首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The aim of this study was to assess the effect of strenuous endurance training on day-to-day changes in oxygen uptake (VO2) on-kinetics (time constant) at the onset.of exercise. Four healthy men participated in strenuous training, for 30 min·day–1, 6 days·week–1 for 3 weeks. The VO2 was measured breath-by-breath every day except Sunday at exercise intensities corresponding to the lactate threshold (LT) and the onset of blood lactate accumulation (OBLA) which were obtained before training. Furthermore, an incremental exercise test was performed to determine LT, OBLA and maximal oxygen uptake (VO2max) before and after the training period and every weekend. The 30-min heavy endurance training was performed on a cycle ergometer 5 days·week–1 for 3 weeks. Another six men served as the control group. After training, significant reductions of the VO2 time constant for exercise at the pretraining LT exercise intensity (P<0.05) and at OBLA exercise intensity (P<0.01) were observed, whereas the VO2 time constants in the control group did not change significantly. A high correlation between the decrease in the VO2 time constant and training day was observed in exercise at the pretraining LT exercise intensity (r=–0.76; P<0.001) as well as in the OBLA exercise intensity (r= –0.91; P<0.001). A significant reduction in the blood lactate concentration during submaximal exercise and in the heart rate on-kinetics was observed in the training group. Furthermore, VO2 at LT, VO2 at OBLA and VO2max increased significantly after training (P<0.05) but such was not the case in the control group. These findings indicated that within a few weeks of training a rapidly improved VO2 on-kinetics may be observed. This may be explained. by some effect of blood lactate during exercise on VO2 on-kinetics, together with significantly improved cardiovascular kinetics at the onset of exercise.  相似文献   

2.
Summary The purpose of this study was to examine the effect of one- and two-leg training on arm and two-leg maximum aerobic power. Seven subjects cycle-trained both legs simultaneously for 30 min·day–1, 4 days·week–1 for 4 weeks. Nine subjects cycle-trained each leg 15 min·day–1, 4 days· week–1 for 4 weeks. Both groups trained at a heart rate equal to that measured at 75% of their two-leg maximum aerobic power. Thus, during each training session the groups performed 30 min of work at the same heart rate intensity. Five subjects served as a non-training control group. Arm and leg maximum oxygen uptake tests were conducted before and after training. Only two-leg training induced significant gains in arm aerobic power (P<0.0003), whereas both modes of training resulted in signifcant increases in two-leg aerobic power (P<0.0008). The data demonstrate that improvements in arm aerobic power were dependent on the quantity of leg muscle mass involved in the training, whereas gains in two-leg aerobic power occurred regardless of whether the legs were trained separately or simultaneously.  相似文献   

3.
Summary This study compared the effects of 9 weeks of run (RT) versus cycle (CT) training on ventilatory threshold (Thv) determined during treadmill (TM) and cycle ergometer (CE) graded exercise testing. Sixteen college age men were assigned to a RT or CT group and performed a TM and a CE test before and after training. Both training groups performed similar training protocols which initially consisted of continuous exercise 4 days·week–1 at 75–80% maximum heart rate (fc,max) for 45 min. Training intensity was later increased to 80–85% fc max and interval training (90–95% fc,max) was incorporated 2 days·week–1 into the continuous training. Both groups showed significantly improved maximal oxygen consumption ( O2max) on both TM and CE tests (P<0.01) with no significant differences between the groups. Significant Thv increases (P<0.05) were found on TM tests for RT (n=8) and CT (n=8) groups [mean (SD); 443 (438) and 373 (568) ml O2·min–1, respectively] with no difference between the groups. Results from the CE tests revealed a significant Thv increase (P<0.01) for the CT group [566 (663) ml O2·min–1] with no change for the RT group. The Thv improvement noted for the RT group was significantly different (P< 0.05) comparing CE with TM tests but not for the CT group. The results indicate that CT and RT improvement in Thv for runners is dependent upon mode of training and testing, and there is an apparent dissociation of O2maxand Thv specific to training.  相似文献   

