸布比卡因对大鼠L5脊神经结扎术(SNL)引起的神经病理性疼痛的早期阻滞作用。方法:雄性SD大鼠随机分为3组:L5SNL组:包括L5SNL手术组和L5SNL假手术组;L5脊神经背根切断术(DR)组:包括L5DR联合L5SNL组、L5DR假手术联合L5SNL组、L5DR联合L5SNL假手术组;L5背根节(DRG)节外注射盐酸布比卡因组:包括L5SNL术后L5DRG节外盐酸布比卡因注射组或HEPES缓冲液注射组。采用von Frey丝测试各组大鼠术侧及对侧后肢足底L4脊神经支配皮肤区域特异性的疼痛反应;用免疫荧光组织化学染色技术检测大鼠L5脊髓节段Iba-1的表达。结果:L5SNL术后大鼠术侧50%爪缩阈值(P...  相似文献   

14.
The mechanisms underlying neuropathic pain induction are very complex but might involve abnormal spontaneous activity in the sensory dorsal root ganglion (DRG). Voltage‐gated sodium channels in the DRG are essential for the genesis of abnormal spontaneous neuronal activity. In this study, we examined the changes in expression of the voltage‐gated sodium channel Nav1.1 in the DRG after peripheral nerve injury. Western blot analysis showed that the level of Nav1.1 protein in the ipsilateral L5 DRG was significantly increased on Days 3 and 7 after fifth lumbar spinal nerve ligation. Immunohistochemical study further confirmed a marked increase in the percentage of Nav1.1‐positive cells in the ipsilateral DRG on Day 3 after fifth lumbar spinal nerve ligation. Similarly, on Day 7 after sciatic nerve axotomy, the amount of Nav1.1 protein and the percentage of Nav1.1‐positive cells in the ipsilateral L5 DRG were also significantly increased. Our results suggest that an early increase in DRG Nav1.1 expression after peripheral nerve injury might be involved in the induction of neuropathic pain. Anat Rec, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
The purpose of this study was to measure the changes in levels of nerve growth factor (NGF) in dorsal root ganglia (DRG) and spinal nerves with the aim of investigating the role of NGF in a rat neuropathic pain model. Nerve injuries were made by tight ligation of the left L5 and L6 spinal nerves using 6-0 silk thread in male Sprague-Dawley rats. Before surgery and 1, 3, 5, 7, and 14 days after surgery, tissue samples collected included the L3-6 DRGs bilaterally, segments of the ipsilateral L5-6 spinal nerves proximal and distal to ligation sites, and corresponding sites of the contralateral L3-6 and the ipsilateral L3-4 spinal nerves. NGF levels in the DRGs of the injured spinal nerves (the left L5 and L6) did not change significantly from control values. The spinal nerve segments distal to ligation sites had higher levels of NGF than the control values. Unlesioned sites did not show any significant changes in NGF levels. The increase of NGF in distal segments of injured spinal nerves may be due to an accumulation of retrogradely transported NGF. The maintenance of NGF levels in the DRGs that had lost peripheral connections may reflect local synthesis after nerve injury.  相似文献   

16.
Xie WR  Deng H  Li H  Bowen TL  Strong JA  Zhang JM 《Neuroscience》2006,142(3):809-822
We investigated the role and mechanisms of inflammatory responses within the dorsal root ganglion (DRG) in the development of chemogenic pathological pain. DRG inflammation was induced by a single deposit of the immune activator zymosan in incomplete Freund's adjuvant in the epidural space near the L5 DRG via a small hole drilled through the transverse process. After a single zymosan injection, rats developed bilateral mechanical hyperalgesia and allodynia which began by day 1 after surgery, peaked at days 3-7, and lasted up to 28 days. The number of macrophages in ipsilateral and contralateral DRGs increased significantly, lasting over 14 days. Robust glial activation was observed in inflamed ganglia. Cytokine profile analysis using a multiplexing protein array system showed that, in normal DRG, all but interleukin (IL)-5, IL-10 and granulocyte-macrophage colony stimulating factor (GM-CSF) were detectable with concentrations of up to 180 pg/mg protein. Local inflammatory irritation selectively increased IL-1beta, IL-6, IL-18, monocyte chemoattractant protein-1 (MCP-1), and growth-related oncogene (GRO/KC) up to 17-fold, and decreased IL-2 and IL-12 (p70) up to threefold. Inflaming the DRG also remarkably increased the incidence of spontaneous activity of A- and C-fibers recorded in the dorsal root. Many of the spontaneously active A-fibers exhibited a short-bursting discharge pattern. Changes in cytokines and spontaneous activity correlated with the time course of pain behaviors, especially light stroke-evoked tactile allodynia. Finally, local inflammation induced extensive sprouting of sympathetic fibers, extending from vascular processes within the inflamed DRG. These results demonstrate the feasibility of inducing chronic localized inflammatory responses in the DRG in the absence of traumatic nerve damage, and highlight the possible contribution of several inflammatory cytokines/chemokines to the generation of spontaneous activity and development and persistence of chemogenic pathologic pain.  相似文献   

