首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored in clinical delivery of growth factors. We present an approach for engineering the cellular microenvironment to greatly accentuate the effects of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) for skin repair, and of bone morphogenetic protein-2 (BMP-2) and PDGF-BB for bone repair. A multifunctional recombinant fragment of fibronectin (FN) was engineered to comprise (i) a factor XIIIa substrate fibrin-binding sequence, (ii) the 9th to 10th type III FN repeat (FN III9-10) containing the major integrin-binding domain, and (iii) the 12th to 14th type III FN repeat (FN III12-14), which binds growth factors promiscuously, including VEGF-A165, PDGF-BB, and BMP-2. We show potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors, but only when FN III9-10 and FN III12-14 are proximally presented in the same polypeptide chain (FN III9-10/12-14). The multifunctional FN III9-10/12-14 greatly enhanced the regenerative effects of the growth factors in vivo in a diabetic mouse model of chronic wounds (primarily through an angiogenic mechanism) and in a rat model of critical-size bone defects (through a mesenchymal stem cell recruitment mechanism) at doses where the growth factors delivered within fibrin only had no significant effects.  相似文献   

2.
Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.  相似文献   

3.
Kim J  Kim IS  Cho TH  Lee KB  Hwang SJ  Tae G  Noh I  Lee SH  Park Y  Sun K 《Biomaterials》2007,28(10):1830-1837
Acrylated hyaluronic acid (HA) was used as a scaffold for bone morphogenic protein-2 (BMP-2) and human mesenchymal stem cells (hMSCs) for rat calvarial defect regeneration. HA was acrylated by two-step reactions: (1) introduction of an amine group using adipic acid dihydrazide (ADH); (2) acrylation by N-acryloxysuccinimide. Tetrathiolated poly(ethylene) glycol (PEG-SH(4)) was used as a cross-linker by a Michael-type addition reaction and the hydrogel was formed within 10min under physiological conditions. This hydrogel is degraded completely by 100U/ml hyaluronidase in vitro. hMSCs and/or BMP-2 was added during gelation. Cellular viability in vitro was increased up to 55% in the hydrogels with BMP-2 compared with the control. For in vivo calvarial defect regeneration, five different samples (i.e., control, hydrogel, hydrogel with BMP-2, hydrogel with MSCs, and hydrogel with BMP-2 and MSCs) were implanted for 4 weeks. The histological results demonstrated that the hydrogels with BMP-2 and MSCs had the highest expression of osteocalcin and mature bone formation with vascular markers, such as CD31 and vascular endothelial growth factors, compared with the other samples. This study demonstrated that HA base hydrogel can be used for cell and growth factor carriers for tissue regeneration.  相似文献   

4.
To address whether brain-derived neurotrophic factor (BDNF) could be involved in periodontal tissue regeneration, we examined the effects of BDNF on proliferation and the expression of bone (cementum)- related proteins (osteopontin, bone morphogenetic protein [BMP]-2, type I collagen, alkaline phosphatase [ALPase], and osteocalcin) in cultures of human periodontal ligament (HPL) cells, which are thought to be prerequisite for periodontal tissue regeneration, and on proliferation and angiogenesis in human endothelial cells. Furthermore, we examined the effect of BDNF on the regeneration of periodontal tissues in experimentally induced periodontal defects in dogs. BDNF elevated the expression of ALPase and osteocalcin mRNAs and increased the synthesis of osteopontin, BMP-2, and type I collagen DNA in HPL cells. BDNF stimulated mRNA expression of vascular endothelial growth factor-B and tenascin-X, and proliferation and angiogenesis in human endothelial cells. In vivo studies showed that BDNF stimulated the formation of new alveolar bone cementum and connective new fibers, which were inserted into the newly formed cementum and bone. BDNF also stimulated blood capillary formation. These findings suggest that the regulation of functioning of periodontal ligament cells and endothelial cells by BDNF results in the promotion of periodontal tissue regeneration.  相似文献   

