首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
During the course of HIV-1 infection, free virus, infected cells, and free HIV-1 proteins circulate within the host, exposing the host endothelium to these viral factors. We have previously presented evidence showing that soluble HIV-1 gp120 protein interacts with chemokine receptors on primary human endothelium and (through those interactions) induces apoptosis as well as other intracellular effects. The current study examines the effect of exposure of vascular endothelium to gp120 IIIb expressed on the surface of Jurkat cells and in the context of viral particles. Apoptosis was observed in human umbilical vein endothelial cell (HUVEC) cultures exposed to gp160-transfected Jurkat cells as well as to virion particles with gp120 on their surface. Additional experiments show that this apoptotic effect was caused by gp120 protein acting through chemokine receptors on the HUVEC surface, primarily the CXCR4 receptor. At higher concentrations of gp120, this lymphotrophic variant, which has been shown to interact predominantly with CXCR4, seems to interact with and induce apoptosis through the CCR5 receptor. Finally, this apoptotic effect in HUVEC cultures occurs at low levels of the inducing agent, gp120, on cell membranes or on virion particles. These results demonstrate that HIV-1 gp120 is capable of interacting with and killing vascular endothelial cells in multiple in vivo contexts.  相似文献   

2.
M K Lee  J Heaton  M W Cho 《Virology》1999,257(2):290-296
Using a panel of chimeric viruses and their chimeric envelope glycoproteins, we have previously reported that the V1/V2 or the V3 regions of a dual-tropic primary human immunodeficiency virus type 1 (HIV-1) isolate (HIV-1DH12) could individually confer CXCR4 usage when introduced into the backbone of a macrophage-tropic (M-tropic) virus isolate (HIV-1AD8). In this study, chimeric CXCR4-CXCR2 chemokine receptors were employed to identify the determinants involved in the interaction between CXCR4 and the dual-tropic HIV-1DH12 gp120. Our results indicate that (i) HIV-1DH12 gp120 interacts primarily with the extracellular domains 1 (E1) and 2 (E2) of CXCR4, (ii) the V1/V2 and the V3 regions interact with different domains of CXCR4, and (iii) the V1/V2 region plays a more critical role in the interaction between CXCR4 and HIV-1DH12 gp120. Combining our data and those of others suggests that the pattern of CXCR4 usage is highly dependent on HIV-1 isolates. In addition, an M-tropic virus may evolve to become dual-tropic by first acquiring the ability to interact with CXCR4 through the V1/V2 region of gp120.  相似文献   

3.
We previously showed that HIV-1 gp120-induced apoptosis in primary human umbilical vein endothelial cell cultures (HUVEC), through CCR5 and CXCR4. Here, we have found that agonists of protein kinase C (PKC), basic fibroblast growth factor (bFGF), and short exposure to low concentrations of phorbol esters were found to block gp120-induced apoptosis in HUVEC cultures. PKC antagonists, sphingosine, H7, and extended exposure of cultures to high concentrations of phorbol esters were also found to block gp120-induced apoptosis in HUVEC cultures. A significant increase in the total amount of cellular PKC enzymatic activity was observed on exposure of HUVEC to gp120. No increase in total PKC activity was observed on exposure of HUVECs to the natural ligands SDF-1alpha, or regulated-on-activation normal T-expressed and secreted (RANTES) cells, and gp120-induced PKC induction was found to be totally blocked by CXCR4 antibodies and partially blocked by the caspase 3 inhibitor, DEVD-CHO. Alternatively, CXCR4 antibodies and DEVD-CHO totally blocked apoptosis. Finally, gp120-induced effects were found to be insensitive to pertussis toxin. Accumulated evidence suggests PKC involvement at multiple points in the gp120-induced apoptotic pathway; also suggests involvement of the CXCR4 receptor internalization pathway, and potentially suggests different downstream effects of gp120-receptor interactions and natural ligand-receptor interactions.  相似文献   

