首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At present, the neuropathological mechanisms and the plastic changes of brain cognitive function in patents with front lobe tumor remain unclear, most studies just focused on global measures of brain functional connectivity without considering the time correlation in the different regions of the brain. This study aims to investigate brain cognitive alterations and functional plasticity in patients with front lobe tumor at resting-state by conducting functional connectivity density(FCD) mapping and granger causality analysis(GCA). Firstly, FCD mapping was used to extract abnormal functional connectivity(FC) of patients with frontal lobe tumor, and analyzed altered brain FC in both short-and long-range FCD. Then, the voxel-wise GCA method was used to analyze the causal relationship between altered FC regions and other regions in order to detect the time correlation between regions of interest(ROI) and reveal the direction of information flow between brain ROIs. It was found that patients had increased short-range FCD in motor and space attention function areas, had increased short-and long-range FCDs both in Temporal and Insula, and the causal coefficients were changed obviously in Temporal and Frontal. The results show that there is a functional plasticity in space attention function areas. Temporal and Insula are affected by tumor in frontal lobe, and functional reorganization appears inside Temporal.  相似文献   

2.
Prader–Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous functional neuroimaging studies used visual stimuli to examine abnormal activities in the eating‐related neural circuitry of patients with PWS. It was found that patients with PWS exhibited both excessive hunger and hyperphagia consistently, even in situations without any food stimulation. In the present study, we employed resting‐state functional MRI techniques to investigate abnormal brain networks related to eating disorders in children with PWS. First, we applied amplitude of low‐frequency fluctuation analysis to define the regions of interest that showed significant alterations in resting‐state brain activity levels in patients compared with their sibling control group. We then applied a functional connectivity (FC) analysis to these regions of interest in order to characterize interactions among the brain regions. Our results demonstrated that patients with PWS showed decreased FC strength in the medial prefrontal cortex (MPFC)/inferior parietal lobe (IPL), MPFC/precuneus, IPL/precuneus and IPL/hippocampus in the default mode network; decreased FC strength in the pre‐/postcentral gyri and dorsolateral prefrontal cortex (DLPFC)/orbitofrontal cortex (OFC) in the motor sensory network and prefrontal cortex network, respectively; and increased FC strength in the anterior cingulate cortex/insula, ventrolateral prefrontal cortex (VLPFC)/OFC and DLPFC/VLPFC in the core network and prefrontal cortex network, respectively. These findings indicate that there are FC alterations among the brain regions implicated in eating as well as rewarding, even during the resting state, which may provide further evidence supporting the use of PWS as a model to study obesity and to provide information on potential neural targets for the medical treatment of overeating. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Migraine is a primary headache disorder characterized by recurrent attacks of throbbing pain associated with neurological, gastrointestinal and autonomic symptoms. Previous studies have detected structural deficits and functional impairments in migraine patients. However, researchers have failed to investigate the functional connectivity alterations of regions with structural deficits during the resting state. Twenty‐one migraine patients without aura and 21 age‐ and gender‐matched healthy controls participated in our study. Voxel‐based morphometric (VBM) analysis and functional connectivity were employed to investigate the abnormal structural and resting‐state properties, respectively, in migraine patients without aura. Relative to healthy comparison subjects, migraine patients showed significantly decreased gray matter volume in five brain regions: the left medial prefrontal cortex (MPFC), dorsal anterior cingulate cortex (dACC), right occipital lobe, cerebellum and brainstem. The gray matter volume of the dACC was correlated with the duration of disease in migraine patients, and thus we chose this region as the seeding area for resting‐state analysis. We found that migraine patients showed increased functional connectivity between several regions and the left dACC, i.e. the bilateral middle temporal lobe, orbitofrontal cortex (OFC) and left dorsolateral prefrontal cortex (DLPFC). Furthermore, the functional connectivity between the dACC and two regions (i.e. DLPFC and OFC) was correlated with the duration of disease in migraine patients. We suggest that frequent nociceptive input has modified the structural and functional patterns of the frontal cortex, and these changes may explain the functional impairments in migraine patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Depression is proved to be associated with the dysfunction of prefrontal-limbic neural circuit, especially during emotion processing procedure. Related explorations have been undertaken from the aspects of abnormal activation and functional connectivity. However, the mechanism of the dysfunction of coordinated interactions remains unknown and is still a matter of debate. The present study gave direct evidence of this issue from the aspect of effective connectivity via dynamic causal modeling (DCM). 20 major depressive disorder (MDD) patients and 20 healthy controls were recruited to attend facial emotional stimulus during MEG recording. Bayesian model selection (BMS) was applied to choose the best model. Results under the optimal model showed that top-down endogenous effective connectivity from the dorsolateral prefrontal cortex (DLPFC) to the amygdala was greatly impaired in patients relative to health controls; while bottom-up endogenous effective connectivity from the amygdala to the anterior cingulate cortex (ACC) as well as modulatory effective connectivity from ACC to DLPFC was significantly increased. We inferred the incapable DLPFC failed to exert influence on amygdala, and finally lead to enhanced amygdala-ACC and ACC–DLPFC bottom-up effects. Such impaired prefrontal–amygdala connectivity was supposed to be responsible for the dysfunction in MDD when dealing with emotional stimuli.  相似文献   