17.
Ma W  Bisby MA 《Neuroscience letters》1999,262(3):195-198
Partial sciatic nerve ligation (PSNL) is a widely used model for the study of neuropathic pain. However, there is little information on neuropeptide expression in primary sensory neurons after PSNL. We examined galanin (GAL) mRNA expression in L4 and L5 dorsal root ganglion (DRG) neurons of adult rats after PSNL. We found that 4 and 14 days after PSNL the percentages of GAL mRNA positive neurons were significantly increased in the ipsilateral DRG compared to the contralateral side. Using combined retrograde fluorescent dye tracing and in situ hybridization, we found that 47% of the injured neurons and 10% of the spared neurons were GAL mRNA positive. Since only 2-3% of neurons in the contralateral uninjured DRG were GAL mRNA positive, PSNL induced up-regulation of GAL mRNA in both injured and spared DRG neurons.  相似文献   

18.
The possible involvement of fibroblast growth factor receptor (FGFR) activation in the dorsal root ganglion (DRG) was examined following peripheral nerve injury in the rat. Ligation of the sciatic nerve down-regulated FGFR2, -3 and -4 mRNA; however, the expression of FGFR1 mRNA showed no change. Activation of FGFR was examined by immunohistochemistry using an antibody of the phosphorylated form of FGFR1-4. Ligation of the sciatic nerve produced phosphorylation of FGFR in the L4 and 5 DRG ipsilateral to the injury, starting at 3 days after the lesion and persisting for more than 30 days. Substantial activation of FGFR was observed, mainly in unmyelinated small DRG neurons that co-expressed phosphorylated p38 mitogen-activated protein kinase (MAPK). Continuous intrathecal infusion of the FGFR1 inhibitor, 3-[3-(2-carboxyethyl)-4-methylpyrrol-2-methylidenyl]-2-indolinone, reduced p38 MAPK phosphorylation in the DRG and pain-related behaviors in the partial sciatic nerve model rat without affecting on the activation of spinal glia cells (microglia and astrocyte). In the injured small DRG neurons, activation of FGFR1 may contribute to the generation of neuropathic pain by activating p38 MAPK.  相似文献   

19.
Zhang F  Feng X  Dong R  Wang H  Liu J  Li W  Xu J  Yu B 《Neuroscience letters》2011,505(3):254-259
This study was conducted to investigate the effects of clonidine on bilateral pain behaviors and inflammatory responses in neuropathic pain induced by partial sciatic nerve ligation (PSNL), and to better understand whether the antinociception of clonidine was related to α2-adrenoceptor mechanisms. Rats were divided randomly into five groups: sham-operation with saline, i.p.; PSNL with clonidine (0.2 mg/kg) or saline, i.p.; PSNL with yohimbine (2 mg/kg) followed by clonidine (0.2 mg/kg), i.p.; and PSNL with naloxone (0.3 mg/kg) followed by clonidine (0.2 mg/kg), i.p. On post-operative days 1, 3, 7, 14, and 21, both ipsilateral and contralateral pain behaviors were measured. In rats receiving antagonists, bilateral behavioral changes were measured on day 14. Bilateral paw pressure threshold and paw withdrawal latencies were measured, and the extent of glial activation was dertermined by measuring macrophage antigen complex-1 (Mac-1) and glial fibrillary acidic protein (GFAP). Additionally, the levels of tumor necrosis factor α (TNF-α) and interleukin (IL)-6 were determined. PSNL induced bilateral behavioral hyperalgesia, with the ipsilateral level displaying a higher extent of behavior changes than the contralateral side. In addition, the glial activation markers and cytokine production were augmented bilaterally. Clonidine caused significant attenuation of bilateral mechanical allodynia and thermal hyperalgesia, accompanied by inhibition of glial activation and the expression of cytokines. The effects of clonidine were blocked by the α2-adrenoceptor antagonist yohimbine and partially reversed by the μ-opioid receptor antagonist naloxone. These data suggest that the bilateral antinoceptive effects of clonidine might mediate through immunomodulation by acting on α2-adrenoceptor in rats undergoing neuropathic pain.  相似文献   

20.
The relationship between pain severity and the extent of injury to a peripheral nerve remains elusive. In this study, we compared the pain behavior resulting from partial (1/3–1/2 thickness) and full L5 spinal nerve ligation (SNL) in rats. The decrease in paw withdrawal threshold (PWT) to mechanical stimuli in the hindpaw ipsilateral to the injury was comparable in the two groups on days 3–21 post-injury. However, the decreased PWT recovered earlier in the partial SNL group than in the full SNL group. These observations suggest that the duration of neuropathic pain behavior, but not the early development of mechanical allodynia, is dependent on the extent of nerve injury. On days 6 and 15 post-injury, when the mechanical allodynia was similar in the two groups, systemic morphine induced a greater reduction of mechanical allodynia in the partial SNL group than in the full SNL group. Furthermore, in partial SNL rats, at post-injury time points when they had largely recovered from the neuropathic pain state, systemic administration of naloxone hydrochloride (day 53) or naloxone methiodide (a non-selective peripherally acting opioid receptor antagonist; day 64) or intra-plantar injection of naloxone methiodide rekindled mechanical pain hypersensitivity in the ipsilateral hindpaw, suggesting a prolonged activation of endogenous opioidergic pain-inhibition. Therefore, partial SNL in rats may represent an efficient model for studying the mechanisms of neuropathic pain, testing effects of analgesic/antihyperalgesic drugs, and understanding endogenous pain-inhibitory mechanisms that lead to reversal of the pain behavior with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号