4.
Macrophages are major targets for infection by human immunodeficiency virus type 1 (HIV-1). In addition to their role as productive viral reservoirs, inappropriate activation of infected and uninfected macrophages appears to contribute to pathogenesis. HIV-1 infection requires initial interactions between the viral envelope surface glycoprotein gp120, the cell-surface protein CD4, and a chemokine receptor CCR5 or CXCR4. Besides their role in HIV-1 entry, CCR5 and CXCR4 are G protein-coupled receptors that can activate multiple intracellular signaling pathways. HIV-1 gp120 has been shown to activate signaling pathways through the chemokine receptors in several cell types including lymphocytes, neurons, and astrocytes. In some cell types, these consequences may cause cellular injury. In this review, we highlight our data demonstrating diverse signaling events that occur in primary human macrophages in response to gp120/chemokine receptor interactions. These responses include K+, Cl-, and nonselective cation currents, intracellular Ca2+ increases, and activation of several kinases including the focal adhesion-related tyrosine kinase Pyk2, mitogen-activated protein kinases (MAPK), and phosphoinositol-3 kinase. Activation of the MAPK leads to gp120-induced expression of chemokines such as monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1beta and the proinflammatory cytokine tumor necrosis factor alpha. These responses establish a complex cytokine network, which may enhance or suppress HIV-1 replication. In addition, dysregulation of macrophage function by gp120/chemokine receptor signaling may contribute to local inflammation and injury and further recruit additional inflammatory and/or target cells. Targeting these cellular signaling pathways may have benefit in controlling inflammatory sequelae of HIV infection such as in neurological disease.  相似文献   

5.
Human immunodeficiency virus (HIV-1) enters target cells by binding its gp120 exterior envelope glycoprotein to CD4 and one of the chemokine receptors, CCR5 or CXCR4. CD4-induced (CD4i) antibodies bind gp120 more efficiently after CD4 binding and block the interaction with the chemokine receptor. Examples of CD4i antibodies are limited, and the prototypes of the CD4i antibodies exhibit only weak neutralizing activity against primary, clinical HIV-1 isolates. Here we report the identification of a novel antibody, E51, that exhibits CD4-induced binding to gp120 and neutralizes primary HIV-1 more efficiently than the prototypic CD4i antibodies. The E51 antibody blocks the interaction of gp120-CD4 complexes with CCR5 and binds to a highly conserved, basic gp120 element composed of the beta 19-strand and surrounding structures. Thus, on primary HIV-1 isolates, this gp120 region, which has been previously implicated in chemokine receptor binding, is accessible to a subset of CD4i antibodies.  相似文献   

6.
Susceptibility to infection by the human immunodeficiency virus type-1 (HIV-1), both in vitro and in vivo, requires the interaction between its envelope (Env) glycoprotein gp120 Env and the primary receptor (R), CD4, and Co-R, either CCR5 or CXCR4, members of the chemokine receptor family. CCR5-dependent (R5) viruses are responsible for both inter-individual transmission and for sustaining the viral pandemics, while CXCR4-using viruses, usually dualtropic R5X4, emerge in ca. 50% of individuals only in the late, immunologically suppressed stage of disease. The hypothesis that such a major biological asymmetry is explained exclusively by the availability of cells expressing CCR5 or CXCR4 is challenged by several evidences. In this regard, binding of the HIV-1 gp120 Env to the entry R complex, i.e. CD4 and a chemokine R, leads to two major events: virion-cell membrane fusion and a cascade of cell signaling. While the fusion/entry process has been well defined, the role of R/Co-R signaling in the HIV-1 life cycle has been less characterized. Indeed, depending on the cellular model studied, the capacity of HIV-1 to trigger a flow of events favoring either its own latency or replication remains a debated issue. In this article, we will review the major findings related to the role of HIV R/Co-R signaling in the steps following viral entry and leading to viral spreading in CD4(+) T lymphocytes.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 may play a central role in inducing immunoregulatory disorders after HIV infection. The apoptotic death of normal human peripheral blood mononuclear cells was induced by priming with gp120 followed by stimulation with an anti-T cell receptor (TCR) antibody. Tumor necrosis factor- produced by gp120-binding macrophages may be important to induce this cell death. Treatment of gp120-primed cells with an immunosuppressant (FK506) before TCR signaling inhibited apoptotic cell death, and this blocking effect of FK506 was concentration dependent. FK506 did not have any influence on cell growth and viability over the range of concentrations tested. These findings suggest that FK506 is a potentially useful drug in delaying the onset of AIDS after HIV infection.  相似文献   

