首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although increased external load initially induces cardiac hypertrophy with preserved contractility, sustained overload eventually leads to heart failure through poorly understood mechanisms. Here we describe a conditional transgenic system in mice characterized by the sequential development of adaptive cardiac hypertrophy with preserved contractility in the acute phase and dilated cardiomyopathy in the chronic phase following the induction of an activated Akt1 gene in the heart. Coronary angiogenesis was enhanced during the acute phase of adaptive cardiac growth but reduced as hearts underwent pathological remodeling. Enhanced angiogenesis in the acute phase was associated with mammalian target of rapamycin-dependent induction of myocardial VEGF and angiopoietin-2 expression. Inhibition of angiogenesis by a decoy VEGF receptor in the acute phase led to decreased capillary density, contractile dysfunction, and impaired cardiac growth. Thus, both heart size and cardiac function are angiogenesis dependent, and disruption of coordinated tissue growth and angiogenesis in the heart contributes to the progression from adaptive cardiac hypertrophy to heart failure.  相似文献   

2.
Although studies have suggested a role for angiogenesis in determining heart size during conditions demanding enhanced cardiac performance, the role of EC mass in determining the normal organ size is poorly understood. To explore the relationship between cardiac vasculature and normal heart size, we generated a transgenic mouse with a regulatable expression of the secreted angiogenic growth factor PR39 in cardiomyocytes. A significant change in adult mouse EC mass was apparent by 3 weeks following PR39 induction. Heart weight; cardiomyocyte size; vascular density normalization; upregulation of hypertrophy markers including atrial natriuretic factor, beta-MHC, and GATA4; and activation of the Akt and MAP kinase pathways were observed at 6 weeks post-induction. Treatment of PR39-induced mice with the eNOS inhibitor L-NAME in the last 3 weeks of a 6-week stimulation period resulted in a significant suppression of heart growth and a reduction in hypertrophic marker expression. Injection of PR39 or another angiogenic growth factor, VEGF-B, into murine hearts during myocardial infarction led to induction of myocardial hypertrophy and restoration of myocardial function. Thus stimulation of vascular growth in normal adult mouse hearts leads to an increase in cardiac mass.  相似文献   

3.
RGS family members are GTPase-activating proteins (GAPs) for heterotrimeric G proteins. There is evidence that altered RGS gene expression may contribute to the pathogenesis of cardiac hypertrophy and failure. We investigated the ability of RGS4 to modulate cardiac physiology using a transgenic mouse model. Overexpression of RGS4 in postnatal ventricular tissue did not affect cardiac morphology or basal cardiac function, but markedly compromised the ability of the heart to adapt to transverse aortic constriction (TAC). In contrast to wild-type mice, the transgenic animals developed significantly reduced ventricular hypertrophy in response to pressure overload and also did not exhibit induction of the cardiac "fetal" gene program. TAC of the transgenic mice caused a rapid decompensation in most animals characterized by left ventricular dilatation, depressed systolic function, and increased postoperative mortality when compared with nontransgenic littermates. These results implicate RGS proteins as a crucial component of the signaling pathway involved in both the cardiac response to acute ventricular pressure overload and the cardiac hypertrophic program.  相似文献   

4.
Meteorin-like/Meteorin-β (Metrnl/Metrnβ) is a secreted protein produced by skeletal muscle and adipose tissue that exerts metabolic actions that improve glucose metabolism. The role of Metrnβ in cardiac disease is completely unknown. Here, we show that Metrnβ-null mice exhibit asymmetrical cardiac hypertrophy, fibrosis, and enhanced signs of cardiac dysfunction in response to isoproterenol-induced cardiac hypertrophy and aging. Conversely, adeno-associated virus–mediated specific overexpression of Metrnβ in the heart prevents the development of cardiac remodeling. Furthermore, Metrnβ inhibits cardiac hypertrophy development in cardiomyocytes in vitro, indicating a direct effect on cardiac cells. Antibody-mediated blockage of Metrnβ in cardiomyocyte cell cultures indicated an autocrine action of Metrnβ on the heart, in addition to an endocrine action. Moreover, Metrnβ is highly produced in the heart, and analysis of circulating Metrnβ concentrations in a large cohort of patients reveals that it is a new biomarker of heart failure with an independent prognostic value.  相似文献   

