首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 μm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm3. The particles were spherical with a granular surface and had a 4 μm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.  相似文献   

2.
Purpose. The purpose of this study is to investigate the albuterol loading effect on particle size measurements by studying the effect of the amount of albuterol delivered, the number of puffs used, and the sampling techniques used in particle size measurement. Methods. Particle size distribution profiles for different albuterol loadings were evaluated using an 8-stage cascade impactor and a sensitive HPLC electrochemical assay method. A commercial albuterol MDI (ProventilR) and other specially prepared albuterol MDIs were used in the study. Results. As the amount of albuterol was increased, either by increasing the number of puffs or the amount delivered per puff, the measured MMAD increased. This increase was more prominent in some formulations (ProventilR) than others. Further, albuterol particles previously deposited on the valve and/or actuator didn't play a role in the observed multi-puff/loading effect. Conclusions. The collection of the least amount of aerosol in a cascade impactor provides a better estimate of MMAD, as it minimizes modifications of the collection surfaces.  相似文献   

3.
The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 μm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm3. The particles were spherical with a granular surface and had a 4 μm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.  相似文献   

4.
Fluticasone propionate (FP) is a potent anti‐inflammatory synthetic steroid, used for the treatment of asthma. Flixotide? is a formulated pressurized metered‐dose inhaler (pMDI) that contains small‐micronized FP particles in a blend of CFC propellants. Our objective was to develop a radiotracer method for accurately measuring the regional deposition of FP within the human lung using positron emission tomography (PET), which would be of important clinical interest. Flixotide? pMDIs were used to prepare [18F]FP pMDIs labeled isotopically with the positron emitter, fluorine‐18 (t1/2=109.7 min). FP particles from Flixotide? pMDIs were mixed with [18F]FP formulated into a pMDI and sonicated at room temperature. The drug delivery of [18F]FP pMDI (250 μg of FP per actuation dose) was assessed for particle size distribution and dose uniformity. The distributions of FP and [18F]FP across particle size in such preparations were measured with an Andersen cascade impactor. This procedure was shown to provide an emitted dose from a [18F]FP pMDI of 246±19 μg/per metered dose. The particle size distribution as measured by mass median aerodynamic diameter (MMAD) (The mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD) for each distribution were calculated. MMAD is defined as the aerodynamic diameter around which the mass of particles is equally distributed and the GSD is a measure of the dispersion of these particle diameters around the MMAD) from a commercial Flixotide? pMDI was 2.6±0.2 μm and agreed well with that from an [18F]FP pMDI (2.8±0.1 μm). The MMAD and geometric standard deviation (GSD) of newly formulated [18F]FP pMDIs were unaffected by the formulation procedure. [18F]FP was distributed with good uniformity with respect to the mass of FP for particles greater than 0.43 μm. Hence, the radiolabeled pMDI is a suitable source of radiotracer for the regional measurement of lung deposition for inhaled FP in human subjects with PET. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of the study was to optimize and characterize high therapeutic payload large respirable powders prepared by spray-drying technique for maximum fine particle fraction with minimum quantities of excipients. Influence of formulation components was optimized by a three-factor, five-level central composite design having different proportions of L-leucine (X1), tobramycin sulfate (X2), and poloxamer-188 (X3) as the independent variables and fine particle fraction as a response variable (Y). Large respirable powders were characterized for particle size, size distribution, moisture, crystallinity, and morphology. In vitro aerosol performance of powders was determined by an eight-stage Andersen cascade impactor using the Rotahaler. Mathematical model elucidated for Y was Y = 56.2068 + 5.7481 X1 - 3.0531 X2 + 0.8468 X3 + 1.1737 X1 X2 ? 0.5012 X1 X3 ? 0.7412 X2 X3 ? 0.7149 X12 ? 1.9212 X22 ? 1.6187X32. The component of greatest influence on product performance (response variable) was found to be L-leucine. Lack of fit was not significant (p = 0.08), and regression equation predicted response for Y was in reasonably good agreement with experimental values (p = 0.01; R2 = 0.92). The optimal model predicted with a fine particle fraction of 62.8 ± 2.6% with X1, X2, X3 levels of 20, 45.71, and 5.51 respectively. Large respirable powders with TB load of 45.7% w/w were prepared; they had smooth surface texture, dimpled spherical shape, roundness value close to 1(1.048 ± 0.032) and were found to possess bulk tap densities of 0.04 g/cc, geometric particle sizes of 6–7 μm, and emitted dose of 92%. The results of the studies suggest that in vitro aerosol performance was affected significantly by small and deliberate change of specific formulation components and its proportions. It may be concluded that appropriate type and proportion of excipients is necessary to obtain maximum fine particle fraction of large respirable powders containing high therapeutic payloads.  相似文献   