5.
《Acta biomaterialia》2014,10(3):1272-1279
Polycaprolactone (PCL)/Pluronic F127 membrane with reverse gradients of dual platelet-derived growth factor-β (PDGF-BB) and bone morphogenetic protein 2 (BMP-2) concentrations was fabricated using a diffusion method to investigate the effect of reverse gradients of dual growth factor concentrations on adipose-derived stem cell (ASC) differentiations, such as tenogenesis and osteogenesis. The PDGF-BB and BMP-2 were continuously released from the membrane for up to 35 days, with reversely increasing/decreasing growth factors along the membrane length. Human ASCs were seeded on the membrane with reverse PDGF-BB and BMP-2 gradients. The cells were confluent after 1 week of culture, regardless of growth factor types or concentrations on the membrane. Gene expression (real-time polymerase chain reaction), Western blot and immunohistological analyses after 1 and 2 weeks of ASC culture showed that the membrane sections with higher PDGF-BB and lower BMP-2 concentrations provided a better environment for ASC tenogenesis, while the membrane sections with higher BMP-2 and lower PDGF-BB concentrations were better for promoting osteogenesis. The results suggest that the membrane with reverse gradients of PDGF-BB and BMP-2 may be promising for tendon-to-bone repair, as most essential biological processes are mediated by gradients of biological molecules in the body.  相似文献   

6.
7.
New strategies such as combined utilization of growth factors may provide a better treatment for difficult fractures. We have demonstrated enhanced angiogenesis and osteogenesis through the actions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) on the osteogenic differentiation of a cloned mouse osteoprogenitor cell in vitro and ectopic bone formation in vivo. Human VEGF and BMP-6 genes expressed together produced a significant increase in alkaline phosphatase activity, expression of the RunX2 and osteocalcin genes and mineralization. Microcomputed tomographic analysis of subcutaneous implants consisting of cells transfected with VEGF and BMP-6 cDNA and delivered on a 3D poly (lactic-co-glycolic acid) scaffold confirmed the additive effects between VEGF and BMP-6. Ectopic bone formation in the VEGF plus BMP-6 group was greatest compared to that in either VEGF or BMP-6 alone. This is the first study that demonstrates osteogenesis in vitro and in vivo through the additive effects of VEGF and BMP-6.  相似文献   

8.
Bone regeneration often requires harvesting of autologous bone with significant potential morbidity and cost. Recombinant human bone morphogenetic protein (rhBMP)-2 has been approved by the U.S. Food and Drug Administration for specific regenerative indications. However, administration of exogenous growth factors has many drawbacks. The objective of the present proof-of-concept study was to determine whether immobilized anti-BMP-2 antibodies (Abs) could capture endogenous BMP-2 in local sites to mediate osteogenesis, a strategy we refer to as antibody-mediated osseous regeneration (AMOR). We have generated a murine anti-BMP-2 monoclonal antibody library, which was tested along with commercially available Abs in vitro and in vivo for their ability to mediate AMOR. In vitro studies demonstrated that only some anti-BMP-2 Abs tested formed immune complexes with BMP-2, which can bind to BMP cellular receptor, whereas other BMP-2/anti-BMP-2 complexes failed to bind. To investigate whether anti-BMP-2 Abs were able to mediate AMOR in vivo, anti-BMP-2 Abs were immobilized on absorbable collagen sponge (ACS) and surgically placed in rat calvarial defects. Microcomputed tomography analysis of live animals at 2, 4, and 6 weeks demonstrated that some anti-BMP-2 Abs immobilized on ACS mediated significant bone regeneration, whereas other clones did not mediate any bone regeneration. In situ BMP-2 and osteocalcin expression was investigated by immunohistochemistry. Results demonstrated higher BMP-2 and osteocalcin expression in sites with increased bone regeneration. Results provide first evidence for the ability of anti-BMP2 Abs to form an immune complex with endogenous BMP-2 and mediate bone regeneration in vivo, suggesting a promising therapeutic method for tissue engineering.  相似文献   