5.
Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues.  相似文献   

6.
Kidney size adaptively increases as mammals grow and in response to the loss of 1 kidney. It is not clear how kidneys size themselves or if the processes that adapt kidney mass to lean body mass also mediate renal hypertrophy following unilateral nephrectomy (UNX). Here, we demonstrated that mice harboring a proximal tubule–specific deletion of Pten (PtenptKO) have greatly enlarged kidneys as the result of persistent activation of the class I PI3K/mTORC2/AKT pathway and an increase of the antiproliferative signals p21Cip1/WAF and p27Kip1. Administration of rapamycin to PtenptKO mice diminished hypertrophy. Proximal tubule–specific deletion of Egfr in PtenptKO mice also attenuated class I PI3K/mTORC2/AKT signaling and reduced the size of enlarged kidneys. In PtenptKO mice, UNX further increased mTORC1 activation and hypertrophy in the remaining kidney; however, mTORC2-dependent AKT phosphorylation did not increase further in the remaining kidney of PtenptKO mice, nor was it induced in the remaining kidney of WT mice. After UNX, renal blood flow and amino acid delivery to the remaining kidney rose abruptly, followed by increased amino acid content and activation of a class III PI3K/mTORC1/S6K1 pathway. Thus, our findings demonstrate context-dependent roles for EGFR-modulated class I PI3K/mTORC2/AKT signaling in the normal adaptation of kidney size and PTEN-independent, nutrient-dependent class III PI3K/mTORC1/S6K1 signaling in the compensatory enlargement of the remaining kidney following UNX.  相似文献   

7.
While phosphatidylinositide 3-kinase delta (PI3Kδ) plays a critical role in humoral immunity, the requirement for PI3Kδ signaling in plasma cells remains poorly understood. Here, we used a conditional mouse model of activated PI3Kδ syndrome (APDS), to interrogate the function of PI3Kδ in plasma cell biology. Mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) in B cells generated increased numbers of memory B cells and mounted an enhanced secondary response but exhibited a rapid decay of antibody levels over time. Consistent with these findings, aPIK3CD expression markedly impaired plasma cell generation, and expression of aPIK3CD intrinsically in plasma cells was sufficient to diminish humoral responses. Mechanistically, aPIK3CD disrupted ER proteostasis and autophagy, which led to increased plasma cell death. Notably, this defect was driven primarily by elevated mTORC1 signaling and modulated by treatment with PI3Kδ-specific inhibitors. Our findings establish an essential role for PI3Kδ in plasma cell homeostasis and suggest that modulating PI3Kδ activity may be useful for promoting and/or thwarting specific immune responses.  相似文献   

8.
Many good reasons to have STAT3 in the heart   总被引:4,自引:0,他引:4  
  相似文献   

9.
The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC(50) values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kβ, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients.  相似文献   

10.
PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-β expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-β signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-β was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-β is a regulator of the compensatory cardiac response to pressure overload–induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.  相似文献   

11.
12.
ObjectiveTo explore the effects and potential mechanisms of fatty acid-binding protein 4 (FABP4) in a lipopolysaccharide (LPS)-induced in vitro septic cardiomyopathy model.MethodsRat cardiomyocyte H9c2 cells were transfected with small interfering RNA (siRNA) against FABP4 (siFABP4), then induced with LPS. The following parameters were measured: cell viability, lactate dehydrogenase release, cardiac hypertrophy and related marker expression, apoptosis, inflammatory cytokine release and expression, and the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) pathways.ResultsLPS increased the mRNA and protein expression of FABP4 in H9c2 cells. FABP4 silencing by siFABP4 significantly inhibited LPS-induced cardiac hypertrophy and reduced the mRNA expression of the myocardial hypertrophy markers atrial natriuretic peptide and brain natriuretic peptide. siFABP4 also attenuated LPS-induced increase in TUNEL-positive apoptotic cells, caspase-3 and caspase-9 activities, and the release and expression of proinflammatory cytokines. Mechanistically, we found that FABP4 silencing inhibited the mRNA and protein expression of TLR4 and suppressed the NF-kappa B signaling pathway, as evidenced by reduced nuclear NF-κB p65 and increased cytoplasmic I-κBα expression in LPS-stimulated H9c2 cells.ConclusionFABP4 silencing reduces LPS-induced cardiomyocyte hypertrophy and apoptosis by down-regulating the TLR4/NF-κB axis.  相似文献   

13.
The heart initially compensates for hypertension-mediated pressure overload by enhancing its contractile force and developing hypertrophy without dilation. Gq protein–coupled receptor pathways become activated and can depress function, leading to cardiac failure. Initial adaptation mechanisms to reduce cardiac damage during such stimulation remain largely unknown. Here we have shown that this initial adaptation requires regulator of G protein signaling 2 (RGS2). Mice lacking RGS2 had a normal basal cardiac phenotype, yet responded rapidly to pressure overload, with increased myocardial Gq signaling, marked cardiac hypertrophy and failure, and early mortality. Swimming exercise, which is not accompanied by Gq activation, induced a normal cardiac response, while Rgs2 deletion in Gαq-overexpressing hearts exacerbated hypertrophy and dilation. In vascular smooth muscle, RGS2 is activated by cGMP-dependent protein kinase (PKG), suppressing Gq-stimulated vascular contraction. In normal mice, but not Rgs2–/– mice, PKG activation by the chronic inhibition of cGMP-selective phosphodiesterase 5 (PDE5) suppressed maladaptive cardiac hypertrophy, inhibiting Gq-coupled stimuli. Importantly, PKG was similarly activated by PDE5 inhibition in myocardium from both genotypes, but PKG plasma membrane translocation was more transient in Rgs2–/– myocytes than in controls and was unaffected by PDE5 inhibition. Thus, RGS2 is required for early myocardial compensation to pressure overload and mediates the initial antihypertrophic and cardioprotective effects of PDE5 inhibitors.  相似文献   