6.
Protein Inhalation Powders: Spray Drying vs Spray Freeze Drying   总被引:3,自引:0,他引:3  
Purpose. To develop a new technique, spray freeze drying, for preparing protein aerosol powders. Also, to compare the spray freeze-dried powders with spray-dried powders in terms of physical properties and aerosol performance. Methods. Protein powders were characterized using particle size analysis, thermogravimetric analysis, scanning electron microscopy, X-ray powder diffractometry, and specific surface area measurement. Aerosol performance of the powders was evaluated after blending with lactose carriers using a multi-stage liquid impinger or an Anderson cascade impactor. Two recombinant therapeutic proteins currently used for treating respiratory tract-related diseases, deoxyribonuclase (rhDNase) and anti-IgE monoclonal antibody (anti-IgE MAb), were employed and formulated with different carbohydrate excipients. Results. Through the same atomization but the different drying process, spray drying (SD) produced small (3 m), dense particles, but SFD resulted in large (8–10 m), porous particles. The fine particle fraction (FPF) of the spray freeze-dried powder was significantly better than that of the spray-dried powder, attributed to better aerodynamic properties. Powders collected from different stages of the cascade impactor were characterized, which confirmed the concept of aerodynamic particle size. Protein formulation played a major role in affecting the powder's aerosol performance, especially for the carbohydrate excipient of a high crystallization tendency. Conclusions. Spray freeze drying, as opposed to spray drying, produced protein particles with light and porous characteristics, which offered powders with superior aerosol performance due to favorable aerodynamic properties.  相似文献   

7.
Conventional slow‐acting insulin preparations for subcutaneous injection, e.g., suspensions of the complex with protamine and/or zinc, were reformulated as dry powders for inhalation and the insoluble aerosol tested for providing sustained insulin plasma levels. Large porous particles made of lactose, albumin, and dipalmitoylphosphatidylcholine, and incorporating insulin, protamine, and/or zinc chloride were prepared using spray‐drying. Integrity of insulin after spray‐drying and insulin insolubilization in spray‐dried particles was verified in vitro. The pharmacokinetic profile of the formulation delivered by inhalation and subcutaneous injection was assessed in vivo in the rat. The formulation process of insulin as dry powders did not alter insulin integrity and did not impede, in most cases, insulin insolubilization by protamine and/or zinc. Large porous insulin particles presented 7 μm mass mean geometric particle diameters, 0.1 g/cm3 bulk powder tap densities and theoretical aerodynamic diameters suitable for deep lung deposition (in the range of 2.2–2.5 μm). The dry powders exhibited 40% respirable fractions in the Andersen cascade impactor and 58–75% in the Aero‐Breather™. Insoluble inhaled insulin provided sustained insulin plasma levels for half a day, similar to injected insulin, and exhibited a bioavailability of 80.5% relative to subcutaneous injection of the same formulation. Drug Dev. Res. 48:178–185, 1999. ©1999 Wiley‐Liss, Inc.  相似文献   

8.
Purpose. The purpose of the investigation was to determine the effect of tablet excipients on the activity of cetylpyridinium chloride (CPC) and the relative interaction between excipients and CPC. Methods. An analytical assay was developed to evaluate the interaction between CPC and the excipients. In vivo activity was investigated using six volunteers by determining the reduction in colony forming units recoverable from the oropharynx after sucking each proprietary lozenge separately on different days. In vitro determinations investigated the relative antimicrobial activity of aqueous solutions of the lozenges and, the effect of pH and tablet base excipients on that activity against Staphylococcus aureus, Streptococcus pyogenes and Candida albicans. Results. Both in vivo and in vitro results showed that the tablet based lozenges had markedly reduced antimicrobial activities compared with previous results with a candy based lozenge (in vivo and in vitro) or the same concentration of aqueous CPC (in vitro}. Magnesium stearate suspensions in CPC 250 µg/ml indicated that magnesium stearate adsorbed CPC and at 0.4% lozenge weight and above significantly reduced the antimicrobial activity of CPC 250 µg/ml. Conclusions. The reduced activity of CPC in tablet based lozenges resulted from a decreased availability of CPC in solution due to an adsorption of CPC on magnesium stearate. To avoid this reduction in activity tablet based lozenges containing CPC 250 µg/ml, or similar concentrations, plus magnesium stearate should contain not more than 0.3% w/w lozenge weight of the lubricant.  相似文献   