4.
The effects of altered exercise distribution on lymphocyte subpopulations   总被引:1,自引:0,他引:1  
The effects of exercise distribution on lymphocyte count, lymphocyte subpopulations and plasma cortisol concentration in peripheral blood were assessed in 19 healthy subjects. The subjects were randomly divided into group A (n = 10) or group B (n = 9) according to exercise distribution. Both groups underwent a 10-week programme involving 5 × 2-week blocks: baseline (B), training period 1 (TP1), stabilisation 1 (S1), training period 2 (TP2), and stabilisation 2 (S2). During B, S1 and S2 normal training was undertaken. During TP1 and TP2 the subjects increased the amount of training by 50% in week 1 and by 100% in week 2. During TP1 subjects in group A exercised 6 days·week–1, while during TP2 these subjects exercised on 3 alternate days·week–1, but doubled the duration of each training session. The subjects in group B reversed this training order. Blood was collected 36–42 h following exercise period B, and at the end of periods TP1, S1, TP2 and S2, and also 12–18 h following completion of exercise at the end of TP1 and TP2. There were no significant differences (P > 0.05) between the 6 day·week–1 programme and the 3 alternate day·week–1 programme in total lymphocyte count, CD3+, CD4+, CD8+, CD16+, or CD19+ cells, the CD4:CD8 ratio, HLA-DR+ (activated) T cells or plasma cortisol concentrations. Following both TP1 and TP2 there was a nonsignificant decrease in lymphocyte subpopulations. However following both S1 and S2 (baseline training) there was a significant increase in total lymphocyte count, CD3+, CD4+ and CD8+ lymphocytes. The S2 variables statistically significant from B were: total lymphocyte count (P < 0.01), CD3+ T-cells and percentage of circulating lymphocytes (P < 0.01), CD4+ cells (P < 0.0001), CD8+ cells (P < 0.05), and HLA-DR+ (activated) T-cells (P < 0.05). The results indicated that provided the amount of exercise is constant for a given period, then exercise distribution is not a critical variable in the alteration of lymphocyte subpopulations that may occur in response to overload training. However 2 weeks of overload training followed by 2 weeks of active recovery (baseline) training may induce an increase in the lymphocyte count.  相似文献   

5.
Summary Our purpose was to test the significance of exhaustive training in aerobic or endurance capacity. The extent of adaptations to endurance training was evaluated by assessing the increase in physical performance capability and oxidative markers in the organs of rats trained by various exercise programs. Rats were trained by treadmill running 5 days · week–1 at 30 m · min–1 for 8 weeks by one of three protocols:T 1 — 60 min · day–1;T 2 — 120 min · day–1; andT 3 — 120 min · day–1 (3 days · week–1) and to exhaustion (2 days · week–1). GroupsT 2 andT 3 ran for longer thanT 1 in an endurance exercise test (P<0.05), in which the animals ran at 30 m · min–1 to exhaustion; no difference was observed between groupsT 2 andT 3. All 3 trained groups showed a similar increase (20–27%) in the fast-twitch oxidative-glycolytic (FOG) fibers with a concomitant decrease in the fast-twitch glycolytic (FG) fiber population in gastrocnemius (p<0.05). The capillary supply in gastrocnemius increased with the duration of exercise (p<0.05): no difference was found between groupsT 2 andT 3. Likewise, no distinction was seen between groupsT 2 andT 3 in the increase in succinate dehydrogenase activity in gastrocnemius and the heart. These results suggest that the maximal adaptive response to endurance training does not require daily exhaustive exercise.  相似文献   

6.
Summary The aim of this study was a detailed examination of the effects of moderate exercise on T-cells in adult male Wistar rats. The T-cell populations were compared in sedentary rats (C, n = 5) and in rats trained for 4 weeks on a treadmill (30–60 min·day–1, 6 days·week–1, 20–30 m·min–1) and sacrificed at rest (Trest, n=5). In the T-rest rats, there were higher percentages of CD4+CD8–, CD4– CD8 + and CD4 – CD8 –thymocytes (P<0.05, P<0.05 and P<0.01 respectively) and of CD4–CD8 + splenocytes (P< 0.01), and a lower percentage of CD4–CD8+ cells in the lymph nodes (P<0.01). Compared with T-rest or C rats, trained rats (n = 5) or untrained rats (n = 5) sacrificed immediately after a running session (60 min, 30 m·min–1) had a higher percentage of mononucleated cells CD4 + CD8 -in the blood (P<0.05 and P<0.01). Lastly, compared with C rats, rats (n=5) sacrificed immediately after their 5th day of training (30–60 min·day–1) presented a higher total splenocyte population (P<0.05) and greater in vitro production of T-cell growth factor (interleukin 2 + interleucin 4) by splenocytes in response to a mitogen (P<0.01). These results would indicate that moderate endurance training modifies the cellular composition of lymphoid organs, without impairing the in vitro functions of T-cells.  相似文献   