9.
The utilization of growth factors for bone regeneration is a widely studied field. Since the approval of bone morphogenetic protein-2 (BMP-2) for therapeutic use in humans, the concept of utilizing growth factors for bone regeneration in translational medicine has become even more attractive. Despite many studies published on individual growth factors in various bone models, comparative analysis is largely lacking. The aim of our study was to compare three different proosteogenic factors under identical in vivo conditions. Thus, we tested the bone regeneration capacity of the three different growth factors BMP-2, fibroblast growth factor-2 (FGF-2), and vascular endothelial growth factor A (VEGFA) in a calvarial defect model. We demonstrated that BMP-2 and VEGFA had similar bone healing capacities, resulting in complete calvarial healing as early as week 3. FGF-2 also showed a significantly higher bone regeneration capacity; however, the healing rate was lower than with BMP-2 and VEGFA. Interestingly, these findings were paralleled by an increased angiogenic response upon healing in BMP-2- and VEGFA-treated calvarial defects as compared with FGF-2. Immunohistochemistry for proliferating and osteoprogenitor cells revealed activity at different points after surgery among the groups. In conclusion, we demonstrated an efficient bone regeneration capacity of both BMP-2 and VEGFA, which was superior to FGF-2. Moreover, this study highlights the efficient bone regeneration of VEGFA, which was comparable with BMP-2. These data provide a valuable comparative analysis, which can be used to further optimize growth factor-based strategies in skeletal tissue engineering.  相似文献   

10.
Bone regeneration is a coordinated cascade of events regulated by several cytokines and growth factors. Angiogenic growth factors are predominantly expressed during the early phases for re-establishment of the vascularity, whereas osteogenic growth factors are continuously expressed during bone formation and remodeling. Since vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are key regulators of angiogenesis and osteogenesis during bone regeneration, the aim of this study was to investigate if their sequential release could enhance BMP-2-induced bone formation. A composite consisting of poly(lactic-co-glycolic acid) microspheres loaded with BMP-2 embedded in a poly(propylene) scaffold surrounded by a gelatin hydrogel loaded with VEGF was used for the sequential release of the growth factors. Empty composites or composites loaded with VEGF and/or BMP-2 were implanted ectopically and orthotopically in Sprague–Dawley rats (n = 9). Following implantation, the local release profiles were determined by measuring the activity of 125I-labeled growth factors using scintillation probes. After 8 weeks blood vessel and bone formation were analyzed using microangiography, μCT and histology. The scaffolds exhibited a large initial burst release of VEGF within the first 3 days and a sustained release of BMP-2 over the full 56-day implantation period. Although VEGF did not induce bone formation, it did increase the formation of the supportive vascular network (p = 0.03) in ectopic implants. In combination with local sustained BMP-2 release, VEGF significantly enhanced ectopic bone formation compared to BMP-2 alone (p = 0.008). In the orthotopic defects, no effect of VEGF on vascularisation was found, nor was bone formation higher by the combination of growth factors, compared to BMP-2 alone. This study demonstrates that a sequential angiogenic and osteogenic growth factor release may be beneficial for the enhancement of bone regeneration.  相似文献   

11.
Bone morphogenetic proteins (BMPs) are the most potent osteoinductive growth factors. However, a delivery system is essential to take advantage of the osteoinductive effect of BMPs. In the present study, we tested the suitability of apatite-coated poly(D,L-lactide-co-glycolide)/nanohydroxyapatite (PLGA/HA) particulates as carriers for the controlled release of BMP-2. The release of BMP-2 from apatite-coated PLGA/HA particulates was sustained for at least 4 weeks in vitro. A delivery system of apatite-coated PLGA/HA particulates suspended in fibrin gel further slowed the BMP-2 release rate. In vivo implantation of either Fibrin gel + BMP-2 or Fibrin gel + apatite-coated PLGA/HA particulates showed enhanced new bone formation in critical-sized calvarial defects of rats 8 weeks after implantation, compared to implantation of fibrin gel only. Importantly, new bone formation was much higher in the defects treated with BMP-2 delivery using apatite-coated PLGA/HA particulates in fibrin gel (Fibrin gel + PLGA/HA + BMP-2 group) than in the defects treated either with apatite-coated PLGA/HA particulates in fibrin gel (Fibrin gel + BMP-2 group) or with BMP-2 delivery using fibrin gel alone (Fibrin gel + BMP-2 group). BMP-2 and osteoinductive HA had an additive effect on orthotopic bone formation. In conclusion, the apatite-coated PLGA/HA particulates showed good results as carriers for BMP-2. The BMP-2 delivery system showed high osteogenic capability in a rat calvarial bone defect model. The local and sustained delivery system for BMP-2 developed in this study may be useful as a carrier for BMP-2 and would enhance bone regeneration efficacy for the treatment of large bone defects.  相似文献   