14.
The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, α and β. Although GSK-3β has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3α in the mouse heart using gene targeting. Gsk3a–/– mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired β-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3α appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of β-adrenergic responsiveness. In the absence of GSK-3α, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of β-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3.  相似文献   

15.
How Ca2+-dependent signaling effectors are regulated in cardiomyocytes, given the extreme cytoplasmic Ca2+ concentration changes that underlie contraction, remains unknown. Cardiomyocyte plasma membrane Ca2+-ATPase (PMCA) extrudes Ca2+ but has little effect on excitation-contraction coupling, suggesting its potential role in controlling Ca2+-dependent signaling effectors such as calcineurin. We generated cardiac-specific inducible PMCA4b transgenic mice that displayed normal global Ca2+ transient and cellular contraction levels and reduced cardiac hypertrophy following transverse aortic constriction (TAC) or phenylephrine/Ang II infusion, but showed no reduction in exercise-induced hypertrophy. Transgenic mice were protected from decompensation and fibrosis following long-term TAC. The PMCA4b transgene reduced the hypertrophic augmentation associated with transient receptor potential canonical 3 channel overexpression, but not that associated with activated calcineurin. Furthermore, Pmca4 gene–targeted mice showed increased cardiac hypertrophy and heart failure events after TAC. Physical associations between PMCA4b and calcineurin were enhanced by TAC and by agonist stimulation of cultured neonatal cardiomyocytes. PMCA4b reduced calcineurin nuclear factor of activated T cell–luciferase activity after TAC and in cultured neonatal cardiomyocytes after agonist stimulation. PMCA4b overexpression inhibited cultured cardiomyocyte hypertrophy following agonist stimulation, but much less so in a Ca2+ pumping–deficient PMCA4b mutant. Thus, Pmca4b likely reduces the local Ca2+ signals involved in reactive cardiomyocyte hypertrophy via calcineurin regulation.  相似文献   

16.
The kidney, like other organs, grows in constant proportion to the rest of the body. When one kidney is removed, the remaining one hypertrophies. In a comprehensive series of studies, Chen et al. show that growth during maturation is mediated by the mTORC1 signaling pathway, which is induced by EGF-like peptides, and requires PI3K, PDK, AKT, mTORC2, and activation of mTORC1 through the combined effects of TSC and RHEB as part of a multiprotein complex localized on lysosomes. However, compensatory growth is mediated by amino acids, which act on mTORC1 independently of the previous pathway, and requires a class III PI3K (VPS34) that is known to be involved in vesicle trafficking to the lysosomes.The mechanism that guarantees organ growth in proportion to the body has attracted the attention of a wide array of scientists since ancient times (1). For many organs, growth is mediated by individual, organ-specific mechanisms, which are often context dependent. The kidney seems to be a special case, because it is not an organ in the same way that the heart is an organ. Removal of half a kidney reduces its function by half, while removal of half of the heart eliminates all function. It is the nephron that is the organ, and in vertebrates, all these units are packaged in one place — the kidney. Removal of one kidney causes a compensatory hypertrophy of the remaining organ, but unfortunately without increasing the number of nephrons, as human nephrogenesis ceases at birth (2).During maturation, cell proliferation participates in the increase in size and length of nephrons, but cell hypertrophy is a major component of the increase in renal size both during maturation and especially during compensatory hypertrophy. While each nephron hypertrophies after birth, renal size continues to maintain a remarkably constant relationship to that of the body as both grow toward their adult size. Nephron function also increases; at birth, human glomerular filtration rate (GFR) is very low, but at the end of infancy, the GFR/m2 surface area remains constant (1) as children grow to adulthood, meaning that in childhood, GFR increases proportionately to body size. Elegant microdissection studies have shown that during both maturational growth and in compensatory hypertrophy, the largest growth occurs in the proximal tubules (3). Could a single mechanism mediate maturational growth and compensatory hypertrophy? In this issue, Chen et al. (4) suggest that the two are related and provide compelling evidence for the role of the anabolic signaling pathway mediated by mTORC1 in both types of growth.  相似文献   