7.
Summary The purpose of the present study was to evaluate the relationship between several physical fitness parameters and eyesight divided into 3 grades in visually handicapped boys and young male adults, and to investigate the effect of mild exercise training on physical and psychic symptoms as well as cardiorespiratory fitness. Four subjects were totally blind (TB), 6 were semi-blind (SB) and 27 had amblyopia (AM). Physical fitness tests consisted of maximal oxygen uptake (V O 2max), maximal pedalling speed and power, maximal stepping rate, and isometric knee extention strength. Compared with AM and SB groups, the TB group was inferior in all physical fitness parameters. Especially,V O 2max in TB (26 ml · kg–1 · min–1) was about 56% of that in agematched Japanese sighted subjects and was significantly low compared with the AM and SB groups. Both muscle strength and maximal pedalling power corresponded to about 50% that of the age-matched sighted group. Six SB and 4 TB students (¯x=17.7 years) were trained for 6 weeks on a bicycle ergometer at an intensity of 50%V O 2max. Training was undertaken for 3 days per week and maintained for 60 min per session. After training, physical and psychic symptoms determined by the Cornell Medical Index improved significantly. These results indicate that low physical work capacity in visually handicapped boys and young male adults is due to the lack of physical activity, and that mild endurance training is effective in improving physical and psychic symptoms as well as cardiorespiratory fitness.  相似文献   

8.
Summary The influence of tapering on the metabolic and performance parameters in endurance cyclists was investigated. Cyclists (n = 25) trained 5 days · week–1, 60 min·day–1, at 75–85% maximal oxygen consumption (VO2max) for 8 weeks and were then randomly assigned to a taper group: 4D (4 days;n = 7), 8D (8 days;n = 6), CON (control, 4 days rest;n = 6), NOTAPER (non-taper, continued training;n = 6). Muscle biopsy specimens taken before and after training and tapering were analysed for carnitine palmityltransferase (CPT), citrate synthase, ß-hydroxyacyl CoA dehydrogenase (HOAD), cytochrome oxidase (CYTOX), lactate dehydrogenase, glycogen and protein. Significant increases inVO2max (6%), a 60-min endurance cycle test (34.5%), oxidative enzymes (77–178%), glycogen (35%) and protein (34%) occurred following training. After the taper, HOAD and CPT decreased 25 % (P<0.05) and 26% respectively, in the CON. Post-taper CYTOX values were different (P<0.05) for 4D and 8D compared with CON. Muscle glycogen levels were increased (P<0.05) after tapering in the 4D, 8D and CON, but decreased in NOTAPER. Similarly, power output at ventilation threshold was significantly increased in the 4D (27.4 W) and 8D (27 W) groups, but decreased (22 W) in the NOTAPER. These findings suggest that tapering elicited a physiological adaptation by altering oxidative enzymes and muscle glycogen levels. Such an adaptation may influence endurance cycling during a laboratory performance test.  相似文献   

9.
This study investigated the effects of 12 weeks of aerobic exercise plus voluntary food restriction on the body composition, resting metabolic rate (RMR) and aerobic fitness of mildly obese middle-aged women. The subjects were randomly assigned to exercise/diet (n = 17) or control (n = 15) groups. The exercise/diet group participated in an aerobic training programme, 45–60 min · day –1 at 50%–60% of maximal oxygen uptake (VO2max), 3–4 days · week–1, and also adopted a self-regulated energy deficit relative to predicted energy requirements (–1.05 MJ · day –1 to –1.14 MJ · day –1 ). After the regimen had been followed for 12 weeks, the body mass of the subjects had decreased by an average of 4.5 kg, due mainly to fat loss, with little change of fat free mass (m ff). The absolute RMR did not change, but the experimental group showed significant increases in the RMR per unit of body mass (10%) and the RMR per unit of m ff (4%). The increase in RMR/m ff was not correlated with any increase in VO2max/m ff. The resting heat production per unit of essential body mass increased by an average of 21%, but the resting heat production rate per unit of fat tissue mass remained unchanged. We concluded that aerobic exercise enhances the effect of moderate dietary restriction by augmenting the metabolic activity of lean tissue.  相似文献   