5.
Zhou Y  Liang M  Jiang T  Tian L  Liu Y  Liu Z  Liu H  Kuang F 《Neuroscience letters》2007,417(3):297-302
The known regional abnormality of the dorsolateral prefrontal cortex (DLPFC) and its role in various neural circuits in schizophrenia has given prominence to its importance in studies on the dysconnection associated with schizophrenia. Abnormal functional connectivities of the DLPFC have been found during various goal-directed tasks; however, the occurrence of the abnormality during rest in patients with schizophrenia has rarely been reported. In the present study, we selected bilateral Brodmann's area 46 as region of interest and analyzed the differences in the DLPFC functional connectivity pattern between 17 patients with first-episode schizophrenia (FES) and 17 matched controls using resting-state fMRI. We found that the bilateral DLPFC showed reduced functional connectivities to the parietal lobe, posterior cingulate cortex, thalamus and striatum in FES patients. We also found enhanced functional connectivity between the left DLPFC and the left mid-posterior temporal lobe and the paralimbic regions in FES patients. Our results suggest that functional dysconnectivity associated with the DLPFC exists in schizophrenia during rest. This may be partially related to disturbance in the intrinsic brain activity.  相似文献   

6.
Anodal transcranial direct current stimulation (tDCS) of the prefrontal cortex has been repeatedly shown to improve working memory (WM). Since patients with attention deficit hyperactivity disorder (ADHD) are characterized by both underactivation of the prefrontal cortex and deficits in WM, the modulation of prefrontal activity with tDCS in ADHD patients may increase their WM performance as well as improve the activation and connectivity of the WM network. In the present study, this hypothesis was tested using a double-blind sham-controlled experimental design. After randomization, sixteen adolescents with ADHD underwent either anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC, 1 mA, 20 min) or sham stimulation with simultaneous fMRI during n-back WM task. Both in one-back and two-back conditions, tDCS led to a greater activation (compared with sham stimulation) of the left DLPFC (under the electrode), left premotor cortex, left supplementary motor cortex, and precuneus. The effects of tDCS were long-lasting and influenced resting state functional connectivity even 20 min after the stimulation, with patterns of strengthened DLPFC connectivity after tDCS outlining the WM network. In summary, anodal tDCS caused increased neuronal activation and connectivity, not only in the brain area under the stimulating electrode (i.e. left DLPFC) but also in other, more remote brain regions. Because of moderate behavioral effects of tDCS, the significance of this technique for ADHD treatment has to be investigated in further studies.  相似文献   