9.
Purpose. To develop and demonstrate a novel particle engineering technology, spray freezing into liquid (SFL), to enhance the dissolution rates of poorly water-soluble active pharmaceutical ingredients (APIs). Methods. Model APIs, danazol or carbamazepine with or without excipients, were dissolved in a tetrahydrofuran/water cosolvent system and atomized through a nozzle beneath the surface of liquid nitrogen to produce small frozen droplets, which were subsequently lyophilized. The physicochemical properties of the SFL powders and controls were characterized by X-ray diffraction, scanning electron microscopy (SEM), particle size distribution, surface area analysis, contact angle measurement, and dissolution. Results. The X-ray diffraction pattern indicated that SFL powders containing either danazol or carbamazepine were amorphous. SEM micrographs indicated that SFL particles were highly porous. The mean particle diameter of SFL carbamazepine/SLS powder was about 7 m. The surface area of SFL danazol/poloxamer 407 powder was 11.04 m2/g. The dissolution of SFL danazol/poloxamer 407 powder at 10 min was about 99%. The SFL powders were free flowing and had good physical and chemical stability after being stored at 25°C/60%RH for 2 months. Conclusions. The novel SFL technology was demonstrated to produce nanostructured amorphous highly porous particles of poorly water soluble APIs with significantly enhanced wetting and dissolution rates.  相似文献   

10.
Purpose. To evaluate the use of carrier-based dry powder aerosols for inhalation delivery of proteins and examine the effect of fine particle excipients as potential formulation performance modifiers. Methods. Bovine serum albumin (BSA) was co-processed with malto-dextrin by spray-drying to produce model protein particles. Aerosol formulations were prepared by tumble mixing protein powders with -lactose monohydrate (63–90 m) or modified lactoses containing between 2.5 and 10% w/w fine particle lactose (FPL) or micronised polyethylene glycol 6000. Powder blends were characterised in terms of particle size distribution, morphology and powder flow. Formulation performance in Diskhaler® and Rotahaler® devices was investigated using a twin stage impinger operating at 60 1 min–1. Results. Inhalation performance of binary ordered mixes prepared using BSA-maltodextrin and lactose (63–90 m) was improved by addition of FPL and micronised PEG 6000. For the addition of 5% w/w FPL the protein fine particle fraction (0.5–6.4 m) using the Diskhaler® was increased from 31.7 ± 2.4% to 47.4 ± 2.2%. Inclusion of FPL and micronised PEG 6000 changed the bulk properties of inhalation powders and reduced powder flow but did not affect device emptying. Unexpectedly, improvements in performance were found to be independent of the order of addition of FPL to the ternary powder formulations. SEM studies revealed that this was probably the result of a redistribution of protein particles between the coarse carrier lactose component and added FPL during mixing. Conclusions. Fine particle excipients can be used to improve the performance of carrier-based protein dry powder aerosols. Mechanistically, enhancement of performance is proposed to result from a redistribution of protein particles from coarse carrier particles to the fine particle component in the ternary mix.  相似文献   

11.
《Inhalation toxicology》2013,25(7):709-722
Abstract

Two aerosol generators–a small particle generator (SPG) and a large particle generator (LPG)–were designed and fabricated to produce water-soluble particles with high mass output and narrow size distributions. The mass median aerodynamic diameter (MMAD) of solid particles produced could be varied by changing operation conditions and using different concentrations of sodium chloride (NaCl) solutions. The aerosol generation rate varied from about 0.2 to 24 mg/min depending upon the particle size produced as the geometric standard deviation (GSD) was maintained below 1.5. The SPG employed a Collison-type nebulizer with multiple nozzles and a solid-plate impactor, which removes generating droplets larger than the cutpoint diameter for the production of submicrometer aerosols with GSD < 1.5. Different combinations of nebulization pressure/cutpoint diameter were selected to produce solid particles with MMAD in the range of 0.13–1.0 μm. The LPG was consisted of a Delavan simplex nozzle installed at the bottom of the generation chamber (about 190 cm in height and 15 cm in diameter) and an improved virtual impactor located at the top of the generation chamber. Gravity was used to remove large droplets and the improved virtual impactor was employed to remove droplets less than the cutpoint diameter. Two sets of acceleration nozzle and collection probe were used to vary the impactor cut size. The size-selective droplets were then evaporated to form solid particles with the MMAD nominally varying from 1 to 10 μm and GSD < 1.5.  相似文献   