12.
Yang HS  La WG  Bhang SH  Kim HJ  Im GI  Lee H  Park JH  Kim BS 《Tissue engineering. Part A》2011,17(13-14):1809-1818
Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.  相似文献   

13.
14.
This study sought to determine if weekly X-ray exposure affected breast cancer cell metastasis to bone and to also evaluate the use of bioluminescent imaging (BLI) and microSPECT for detection of metastatic bone lesions. Five week old nude mice were randomly assigned to the CT exposed (n = 7) and no CT exposure (n = 6) treatment groups. Mice received an intracardiac injection of MDA-MB-435 human breast cancer cells transduced with luciferase, or a sham injection (saline). The CT exposed group of mice received CT irradiation once a week for 5 weeks. All mice underwent weekly BLI and select mice received Tc-99m-MDP followed by microSPECT imaging after 5 weeks. Pathological evaluation and histomorphometry were used to assess the affect of CT X-rays on bone metastasis and to evaluate BLI. BLI results found no significant difference in metastasis between animals that received CT and those that did not (P > 0.05); however, histomorphometry of the knee joints revealed a significant increase (P = 0.029) in tumor area of the leg bones in mice that received CT exposure (60% ± 7%) compared to animals that did not receive CT scans (33% ± 8%). Compared to histological analysis, BLI of the leg and spine was determined to have excellent sensitivity (100%), good specificity (80–90%) and accuracy (90–96%), a positive predictive value of 81–93% and a 100% negative predictive value. Thus, multi-modality imaging techniques can be very useful for monitoring bone metastasis, however microCT X-rays should be used judiciously in order to limit irradiation that may stimulate increased metastasis to specific regions of the skeleton. MicroSPECT imaging did not detect metastatic lesions in the legs of these young nude mice.  相似文献   

15.
Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.  相似文献   

16.
The aim of this study was to inhibit adipogenic differentiation by transfecting two growth factors, platelet-derived growth factor (PDGF-BB) and bone morphogenic protein 2 (BMP-2), into modified rat bone marrow mesenchymal stem cells (rBMSCs) and then compounded with platelet-rich plasma (PRP). To achieve rBMSCs, the osteoporosis model of rats was established, and then the rBMSCs from the rats were isolated and identified. Co-transfection of rBMSCs with PDGF-BB-GFP and BMP-2 and detection of PDGF-BB/BMP-2 expression in transfected BMSCs was assessed by qRT-PCR and western blot, respectively. Moreover, the effect of the two growth factors transfection of rBMSCs on adipogenic differentiation was evaluated by oil red O staining and western blot, respectively. Finally, construction of the two growth factors transfection of rBMSCs compounded with PRP and detection of adipogenic differentiation were assessed by oil red O staining, CCK-8, and western blot, respectively. In vitro studies revealed that the two growth factors transfection of rBMSCs compounded with PRP promoted cell viability and inhibited adipogenic differentiation and could be promising for inhibiting adipogenic differentiation.  相似文献   

17.
Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels nor to any copurifying plasminogen. Copurified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury.  相似文献   