8.
CXCR4, a chemokine receptor constitutively expressed in the brain, binds both ligands, the chemokine SDF-1alpha and the HIV envelope glycoprotein gp120(IIIB). There seem to be intracellular differences between the neuronal apoptosis induced by SDF-1alpha and that induced by gp120(IIIB), but the apoptotic pathways involved have not been compared in human neuronal cells. In this study, we characterized the apoptotic intracellular pathways activated by neurotoxic concentrations of SDF-1alpha and gp120(IIIB) in human neuroblastoma cells SK-N-SH. SDF-1alpha (10 nM) and gp120(IIIB) (2 nM) induced similar levels of apoptosis after 24 h of incubation (49 +/- 4% and 48 +/- 3%, respectively, of the neurons were apoptotic). SDF1alpha-induced apoptosis was completely abolished by the inhibition of Src phosphorylation by PP2. Exposure to SDF-1alpha (10 nM) triggered an increase in Src phosphorylation, with a maximum after 20 min of incubation (1.80 +/- 0.24 times higher than control, P = 0.01). NMDA calcium flux was enhanced only if cells were incubated with SDF-1alpha for 20 min before applying NMDA. By contrast, gp120(IIIB)-induced apoptosis was not affected by the inhibition of Src phosphorylation. Moreover, gp120(IIIB) enhanced NMDA calcium flux immediately, without modifying Src phosphorylation status. Finally, levels of phospho-JNK increased following exposure to gp120(IIIB) (by a factor of 1.46 +/- 0.4 at 120 min, P = 0.03), but not after exposure to SDF-1alpha. Thus, SDF-1alpha and gp120(IIIB) induced a similar level of neuronal apoptosis, but by activating different intracellular pathways. SDF-1alpha enhanced NMDA activity indirectly via Src phosphorylation, whereas gp120(IIIB) probably activated the NMDA receptor directly and phosphorylated JNK.  相似文献   

9.
Wang J  Babcock GJ  Choe H  Farzan M  Sodroski J  Gabuzda D 《Virology》2004,324(1):140-150
CXCR4 is a co-receptor along with CD4 for human immunodeficiency virus type 1 (HIV-1). We investigated the role of N-linked glycosylation in the N-terminus of CXCR4 in binding to HIV-1 gp120 envelope glycoproteins. Gp120s from CXCR4 (X4) and CCR5 (R5) using HIV-1 strains bound more efficiently to non-N-glycosylated than to N-glycosylated CXCR4 proteoliposomes in a CD4-dependent manner. Similar results were observed in binding studies using non-N-glycosylated or N-glycosylated CXCR4 expressed on cells. Mutation of the N-glycosylation site N11 in CXCR4 (N11Q-CXCR4) enhanced CD4-dependent binding of X4 and R5 gp120s and allowed more efficient entry of viruses pseudotyped with X4 or R5 HIV-1 envelope glycoproteins. However, the binding of R5 gp120 to N11Q-CXCR4 and entry of R5 HIV-1 viruses into cells expressing N11Q-CXCR4 were 20- and 100- to 1000-fold less efficient, respectively, than the levels achieved using X4 gp120 or X4 HIV-1 viruses. Binding of stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and SDF-1alpha-induced signaling were reduced by the N11Q mutation. These findings demonstrate that N-glycosylation at N11 inhibits the binding of CXCR4 to X4 and R5 HIV-1 gp120, and provide a better understanding of the structural elements of CXCR4 involved in HIV-1 Env-co-receptor interactions.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.  相似文献   

11.
Mbemba E  Benjouad A  Saffar L  Gattegno L 《Virology》1999,265(2):354-364
We demonstrate that human immunodeficiency virus HIV-1(LAI) envelope glycoprotein 120 (gp120(LAi)) specifically interacts with several membrane ligands on lymphoid CEM or monocytic U937 cells in addition to its previously identified receptor, CD4, and CXCR4, its coreceptor. In its native state, gp120(LAI) is able to elicit specific multimolecular complexes with these membrane ligands at the surface of the cells; most of the interactions are abolished by mannan or heparin but not by dextran. Similarly, stromal cell-derived factor (SDF)-1alpha interacts not only with CXCR4 expressed by CXCR4(+) CD4(+) U937, CEM, and HOS-CD4(+) CXCR4(+) cells but also with CD4 expressed by intact U937, CEM, and HOS-CD4(+) CXCR4(+/-) cells or electroblotted onto Immobilon. SDF-1alpha binding to CD4(+) CXCR4(+/-) cells, or soluble CD4 electroblotted onto Immobilon, is significantly inhibited by sCD4, whereas truncated sCD4 lacking D3 and D4 domains had no significant effect, which indicates that SDF-1 binds to CD4 but at regions different from the HIV-gp120-binding site. Heparin and mannan also inhibit SDF-1alpha binding to intact CD4(+) CXCR4(+/-) cells, and electroblotted soluble CD4. Heparitinase treatment of such cells reduced SDF-1alpha binding. These data demonstrate that glycans and glycosaminoglycans are directly or indirectly involved in the interactions of HIV-1 gp120(LAI) and of SDF-1alpha with membrane ligands of CD4(+) CXCR4(+) cells and thus could play a role both in HIV-1 infection and in the physiology of SDF-1alpha.  相似文献   