12.
《Inhalation toxicology》2013,25(5):589-602
Abstract

Airborne particles Jess than 10 μsm (PM-10) in mass median aerodynamic diameter (MMAD) are associated with adverse effects on human health including chronic lung diseases and mortality, but the mechanisms by which these particles might cause or aggravate diseases are not specifically known. PM-10 represents a complex mixture, both in terms of size and chemical composition, and it contains both aqueous-media soluble and insoluble particles. Furthermore, the ambient aerosol composition varies markedly in different locations and at different times in the same location. To test the effects of PM-10 on pulmonary defenses in relation to specific cell targets, barrier-reared Sprague-Dawley rats were exposed to purified air (control), to two important constituents of the fine-particle < 1 μm MMAD) fraction of PM-10–ammonium sulfate [(NH4)2SO42-] (20 or 70 μg SO42- m?3, 0.2 μm MMAD) and ammonium nitrate [NH4NO31 (90 or 350 NO3 μg m ?3, 0.6 μm MMAD). Rats were also exposed to resuspended road dust (300 and 900 μg m?3, 4.0 μm MMAD), an important contributor to the coarse (> 2.5 μm MMAD) fraction of PM-10. Exposures were 4 h/day, 4 dayslwk for 8 wk. Macrophage-dependent lung defense functions (antigen binding to Fc receptors and respiratory burst activity) were significantly depressed by NOf, SO42-, and the high-concentration road dust exposures, compared to purified air controls. Lung permeability, as determined from measurements of albumin concentrations in bronchoalveolar lavage fluid, was significantly greater in rats exposed to high concentrations of road dust and NO3?, but not to SO42-, when compared to air-exposed controls. Quantitative histopathologic analyses, which included measurements of alveolar nuclear density, alveolar chord length, alveolar septal thickness, and alveolar cross sectional area, showed moderate to substantial changes. In general, the severity of the responses was in the order of SO42-NO3?road dust. The findings are consistent with those of epidemiological studies. This study also supports the hypothesis that the fine fraction of PM-10 is more toxic than the coarse fraction.  相似文献   

13.
Schuster  Jeff  Rubsamen  Reid  Lloyd  Peter  Lloyd  Jack 《Pharmaceutical research》1997,14(3):354-357
Purpose. We describe the AERX aerosol delivery system, a new, bolus inhalation device that is actuated at preprogrammed values of inspiratory flow rate and inhaled volume. We report on its in vitro characterization using a particular set of conditions used in pharmacokinetic and scintigraphic studies. Methods. Multiple doses of aerosol were delivered from single use collapsible plastic containers containing liquid formulation. The aerosol was generated by forcing the formulation under pressure through an array of 2.5 micron holes. Air was drawn through the device at 70 LPM, and the aerosol was collected onto a filter or Andersen cascade impactor. The emitted dose was quantified from the filter collection data, and the particle size distribution was obtained from the best fit log-normal distribution to the impactor data. Results. 57.0 ± 5.9% of the dose of drug placed as an aqueous solution in the 45 L collapsible container was delivered as an aerosol (n = 40). The best fit size distribution had an MMAD = (2.95 ± 0.06) m and a geometric standard deviation g = 1.24 ± 0.01 (n = 6). Conclusions. The AERX aerosol delivery system generates a nearly monodisperse aerosol with the properties required for efficient and repeatable drug delivery to the lung.  相似文献   

14.
Purpose. The purpose of this study is to investigate the effect of drug load, the coating of impactor stages, and the design of cascade impactors on albuterol MDIs particle size distribution measurements. The results of the investigation will be used to explain the 'loading effect' recently reported. Methods. Particle size distribution parameters of a commercial albuterol MDI were measured using both Andersen (AI) and Marple-Miller (MMI) Cascade Impactors, where plates were either left uncoated or coated with silicone or glycerin. A previously validated HPLC-EC method was used for the assay of albuterol collected by the impactor and in single spray content determinations. Results. Coating impactor collection plates had an impact on measured MM AD and GSD values for single puff measurements but very little or no effect for the multi puff measurements. Due to particle bounce, the percent of albuterol fine particles deposited in the filter and impactor finer stages (<1.10 m in AI and <1.25 m in MMI) in uncoated single puff experiments was much higher in comparison to either coated single puff or multi-puff (coated and uncoated) measurements. Conclusions. Evaluation of drug load and plate coating are necessary to determine whether observed particle size distributions are representative of the generated aerosol or are the result of particle bounce and reentrainment. In order to minimize particle bounce, especially for single puff determinations, it may be useful to apply a thin layer of a sticky coating agent to the surfaces of impactor plates.  相似文献   