7.
Previous neuroimaging studies have demonstrated both structural and functional damages in heroin-dependent individuals. However, few studies investigated gray matter deficits and abnormal resting-state networks together in heroin-dependent individuals. In the present study, voxel-based morphometry (VBM) was used to identify brain regions with gray matter density reduction. Resting-state fMRI connectivity analysis was employed to assess potential functional abnormalities during resting-state. All clinical significances were investigated by examining their association with duration of heroin use. Compared with healthy subjects, heroin-dependent individuals showed significant reduction in gray matter density in the right dorsolateral prefrontal cortex (DLPFC) and a decrease in resting-state functional connectivity between the right DLPFC and left inferior parietal lobe (IPL). The gray matter density of the right DLPFC and its resting-state functional connectivity with the left IPL both showed significantly negative correlation with duration of heroin use, which were likely to be related to the functional impairments in decision-making and cognitive control exhibited by heroin-dependent individuals. Our findings demonstrated that long heroin dependence impairs the right DLPFC in heroin-dependent individuals, including structural deficits and resting-state functional impairments.  相似文献   

8.
Although previous resting‐state studies have reported abnormal functional cerebral changes in patients with migraine without aura (MwoA), few have focused on alterations in both regional spontaneous neuronal activity and corresponding brain circuits in MwoA patients during rest. Eighteen MwoA patients and 18 age‐ and gender‐matched healthy controls (HC) were recruited in the current study. Baseline cerebral alterations were investigated using amplitude of low‐frequency fluctuation (ALFF) and region of interest (ROI)‐based functional connectivity (FC) analyses. Compared with HC, MwoA patients showed decreased ALFF values in the left rostral anterior cingulate cortex (rACC) and bilateral prefrontal cortex (PFC) as well as increased ALFF values in the right thalamus. FC analysis also revealed abnormal FCs associated with these ROIs. In addition, ALFF values of the left rACC correlated with duration of disease in MwoA. Our findings could lead to a better understanding of intrinsic functional architecture of baseline brain activity in MwoA, providing both regional and brain circuit spontaneous neuronal activity properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Previous studies have shown that affective symptoms are part of the clinical picture in amyotrophic lateral sclerosis (ALS), the most common motor neuron disorder in elderly people. Diffuse neurodegeneration of limbic regions (e.g., prefrontal cortex [PFC], amygdala) was demonstrated in ALS post-mortem, although the mechanisms of emotional dysregulation in ALS in vivo remain unclear. Using functional imaging, we assessed the brain responses to emotional faces in 11 cognitively unimpaired ALS patients and 12 healthy controls (HCs). We tested whether regional activities and connectivity patterns in the limbic system differed between ALS patients and HCs and whether the variability in clinical measures modulated the neuroimaging data. Relative to HCs, ALS patients displayed greater activation in a series of PFC areas and altered left amygdala–PFC connectivity. Anxiety modulated the right amygdala–PFC connectivity in HCs but not in ALS patients. Reduced right premotor cortex activity and altered left amygdala–supplementary motor area connectivity were associated with longer disease duration and greater disease severity, respectively. Our findings demonstrate dysfunctions of the limbic system in ALS patients at early stages of the disease, and extend our knowledge about the interplay between emotional brain areas and the regions traditionally implicated in motor control.  相似文献   

10.
Previous studies have demonstrated that alterations of gray matter exist in post-stroke aphasia (PSA) patients. However, so far, few studies combined structural alterations of gray matter volume (GMV) and intrinsic functional connectivity (iFC) imbalances of resting-state functional MRI to investigate the mechanism underlying PSA. The present study investigated specific regions with GMV abnormality in patients with PSA (n?=?17) and age- and sex- matched healthy controls (HCs, n?=?20) using voxel-based morphometry. In addition, we examined whether there is a link between abnormal gray matter and altered iFC. Furthermore, we explored the correlations between abnormal iFC and clinical scores in aphasic patients. We found significantly increased GMV in the right superior temporal gyrus, right inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and left middle occipital gyrus. Decreased GMV was found in the right caudate gyrus, bilateral thalami in PSA patients. Patients showed increased remote interregional FC between the right IPL/SMG and right precuneus, right angular gyrus, right superior occipital gyrus; while reduced FC in the right caudate gyrus and supplementary motor area, dorsolateral superior frontal gyrus. Moreover, iFC strength between the left middle occipital gyrus and the left orbital middle frontal gyrus was positively correlated with the performance quotient. We suggest that GMV abnormality contributes to interregional FC in PSA. These results may provide useful information to understand the pathogenesis of post-stroke aphasia.  相似文献   