12.
According to several studies, the HIV-1 envelope gp120 protein and the co-receptor CXCR4 play an essential role in HIV-1 induced cell toxicity. Characterisation of the CD4-independent m7NDK isolate provided the opportunity of studying the effects of direct interactions between m7NDK gp120 and CXCR4. Therefore, an inducible expression system was designed enabling synthesis of HIV-1 Env proteins upon doxycycline induction. Analysis of the expression of the env gene of the m7NDK HIV-1 isolate revealed, unexpectedly, that even long-term expression of m7NDK gp120 did not result in cytotoxycity in CXCR4-positive or -negative cell lines. This is the first report of a CD4-independent HIV-1-protein inducible expression regulated through the Tet-On system and by an alternative splicing. Env inducible expression cell lines could constitute a useful cellular tool to undertake analysis of HIV Env protein expression.  相似文献   

13.
Patients with the human immunodeficiency virus type 1 (HIV-1) develop in the late phase of infection a complex of neurological signs termed Acquired Immune Deficiency Syndrome-Related Dementia (ADC). These patients exhibit cortical and subcortical atrophy. Considerable experimental data indicate that the HIV-1 envelope glycoprotein gp120 may be one of the agents causing neuronal cell death. Gp120 causes neuronal cell death both in vitro and in vivo by activating a caspase-dependent apoptotic pathway, and in particular caspase-3. The neurotrophin brain-derived neurotrophic factor (BDNF) has been shown to prevent gp120-mediated apoptosis of cerebellar granule cells by inhibiting caspase-3 activation. However, the signal transduction pathway that contributes to the neuroprotective effects of BDNF has not been determined. BDNF binds with high affinity to the tyrosine kinase receptor TrkB and activates different intracellular signaling cascade including the extracellular signal-related kinases (ERK) and the phosphatidylinositol 3-kinase (PI3-K). Pharmacological inhibition of TrkB or ERK1/2, but not PI3-K, greatly reduced the ability of BDNF to block gp120-mediated apoptosis of cerebellar granule cells. These findings suggest that TrkB-mediated activation of ERK1/2 is the main signaling pathway that contributes to neuroprotection against gp120.  相似文献   

14.
The recently demonstrated extraordinary rate of turnover of T cells in human immunodeficiency virus (HIV)-1-infected patients and the apparently concomitant high rate of viral production and death are consistent with a large amount of cell death directly due to infection. Apoptosis may be one of the major forms of T cell death in HIV-1 infection. Many apoptotic pathways depend on calcium and therefore would be expected to involve calmodulin. As the HIV-1 envelope glycoprotein, gp160, contains two known calmodulin-binding domains, we investigated the possibility that the cytoplasmic domain of the HIV-1 envelope protein gp160 could enhance Fas-mediated apoptosis, the major form of apoptosis in lymphocytes. Our studies have shown that 1) transfection of H9 and MOLT-4 cells with a non-infectious HIV proviral clone, pFN, which expresses wild-type gp160, leads to enhanced Fas-mediated apoptosis, 2) transfection of MOLT-4 cells with a pFN construct pFN delta 147, which expresses a carboxyl-terminally truncated gp160 lacking the calmodulin-binding domains, produces less Fas-mediated apoptosis than transfection with pFN, and 3) the calmodulin antagonists trifluoperazine and tamoxifen completely inhibit the pFN enhancement of Fas-mediated apoptosis in MOLT-4 cells. We have replicated all of these results using the vectors pSRHS and pSRHS delta 147, which express wild-type gp160 and truncated gp160, respectively, in the absence of other viral proteins. These investigations provide a mechanism by which HIV-1 may induce apoptosis and a possible intracellular target for future therapeutics.  相似文献   

15.
Neuronal loss is a hallmark of AIDS dementia syndromes. Human immunodeficiency virus type I (HIV-1)-specific proteins may induce neuronal apoptosis, but the signal transduction of HIV-1 gp120-induced, direct neuronal apoptosis remains unclear. Ethanol (EtOH) is considered to be an environmental co-factor in AIDS development. However, whether EtOH abuse in patients with AIDS increases neuronal dysfunction is still uncertain. Using pure, differentiated, and post-mitotic NT2.N-derived human neurons, we investigated the mechanisms of HIV-1 and/or EtOH-related direct neuronal injury and the molecular interactions between HIV-1-specific proteins and EtOH. It was demonstrated that NT2.N neurons were susceptible to HIV-1 Bal (R5-tropic strain) gp120-induced direct cell death. Of importance, EtOH induced cell death in human neurons in a clinically-relevant dose range and EtOH strongly potentiated HIV-1 gp120-induced neuronal injury at low and moderate concentrations. Furthermore, this potentiation of neurotoxicity could be blocked by N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B) antagonists. We analyzed human genomic profiles in these human neurons, using Affymetrix genomics technology, to elucidate the apoptotic pathways involved in HIV-1- and EtOH-related neurodegeneration. Our findings indicated significant over-expression of selected apoptosis functional genes. Significant up-regulation of TRAF5 gene expression may play an essential role in triggering potentiation by EtOH of HIV-1 gp120-induced neuronal apoptosis at early stages of interaction. These studies suggested that two primary apoptotic pathways, death receptor (extrinsic) and NMDA receptor (intrinsic)-related programmed cell-death pathways, are both involved in the potentiation by EtOH of HIV-1 gp120-induced direct human neuronal death. Thus, these data suggest rationally-designed, molecular targets for potential anti-HIV-1 neuroprotection.  相似文献   