10.
Summary The purpose of this investigation was to examine the influence of daytime exercise on heart rate during sleep. Nine, untrained male college students volunteered to participate. They cycled at 75% maximum oxygen uptake, ( O2max) 30 min·day–1 for 12 weeks. The exercise duration was increased by 5 min every 4 weeks from 30 to 40 min per session. Post-training O2max[mean (SE): 48.9 (1.7) ml · kg–1 · min–1] values were significantly (P<0.01) higher than pre-training [45.5 (1.8) ml-kg–1·min–1] values. Before and after training, sleeping heart rate was assessed on two separate nights. Data were obtained during a night following 30 min of daytime cycling at 75 (6) % O2maxand on a night in which no daytime exercise was performed. A three-way repeated measures ANOVA [training status (pre-/post-training) × activity (exercise day/nonexercise day) × sleep time (18 epochs of 20 min each)] revealed a significant main effect for sleep time (P < 0.001) as well as a sleep time × training status interaction (P<0.02). No significant difference in sleeping heart rate was noted when exercise and non-exercise days were compared both before and after training. It is concluded that endurance training in these young adult men: (1) hastens the achievement of baseline heart rate during sleep, and (2) does not moderate the relationship between an acute bout of daytime exercise and sleeping heart rate.  相似文献   

11.
To establish whether or not hypoxia influences the training-induced adaptation of hormonal responses to exercise, 21 healthy, untrained subjects [26 (2) years, mean (SE)] were studied in three groups before and after 5 weeks' training (cycle ergometer, 45 min· day–1, 5 days· week–1). Group 1 trained at sea level at 70% maximal oxygen uptake ( O2max), group 2 in a hypobaric chamber at a simulated altitude of 2500 m at 70% of altitude O2max, and group 3 at a simulated altitude of 2500 m at the same absolute work rate as group 1. Arterial blood was sampled before, during and at the end of exhaustive cycling at sea level (85% of pretraining of O2max). O2 increased by 12 (2)% with no significant difference between groups, whereas endurance improved most in group 1 (P < 0.05). Training-induced changes in response to exercise of noradrenaline, adrenaline, growth hormone, -endorphin, glucagon, and insulin were similar in the three groups. Concentrations of erythropoietin and 2,3-diphosphoglycerate at rest did not change over the training period. In conclusion, within 5 weeks of training, no further adaptation of hormonal exercise responses takes place if intensity is increased above 70% O2max. Furthermore, hypoxia per se does not add to the training-induced hormonal responses to exercise.  相似文献   

12.
Summary We attempted to determine the change in total excess volume of CO2 Output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19–22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for C02 excess per unit of body mass per unit of blood lactate accumulation (Ala) in exercise (CO2 excess·mass–1·la), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml·kg–1·l–1·mmol–1, 97.8m, 4.4 ml·kg–1· min–1 and 7.3 ml·kg–1·min–1, respectively. The percentage change in CO2 excess·mass–1·la (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess·mass–1·la and the absolute amount of change in AT-VO2 (r=0.94, P<0.01). Furthermore, the absolute amount of change in C02 excess·mass–1·la, as well as that in AT-VO2 (r=0.92, P<0.01), was significantly related to the absolute amount of change in 12-min ERP (r=0.81, P<0.05). It was concluded that a large CO2 excess·mass–1·la–1 of endurance runners could be an important factor for success in performance related to comparatively intense endurance exercise such as 3000–4000 m races.  相似文献   

13.
Summary Two experiments were carried out to compare the cardiorespiratory and metabolic effects of cross-country skiing and running training during two successive winters. Forty-year-old men were randomly assigned into skiing (n = 15 in study 1,n = 16 in study 2), running (n = 16 in study 1 andn = 16 in study 2) and control (n = 17 in study 1 andn = 16 in study 2) groups. Three subjects dropped out of the programme. The training lasted 9–10 weeks with 40-min exercise sessions three times each week. The training intensity was controlled at 75%–85% of the maximal oxygen consumption (VO2max) using portable heart rate metres and the mean heart rate was 156–157 beats·min–1 in the training groups. In the pooled data of the two studies the mean increase in theVO2max (in ml·min–1·kg–1) on a cycle ergometer was 17% for the skiing group, 13% for the running group and 2% for the control group. The increase inVO2max was highly significant in the combined exercise group compared to the control group but did not differ significantly between the skiing and running groups. The fasting serum concentrations of lipoproteins and insulin did not change significantly in any of the groups. These results suggested that training by cross-country skiing and running of the same duration and intensity at each session for 9–10 weeks improved equally the cardiorespiratory fitness of untrained middle-aged men.  相似文献   