11.
Cortico-striatal-thalamic network functional connectivity (FC) and its relationship with levodopa (L-dopa) were investigated in 69 patients with hemiparkinsonism (25 drug-naïve [n-PD] and 44 under stable/optimized dopaminergic treatment [t-PD]) and 27 controls. Relative to controls, n-PD patients showed an increased FC between the left and the right basal ganglia, and a decreased connectivity of the affected caudate nucleus and thalamus with the ipsilateral frontal and insular cortices. Compared with both controls and n-PD patients, t-PD patients showed a decreased FC among the striatal and thalamic regions, and an increased FC between the striatum and temporal cortex, and between the thalamus and several sensorimotor, parietal, temporal, and occipital regions. In both n-PD and t-PD, patients with more severe motor disability had an increased striatal and/or thalamic FC with temporal, parietal, occipital, and cerebellar regions. Cortico-striatal-thalamic functional abnormalities occur in patients with hemiparkinsonism, antecede the onset of the motor symptoms on the opposite body side and are modulated by L-dopa. In patients with hemiparkinsonism, L-dopa is likely to facilitate a compensation of functional abnormalities possibly through an increased thalamic FC.  相似文献   

12.
Due to different foci and single sample across studies, abnormal functional connectivity (FC) has been implicated in the pathophysiology of major depressive disorder (MDD) with inconsistent results. The inconsistency may reflect a combination of clinical and methodological variability, which leads to limited reproducibility of these findings. The samples included 59 patients with MDD and 31 controls from Sample 1, 29 patients with MDD and 24 controls from Sample 2, and 31 patients with schizophrenia and 37 controls from Sample 3. Global‐brain FC (GFC) and an overlapping technique were applied to analyze the imaging data. Compared with healthy controls, patients with MDD in Samples 1 and 2 showed increased GFC in the overlapped brain areas, including the bilateral insula, right inferior parietal lobule (IPL), and right supramarginal gyrus/IPL. By contrast, decreased GFC in the overlapped brain areas, including the bilateral posterior cingulate cortex/presuneus and left calcarine cortex, was found in patients with MDD. In addition, patients with schizophrenia in Sample 3 did not show any GFC abnormalities in the overlapped areas from the results of Samples 1 and 2. The present study is the first to examine voxel‐wise brain‐wide FC in MDD with two independent samples by using an overlapping technique. The results indicate that aberrant FC patterns of insula‐centered sensorimotor circuit may account for the pathophysiology of MDD.  相似文献   

13.
Exposure to traumatic events is not unique to post-traumatic stress disorder (PTSD) and is a significant factor in the development of physical and mental disease across the diagnostic spectrum. Using fMRI, this study assesses functional activation in the amygdala and visual cortex during emotional scene processing in a sample of anxiety and mood disorder patients (N = 162). Replicating previous studies with healthy young participants, a strong covariation was found between functional activity in the amygdala and ventral visual cortex, with blood-oxygen-level dependent (BOLD) activity overall significantly enhanced in both regions when viewing emotionally arousing, compared to neutral, scenes. BOLD changes during emotional processing predicted questionnaire reports of experienced trauma and PTSD-like symptoms (e.g., intrusive thoughts, bad dreams, re-experiencing) and associated functional impairment. Patients showing the smallest BOLD changes when viewing emotional (compared to neutral) scenes in the amygdala and ventral visual cortex reported the highest trauma scores, whereas those patients with the largest amygdala emotional reactivity differences reported the lowest trauma scores. Experiencing a life-threatening event (to self or other) that prompts high fear, distress, and functional impairment was associated with reduced functional limbic-visual activity, independent of a PTSD diagnosis. The findings suggest that experienced trauma may be a transdiagnostic vulnerability factor contributing significantly to psychopathology in many patients with anxiety and mood disorders.  相似文献   