17.
Statin therapy for cardiac hypertrophy and heart failure.   总被引:7,自引:0,他引:7  
Cardiac hypertrophy leading to heart failure is a major cause of morbidity and mortality worldwide. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, have been shown to inhibit cardiac hypertrophy and improve symptoms of heart failure by cholesterol-independent mechanisms. Statins block the isoprenylation and function of members of the Rho guanosine triphosphatase family, such as Rac1 and RhoA. Because Rac1 is a requisite component of reduced nicotinamide adenine dinucleotide phosphate oxidase, which is a major source of reactive oxygen species in cardiovascular cells, the ability of statins to inhibit Rac1-mediated oxidative stress contributes importantly to their inhibitory effects on cardiac hypertrophy. Furthermore, inhibition of RhoA by statins leads to the activation of protein kinase B/Akt and up-regulation of endothelial nitric oxide synthase in the endothelium and the heart. This results in increased angiogenesis and myocardial perfusion, decreased myocardial apoptosis, and improvement in endothelial and cardiac function. Because these effects of statins occur independently of cholesterol lowering, statins may have therapeutic benefits in nonhyperlipidemic patients with cardiac hypertrophy and heart failure.  相似文献   

18.
The gp130 cytokine receptor activates a cardiomyocyte survival pathway during the transition to heart failure following the biomechanical stress of pressure overload. Although gp130 activation is observed transiently during transverse aortic constriction (TAC), its mechanism of inactivation is largely unknown in cardiomyocytes. We show here that suppressor of cytokine signaling 3 (SOCS3), an intrinsic inhibitor of JAK, shows biphasic induction in response to TAC. The induction of SOCS3 was closely correlated with STAT3 phosphorylation, as well as the activation of an embryonic gene program, suggesting that cardiac gp130-JAK signaling is precisely controlled by this endogenous suppressor. In addition to its cytoprotective action, gp130-dependent signaling induces cardiomyocyte hypertrophy. Adenovirus-mediated gene transfer of SOCS3 to ventricular cardiomyocytes completely suppressed both hypertrophy and antiapoptotic phenotypes induced by leukemia inhibitory factor (LIF). To our knowledge, this is the first clear evidence that these two separate cardiomyocyte phenotypes induced by gp130 activation lie downstream of JAK. Three independent signaling pathways, STAT3, MEK1-ERK1/2, and AKT activation, that are coinduced by LIF stimulation were completely suppressed by SOCS3 overexpression. We conclude that SOCS3 is a mechanical stress-inducible gene in cardiac muscle cells and that it directly modulates stress-induced gp130 cytokine receptor signaling as the key molecular switch for a negative feedback circuit for both myocyte hypertrophy and survival.  相似文献   

19.
Noninvasive imaging strategies will be critical for defining the temporal characteristics of angiogenesis and assessing efficacy of angiogenic therapies. The αvβ3 integrin is expressed in angiogenic vessels and represents a potential novel target for imaging myocardial angiogenesis. We demonstrated the localization of an indium-111–labeled (111In-labeled) αvβ3-targeted agent in the region of injury-induced angiogenesis in a chronic rat model of infarction. The specificity of the targeted αvβ3-imaging agent for angiogenesis was established using a nonspecific control agent. The potential of this radiolabeled αvβ3-targeted agent for in vivo imaging was then confirmed in a canine model of postinfarction angiogenesis. Serial in vivo dual-isotope single-photon emission–computed tomographic (SPECT) imaging with the 111In-labeled αvβ3-targeted agent demonstrated focal radiotracer uptake in hypoperfused regions where angiogenesis was stimulated. There was a fourfold increase in myocardial radiotracer uptake in the infarct region associated with histological evidence of angiogenesis and increased expression of the αvβ3 integrin. Thus, angiogenesis in the heart can be imaged noninvasively with an 111In-labeled αvβ3-targeted agent. The noninvasive evaluation of angiogenesis may have important implications for risk stratification of patients following myocardial infarction. This approach may also have significant clinical utility for noninvasively tracking therapeutic myocardial angiogenesis.  相似文献   

20.
Patients with systolic left ventricular dysfunction die progressively from congestive heart failure or die suddenly from cardiac arrhythmias. Myocardial hypertrophy is an early event in most forms of heart failure, but the majority of patients with myocardial hypertrophy do not develop heart failure. Developing improved therapies for targeting the cell signaling pathways that enable this deadly transition from early myocardial insult to heart failure and sudden death is a key goal for improving public health. In this issue of the JCI, Ling and colleagues provide new evidence that activation of the multifunctional Ca2+/calmodulin–dependent kinase IIδ is a decisive step on the path to heart failure in mice (see the related article beginning on page 1230).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号