14.
The aim of this study was to evaluate whether high-intensity endurance training would alleviate exercise-induced oxidative stress. Nine untrained male subjects (aged 19–21 years) participated in a 12-week training programme, and performed an acute period of exhausting exercise on a cycle ergometer before and after training. The training programme consisted of running at 80% maximal exercise heart rate for 60 min · day−1, 5 days · week−1 for 12 weeks. Blood samples were collected at rest and immediately after exhausting exercise for measurements of indices of oxidative stress, and antioxidant enzyme activities [superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT)] in the erythrocytes. Maximal oxygen uptake (O2max) increased significantly (P < 0.001) after training, indicating an improvement in aerobic capacity. A period of exhausting exercise caused an increase (P < 0.01) in the ability to produce neutrophil superoxide anion (O2 •−) both before and after endurance training, but the magnitude of the increase was smaller after training (P < 0.05). There was a significant increase in lipid peroxidation in the erythrocyte membrane, but not in oxidative protein, after exhausting exercise, however training attenuated this effect. At rest, SOD and GPX activities were increased after training. However, there was no evidence that exhausting exercise enhanced the levels of any antioxidant enzyme activity. The CAT activity was unchanged either by training or by exhausting exercise. These results indicate that high-intensity endurance training can elevate antioxidant enzyme activities in erythrocytes, and decrease neutrophil O2 •− production in response to exhausting exercise. Furthermore, this up-regulation in antioxidant defences was accompanied by a reduction in exercise-induced lipid peroxidation in erythrocyte membrane. Accepted: 26 September 2000  相似文献   

15.
This study examined the effectiveness of endurance training and heat acclimation in reducing the physiological strain imposed by exercising in the heat while wearing protective clothing. Seven young men underwent 8 weeks of physical training [60–80% maximal aerobic power (VO2max) for 30–45 min · day–1, 3–4 days · week–1 at < 25° C] followed by 6 days of heat acclimation (45–55% VO2max for 60 min · day–1 at 40° C, 30% relative humidity). Nine other young men underwent corresponding periods of control observation and heat acclimation. Before and after each treatment, subjects completed a treadmill walk (4.8 km · h–1, 2% grade) in a climatic chamber (40° C, 30% relative humidity), wearing in turn normal combat clothing or clothing protecting against nuclear, biological, and chemical (NBC) agents. Criteria for halting this test were: (1) a rectal temperature (T re) of 39.3° C; (2) a heart rate (f c) 95% of the subject's observed maximum, maintained for 3 min; (3) unwillingness of the subject to continue; (4) the elapse of 120 min. The training regimen increased mean VO2max by 16% and mean plasma volume by 8%. When tested in normal combat clothing, the rates of increase in T re and f c were slower after training. However, when wearing NBC protective clothing, the only significant change induced by training was a higher mean skin temperature (T sk) in the early part of the test. Heat acclimation increased the mean plasma volume of untrained subjects by 8%, but their VO2max remained unchanged. When tested in normal combat clothing, acclimation decreased their mean values of T re, T sk, f c, and metabolic rate. When wearing NBC protective clothing, the only significant decrease after acclimation was in overall T re. In trained subjects, heat acclimation induced no further improvement in any physiological variable when wearing normal combat clothing, but reduced overall T re and T sk when wearing NBC protective clothing. Training- or acclimation-induced increases of sweat secretion (an average increment of 0.14–0.23 kg · h–1) were not accompanied by any statistically significant increase in sweat evaporation when wearing NBC protective clothing. Moreover, tolerance times were unchanged in either normal combat (116–120 min) or NBC protective clothing (47–52 min). We conclude that neither endurance training nor heat acclimation do much to improve exercise tolerance when wearing NBC protective clothing in hot environments, because any added sweat secretion decreases blood volume and increases discomfort without augmenting body cooling.  相似文献   