16.
Antibodies to the CD4-binding site (CD4bs) of HIV-1 envelope gp120 have been shown to inhibit MHC class II presentation of this antigen, but the mechanism is not fully understood. To define the key determinants contributing to the inhibitory activity of these antibodies, a panel of anti-CD4bs monoclonal antibodies with different affinities was studied and compared to antibodies specific for the chemokine receptor-binding site or other gp120 regions. Anti-CD4bs antibodies that completely obstruct gp120 presentation exhibit three common properties: relatively high affinity for gp120, acid-stable interaction with gp120, and the capacity to slow the kinetics of gp120 proteolytic processing. None of these antibodies prevents gp120 internalization into APC. Notably, the broadly virus-neutralizing anti-CD4bs IgG1b12 does not block gp120 presentation as strongly, because although IgG1b12 has a relatively high affinity, it dissociates from gp120 more readily at acidic pH and only moderately retards gp120 proteolysis. Other anti-gp120 antibodies, regardless of their affinities, do not affect gp120 presentation. Hence, high-affinity anti-CD4bs antibodies that do not dissociate from gp120 at endolysosomal pH obstruct gp120 processing and prevent MHC class II presentation of this antigen. The presence of such antibodies could contribute to the dearth of anti-gp120 T helper responses in chronically HIV-1-infected patients.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) infection is initiated by successive interactions of viral envelope glycoprotein gp120 with two cellular surface proteins, CD4 and chemokine receptor. The two most common chemokine receptors that allow HIV-1 entry are the CCR5 and CXCR4. The CD4 and CCR5 are mainly localized to the particular plasma membrane microdomains, termed raft, which is rich in glycolipids and cholesterol. However, the CXCR4 is localized only partially to the raft region. Although the raft domain is suggested to participate in HIV-1 infection, its role in entry of CXCR4-tropic (X4-tropic) virus is still unclear. Here, we used a combination of CD4-independent infection system and cholesterol-depletion-inducing reagent, methyl-β-cyclodextrin (MβCD), to address the requirement of raft domain in the X4-tropic virus infection. Treatment of CD4-negative, CXCR4-positive human cells with MβCD inhibited CD4-independent infection of the X4-tropic strains. This inhibitory effect of the cholesterol depletion was observed even when the CXCR4 was over-expressed on the target cells. Soluble CD4-induced infection was also inhibited by MβCD. The MβCD had no effect on the levels of cell surface expression of CXCR4. In contrast to these infections, MβCD treatment did not inhibit CD4-dependent HIV-1 infection in the wild type CD4-expressing cells. This study and previous reports showing that CD4 mutants localized to non-raft domains function as HIV-1 receptor indicate that CXCR4 clustering in the raft microdomains, rather than CD4, is the key step for the HIV-1 entry.  相似文献   

18.
19.
HIV-1 envelope glycoprotein (gp120), as a CD4-binding reactant, has been shown to inhibit in its native form human T cell responses to several antigens. Here we show that gp120 in soluble form also inhibits activation of a specific human T cell line that responds to gp120-pulsed autologous antigen-presenting cells. In addition the inhibitory property of gp120 for antigen-driven T cell proliferation depends upon its ability to bind CD4 and is lost when CD4-binding capacity is abolished by denaturation, or blocked by complexing with soluble CD4 or with polyclonal antibodies. In contrast, antigenicity of denatured or complexed gp120 for specific human T cells is preserved. Similar effects are also observed with another CD4-binding reactant (i.e. anti-Leu 3a MoAb), which stimulates and/or inhibits human T cells specific for mouse immunoglobulins depending on native or denatured conformation.  相似文献   

20.
Garg H  Joshi A  Tompkins WA 《Virology》2004,330(2):424-436
Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model. Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号