15.
The aim of this study was to develop a novel fluticasone propionate (FP) and salmeterol xinafoate (SX)-loaded dry powder inhaler (DPI) system, which was composed of powder formulation and performance. The air flow resistances were determined with various types of DPI device, showing that the modified RS01 device gave the specific resistance similar to the commercial DPI device. The particle properties of FP, SX, and inhalation grade lactose particles, such as particle size, size distribution, and fine content, were assessed. Subsequently, the aerodynamic behaviors of the DPI powder formulations were evaluated by the in vitro deposition of drugs in the DPI products using Andersen cascade impactor. Amongst the DPI powder formulations tested, the formulation composed of FP, SX, Respitose® SV003, Respitose® SV010, and Respitose® ML006 at the weight ratio of 0.5/0.145/19/19/2 gave depositions, emitted dose, fine particle dose, fine particle fraction, and mass median aerodynamic diameter of drugs similar to the commercial product, suggesting that they had similar aerodynamic behaviors. Furthermore, it gave excellent content uniformity. Thus, this DPI using the modified RS01 device would be recommended as a candidate for FP and SX-loaded pharmaceutical DPI products.  相似文献   

16.
The collection efficiency of the Andersen cascade impactor (ACI) can be affected by particle bounce, overload and re-entrainment (or blow-off), collectively referred to as bounce effects. Reduction of bounce effects in the ACI operated at 60 LPM was investigated for placebo large porous particles. Aerodynamic particle size distributions (aPSDs) obtained with the ACI and multi-stage liquid impinger (MSLI) were compared by observation of modes and statistical comparisons of the mass median aerodynamic diameter (MMAD) and geometric standard deviation (sigmag). Particle bounce effects were prevalent in the ACI with uncoated plates, i.e., bi-modal distribution with statistically significant differences in MMAD and sigmag (P<0.05). Coating the impaction plates with a thin layer of vacuum grease and decreasing the ACI stage jet velocities reduced, but did not minimize bounce effects. Bounce effects were minimized using 20-microm pore glass fiber filters saturated in water placed on inverted impaction plates, with good agreement obtained between the ACI and MSLI aPSDs, i.e., mono-modal with no statistically significant differences in MMAD and sigmag (P>0.05). Selection of the impaction substrate material and solvent must be evaluated with the drug product and analytical methods to minimize bounce effects and obtain an accurate measure of the aPSD.  相似文献   

17.
The influence of the sampling chamber dimensions upon particle size estimation by cascade impaction has been investigated and compared with measurements by the twin impinger. Aerosols of salbutamol and disodium fluorescein (DF) were generated from pressurized metered dose inhalers. The mass median aerodynamic diameter (MMAD) by the Andersen Impactor for salbutamol ranged from 2.0 to 2.8 microns with geometric standard deviations (g.s.d.) of 1.7 to 2.4. These observations were independent of the distance travelled to the first impaction surface of the impactor and volume of the sampling chamber. The DF MMAD ranged from 5.0 to 6.9 microns with g.s.d. values of 1.7 to 1.8. Changes in droplet size within the sampling chamber may cause significant differences in particle size estimates as indicated by the cascade impaction data for DF. The respirable fraction of the salbutamol samples was similar whether determined by impaction or using the impinger. The latter device has previously been indicated to give clinically relevant estimates of respirable fraction for commercial inhalation aerosol devices.  相似文献   