18.
Bone regeneration can be accelerated by utilizing mechanical stress and growth factors (GFs). However, a limited understanding exists regarding the response of preosteoblasts to tensile stress alone or with GFs. We measured cell proliferation and expression of heat-shock proteins (HSPs) and other bone-related proteins by preosteoblasts following cyclic tensile stress (1%-10% magnitude) alone or in combination with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1). Tensile stress (3%) with GFs induced greater gene upregulation of osteoprotegerin (3.3 relative fold induction [RFI] compared to sham-treated samples), prostaglandin E synthase 2 (2.1 RFI), and vascular endothelial growth factor (VEGF) (11.5 RFI), compared with samples treated with stimuli alone or sham-treated samples. The most significant increases in messenger RNA expression occurred with GF addition to either static-cultured or tensile-loaded (1% elongation) cells for the following genes: HSP47 (RFI=2.53), cyclooxygenase-2 (RFI=72.52), bone sialoprotein (RFI=11.56), and TGF-β1 (RFI=8.05). Following 5% strain with GFs, VEGF secretion increased 64% (days 3-6) compared with GF alone and cell proliferation increased 23% compared with the sham-treated group. GF addition increased osteocalcin secretion but decreased matrix metalloproteinase-9 significantly (days 3-6). Tensile stress and GFs in combination may enhance bone regeneration by initiating angiogenic and anti-osteoclastic effects and promote cell growth.  相似文献   

19.
Park YJ  Lee YM  Park SN  Sheen SY  Chung CP  Lee SJ 《Biomaterials》2000,21(2):153-159
With an aim of improving bone regeneration, chitosan sponge containing platelet-derived growth factor-BB (PDGF-BB) were developed. For fabrication of chitosan sponge, chitosan solution was freeze-dried, crosslinked and freeze-dried again. PDGF-BB was incorporated into the chitosan sponge by soaking chitosan sponge into the PDGF-BB solution. Release kinetics of PDGF-BB, cell attachment, proliferation capacity and bony regenerative potentials of PDGF-BB-loaded chitosan sponge were investigated. Prepared chitosan sponge retained porous structure with 100 microm pore diameter that was suitable for cellular migration and growth. Release rate of PDGF-BB could be controlled by varying initial loading content of PDGF-BB to obtain optimal therapeutic efficacy. PDGF-BB-loaded chitosan sponge induced significantly high cell attachment and proliferation level, which indicated good cellular adaptability. PDGF-BB-loaded chitosan sponge demonstrated marked increase in new bone formation and rapid calcification. Degradation of the chitosan sponge was proceeded at defect site and subsequently replaced with new bone. Histomorphometric analysis confirmed that PDGF-BB-loaded chitosan sponge significantly induced new bone formation. These results suggested that chitosan sponge and PDGF-BB-loaded chitosan sponge may be beneficial to enhance periodontal bone regeneration.  相似文献   

20.
Tumor necrosis factor-alpha (TNF-α) is one major inflammatory factor peaking at 24?h after bone fracture in response to injury; its role in bone healing is controversial. The aims of this study were to investigate whether the duration of exposure to TNF-α is crucial for the initiation of bone regeneration and to determine its underlying mechanism(s). We demonstrated that 24?h of TNF-α treatment significantly abrogated osteocalcin gene expression by human primary osteoblasts (HOBs). However, when TNF-α was withdrawn after 24?h, bone sialoprotein and osteocalcin gene expression levels in HOBs at day 7 were significantly up-regulated compared with the HOBs without TNF-α treatment. In contrast, continuous TNF-α treatment down-regulated bone sialoprotein and osteocalcin gene expression. In addition, in an indirect co-culture system, HOBs pretreated with TNF-α for 24?h induced significantly greater osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) than the HOBs without TNF-α treatment. TNF-α treatment also promoted endogenous bone morphogenetic protein 2 (BMP-2) production in HOBs, while blocking the BMP-2 signaling pathway with Noggin inhibited osteogenic differentiation of ASCs in the co-culture system. Furthermore, activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway after TNF-α treatment occurred earlier than BMP-2 protein expression. BMP-2 production by HOBs and osteogenic differentiation of ASCs in the co-culture system with HOBs was significantly decreased when HOBs were pretreated with TNF-α in combination with the p38 MAPK-specific inhibitor (SB203580). Taken together, we provide evidence that exposure duration is a critical element in determining TNF-α's effects on bone regeneration. We also demonstrate that the p38 MAPK signaling pathway regulates the expression of BMP-2 in osteoblasts, which then acts through a paracrine loop, to direct the osteoblast lineage commitment of mesenchymal stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号