14.
目的:应用功能磁共振成像技术研究2 型糖尿病(T2D)患者静息状态下海马功能连接的变化。方法:采集27 例 T2D患者和32例正常人的脑功能磁共振成像信号,选择海马的4个分区作为种子点计算功能连接,对海马与其他脑区的 功能连接强度与临床指标进行相关性分析。结果:与正常人相比,T2D患者的右前海马与梭状回、枕中回之间的功能连接 减弱;左前海马与梭状回功能连接增强;右后海马与距状回功能连接减弱;左后海马与舌回功能连接增强。结论:T2D患 者相关脑区功能连接的改变可能与视觉相关认知功能的损伤有关,这为理解T2D患者海马体的功能提供线索。  相似文献   

15.
目的:利用功能连接方法观察原发性失眠患者静息态下的背外侧前额叶的异常功能连接。方法:采集33 例原 发性失眠患者以及33 例年龄、性别和受教育程度相匹配的健康对照的功能磁共振图像,以背外侧前额叶为感兴趣区 域,与全脑其他体素进行功能连接分析,得到两组之间功能连接的差异脑区,再对异常功能连接脑区与临床的量表分 数做相关分析。结果:与对照组相比,发现失眠患者左侧背外侧前额叶与左侧枕下回、右侧枕下回、右侧枕中回、右侧 颞叶、左侧额中回,左侧额下回以及右侧梭状回之间的功能连接增强(P<0.05,体素簇个数≥100,FDR校正),与左侧前 扣带皮层、右侧海马旁回、右侧脑岛、右侧背外侧额上回、右侧顶上回、右侧中央后回以及右侧中央前回之间的功能连 接减弱(P<0.05,体素簇个数≥100,FDR校正)。并且左侧背外侧前额叶与左侧枕叶下回的功能连接值与睡眠状况自评 量表分数成正相关(P=0.035)。结论:原发性失眠患者背外侧前额叶与大脑多个脑区出现异常的功能连接,可能为理 解原发性失眠患者的神经机制提供一些新的影像学依据。  相似文献   

16.
Using resting state (RS) functional magnetic resonance imaging and independent component analysis, the integrity of brain networks related to cognition and behavior was investigated in 20 nondemented patients with amyotrophic lateral sclerosis (ALS). The association between RS functional connectivity and executive functions was assessed in 16 patients with neuropsychological assessment. ALS patients compared with control subjects showed a decreased connectivity of the right orbitofrontal cortex, and an enhanced connectivity of the left precuneus in the default mode network; a decreased connectivity of the left inferior frontal cortex, and an increased connectivity of the right angular gyrus in the right frontoparietal network; and an increased connectivity of the parietal cortex in the left frontoparietal network. The enhanced parietal connectivity was associated with the clinical and cognitive deficits of the patients. In ALS, an alteration of large-scale functional brain networks associated with cognition does occur, even in the absence of overt dementia. The increased parietal connectivity may have a role in an attempt to maintain cognitive efficiency in the presence of structural frontotemporal injury.  相似文献   