18.
The standardization of the operation conditions of an Andersen-Cascade impactor (Mark II), based on the physical relationship between adhesion and aerodynamic particle behaviour, has been undertaken using the Serevent® Disk-haler. In this case, the drug (Salmeterol xinafoate) is primarily adhered to a carrier material (lactose monohydrate), and thus the standard operation procedure to use this type of impactor had to be modified. For the modified procedure, operating conditions such as air flow rate, thickness of a silicon coat of the impaction plates and drug loading were optimized, bearing in mind the findings reported in the literature about the relationship between adhesion and impaction on plates. For this particular drug, the optimal thickness of the silicon film was found to be 3.75 μm, and the drug loading should not exceed 400μg. Although any air flow velocity between 20 and 60 1 min −1 gave a physically correct aerodynamic particle size for this drug and the chosen inhaler device, a maximum amount of drug was released from the device only applying flow rates between 50 and 60 1 min−1. Four different industrially manufactured Serevent® batches were studied under these optimized operation conditions. Using centrifugal adhesion force measurements, the median adhesion force between Salmeterol xinafoate particles and lactose monohydrate carrier particles was established and linked to the aerodynamic behaviour of the drug using the Cascade impactor. The median adhesion force (Fad) and the mass median aerodynamic diameter (MMAD) were found to be directly proportional. Statistical analysis, however, indicated that the differences in Fad and MMAD were not significant between the tested batches. The procedure established that the formulation had been produced with high accuracy and reproducibility. The sensitivity of the adhesion force measurements to variability in the manufacturing process would allow an in-process control of the mixture and could help to assure this high standard.  相似文献   

19.
The aim of the study was to optimize and characterize high therapeutic payload large respirable powders prepared by spray-drying technique for maximum fine particle fraction with minimum quantities of excipients. Influence of formulation components was optimized by a three-factor, five-level central composite design having different proportions of L-leucine (X1), tobramycin sulfate (X2), and poloxamer-188 (X3) as the independent variables and fine particle fraction as a response variable (Y). Large respirable powders were characterized for particle size, size distribution, moisture, crystallinity, and morphology. In vitro aerosol performance of powders was determined by an eight-stage Andersen cascade impactor using the Rotahaler. Mathematical model elucidated for Y was Y = 56.2068 + 5.7481 X1 - 3.0531 X2 + 0.8468 X3 + 1.1737 X1 X2 - 0.5012 X1 X3 - 0.7412 X2 X3 - 0.7149 X1(2) - 1.9212 X2(2) - 1.6187X3(2). The component of greatest influence on product performance (response variable) was found to be L-leucine. Lack of fit was not significant (p = 0.08), and regression equation predicted response for Y was in reasonably good agreement with experimental values (p = 0.01; R2 = 0.92). The optimal model predicted with a fine particle fraction of 62.8 +/- 2.6% with X1, X2, X3 levels of 20, 45.71, and 5.51 respectively. Large respirable powders with TB load of 45.7% w/w were prepared; they had smooth surface texture, dimpled spherical shape, roundness value close to 1(1.048 +/- 0.032) and were found to possess bulk tap densities of 0.04 g/cc, geometric particle sizes of 6-7 micro m, and emitted dose of 92%. The results of the studies suggest that in vitro aerosol performance was affected significantly by small and deliberate change of specific formulation components and its proportions. It may be concluded that appropriate type and proportion of excipients is necessary to obtain maximum fine particle fraction of large respirable powders containing high therapeutic payloads.  相似文献   

20.
The purpose of this study was to evaluate the effect of taste-masking excipients on in vitro and in vivo performance of a leuprolide metered-dose inhaler (MDI) suspension formulation. Taste-masking excipients (aspartame and menthol) were added to a leuprolide suspension MDI formulation. The leuprolide MDI formulation with the taste-masking excipients was characterized in terms of milling time, particle size distribution, dose delivery and uniformity, and drug absorption in dogs. The data were compared with a formula that did not contain taste-masking excipients. It was found that the longer milling time for the leuprolide suspension with the taste-masking excipients was required to obtain a similar particle size distribution compared with the formula without taste-masking excipients using a fluid energy mill. Although measurable differences in mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) were not observed between the two formulations, the percent of particles < or = 5 microns and the actuator retention for the formula with the taste-masking excipients were significantly different from the formula without taste-masking excipients using the Marple-Miller cascade impactor. Taste-masking excipients did not show a significant effect on valve delivery and through-can dose uniformity. However, the mean ex-actuator dose was 150.4 mg for the formula with the taste-masking excipients and 162.2 mg for the reference formula, respectively, indicating a significant difference. In tracheostomized dogs, both formulations showed comparable pharmacokinetic parameters including Cmax, Tmax, AUC0-12 and bioavailability (F%), indicating that the taste-masking excipients do not have an effect on lung absorption of leuprolide acetate. Therefore, inclusion of taste-masking excipients in the leuprolide MDI suspension formulation showed a significant impact on drug micronization, exactuator dose, and particle deposition pattern. Mechanistically, the unfavorable performance of leuprolide MDI in the presence of taste-masking excipients could be due to modification of the properties of the suspension itself and alteration of propellant evaporation following actuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号