17.
Individuals with post-traumatic stress disorder (PTSD) typically experience states of reliving and hypervigilance; however, the dissociative subtype of PTSD (PTSD+DS) presents with additional symptoms of depersonalization and derealization. Although the insula is critical to emotion processing, its association with these contrasting symptom profiles is yet to be fully delineated. Accordingly, we investigated insula subregion resting-state functional connectivity patterns among individuals with PTSD, PTSD+DS, and healthy controls. Using SPM12 and PRONTO software, we implemented a seed-based resting-state functional connectivity approach, along with multiclass Gaussian process classification machine learning, respectively, in order to evaluate unique patterns and the predictive validity of insula subregion connectivity among individuals with PTSD (n = 84), PTSD+DS (n = 49), and age-matched healthy controls (n = 51). As compared to PTSD and PTSD+DS, healthy controls showed increased right anterior and posterior insula connectivity with frontal lobe structures. By contrast, PTSD showed increased bilateral posterior insula connectivity with subcortical structures, including the periaqueductal gray. Strikingly, as compared to PTSD and controls, PTSD+DS showed increased bilateral anterior and posterior insula connectivity with posterior cortices, including the left lingual gyrus and the left precuneus. Moreover, machine learning analyses were able to classify PTSD, PTSD+DS, and controls using insula subregion connectivity patterns with 80.4% balanced accuracy (p < .01). These findings suggest a neurobiological distinction between PTSD and its dissociative subtype with regard to insula subregion functional connectivity patterns. Furthermore, machine learning algorithms were able to utilize insula resting-state connectivity patterns to discriminate between participant groups with high predictive accuracy.  相似文献   

18.
We used functional MRI (fMRI) and a network model based on graph theory to measure functional connectivity of brain motor network in the resting state in patients with Parkinson's disease (PD). FMRIs were acquired in 22 PD patients before and after levodopa administration, and in age- and sex-matched normal controls. The total connectivity degree of each region within the motor network was calculated and compared between patients and controls. We found that PD patients at off state had significantly decreased functional connectivity in the supplementary motor area, left dorsal lateral prefrontal cortex and left putamen, and had increased functional connectivity in the left cerebellum, left primary motor cortex, and left parietal cortex compared to normal subjects. Administration of levodopa relatively normalized the pattern of functional connectivity in PD patients. The functional connectivity in most of regions in the motor network correlated with the Unified Parkinson's Disease Rating Scale motor score in the patients. Our findings demonstrate that the pattern of functional connectivity of the motor network in the resting state is disrupted in PD. This change is secondary to dopamine deficiency, and related to the severity of the disease. We postulate that this abnormal functional connectivity of motor network in the baseline state is possibly an important factor contributing to some motor deficits in PD, e.g. akinesia.  相似文献   

19.
Although different lesion and neuroimaging studies had highlighted the importance of the dorsolateral prefrontal cortex (DLPFC) in language switching, the nature of this higher cortical disorder of communication and its neural correlates have not been clearly established. To further investigate the functional involvement of the DLPFC, we used transcranial magnetic stimulation (TMS) given as theta burst stimulation (TBS) in a bilingual patient showing pathologic language switching after an ischemic stroke involving the left frontal lobe. Inhibitory and excitatory TBS were applied to the left DLPFC, to the right DLPFC, or to an occipital cortical control site. A short-lasting interruption of the pathological language switching occurred after excitatory left DLPFC stimulation, while inhibitory left DLPFC TBS transiently increased the number of utterances produced in the unwanted second language. Effects were non-significant after right DLPFC and occipital TBS. Our findings suggest that left DLPFC is actively involved in language switching. TMS techniques may help in understanding the neural bases of bilingualism.  相似文献   

20.
Aberrant subcortical-prefrontal connectivity may contribute to insula hyper-reactivity to threat in generalized social anxiety disorder (gSAD). A novel PsychoPhysiological Interaction (PPI) analysis was used to examine functional ‘coupling’ between the insula and prefrontal cortex in gSAD patients and healthy controls (HCs). During fMRI, 29 gSAD and 26 HC volunteers performed an Emotional Face Matching Task, involving the processing of fear, angry, and happy expressions. As expected, compared with HCs, gSAD patients exhibited greater bilateral anterior insula (aINS) reactivity for fear vs. happy faces; this group difference was less robust for angry vs. happy faces. PPI of insula connectivity when processing fearful faces revealed the gSAD group had less right aINS-dorsal anterior cingulate coupling compared to HCs. Findings indicate that aINS hyper-reactivity for fear faces in gSAD, compared to controls, involves reduced connectivity with a prefrontal region implicated in cognitive control and emotion regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号