16.
Summary In order to determine the effect of shortterm training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10–12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2 max). Following the training,VO2 max (1·min–1) increased (P<0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (V E,max) and maximal heart rate (c,max) were unchanged. During submaximal exercise,VO2 was unaltered by the training whereas carbon dioxide production (V E) and respiratory exchange ratio were all reduced (P<0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. c was reduced (P<0.05). Plasma volume (PV) as measured by125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P<0.05) in haematocrit, haemoglobin concentration (g. 100 ml–1), and RBCs (106 mm–3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered. Since RCV did not change, it is suggested that the elevated PV accompanying training is instrumental in eliciting the change in cardiac function.  相似文献   

17.
Summary To document the possible influence of a single episode of maximal aerobic stress on the serum lecithin: cholesterol acyltransferase (LCAT) activity in subjects with differing histories of training, two groups of healthy male adults [controls (C),n = 18, 28.6 years, SD 5.2, 50.1 ml · kg–1 · min–1 maximal O2 uptake (VO2max), SD 5.3; endurance trained athletes (T),n = 18, 31.4 years, SD 8.8, 65.0 ml · kg–1 · min–1 VO2max, SD 2.8] were examined in a maximal aerobic stress test. In addition to the routine assessment of lipid status, LCAT activity was measured immediately before and after exercise. At rest nearly identical LCAT activity values were found in both groups: C 64.4 nmol · ml–1 · h–1, SD 16.7 vs T 65.0 nmol · ml–1 · h–1, SD 20.9. The post-exercise LCAT values induced by the maximal stress test increased significantly to (C) 95.7 nmol · ml–1 · h–1, SD 23.5, +48.6%,P<0.001; (T) 83.5 nmol · ml–1 · h–1, SD 24.3, +29.1%,P<0.01. Neither the pre nor the post-exercise individual LCAT activity values showed any significant correlation to the corresponding data on physical performance.  相似文献   

18.
Summary Three female and three male highly trained endurance runners with mean maximal oxygen uptake (VO2max) values of 60.5 and 71.5 ml·kg–1·min–1, respectively, ran to exhaustion at 75%–80% of VO2max on two occasions after an overnight fast. One experiment was performed after a normal diet and training regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P<0.05) from 581 mmol·kg–1 dry weight, SEM 50 to 722 mmol·kg–1 dry weight, SEM 34 after Carb. Running time to exhaustion, however, was not significantly different in Carb and Norm, 77 min, SEM 13 vs 70 min, SEM 8, respectively. The average glycogen concentration following exhaustive running was 553 mmol· kg–1 dry weight, SEM 70 in Carb and 434 mmol·kg–1 dry weight, SEM 57 in Norm, indicating that in both tests muscle glycogen stores were decreased by about 25%. Periodic acid-Schiff staining for semi-quantitative glycogen determination in individual fibres confirmed that none of the fibres appeared to be glycogen-empty after exhaustive running. The steady-state respiratory exchange ratio was higher in Carb than in Norm (0.92, SEM 0.01 vs 0.89, SEM 0.01; P<0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion of the gastrocnemius muscle is unlikely to be the cause of fatigue during exhaustive running at 75%–80% of VO2max in highly trained endurance runners. Furthermore, diet- and training-induced carbohydrate supercompensation does not appear to improve endurance capacity in such individuals.  相似文献   

19.
Summary To find out whether endurance training influences the kinetics of the increases in heart rate (f c) during exercise driven by the sympathetic nervous system, the changes in the rate off c adjustment to step increments in exercise intensities from 100 to 150 W were followed in seven healthy, previously sedentary men, subjected to 10-week training. The training programme consisted of 30-min cycle exercise at 50%–70% of maximal oxygen uptake ( O2max) three times a week. Every week during the first 5 weeks of training, and then after the 10th week the subjects underwent the submaximal three-stage exercise test (50, 100 and 150 W) with continuousf c recording. At the completion of the training programme, the subjects' O2max had increased significantly(39.2 ml·min–1·kg–1, SD 4.7 vs 46 ml·min–1·kg–1, SD 5.6) and the steady-statef c at rest and at all submaximal intensities were significantly reduced. The greatest decrease in steady-statef c was found at 150 W (146 beats·min–1, SD 10 vs 169 beats·min–1, SD 9) but the difference between the steady-statef c at 150 W and that at 100 W (f c) did not decrease significantly (26 beats·min–1, SD 7 vs 32 beats·min–1, SD 6). The time constant () of thef c increase from the steady-state at 100 W to steady-state at 150 W increased during training from 99.4 s, SD 6.6 to 123.7 s, SD 22.7 (P<0.01) and the acceleration index (A=0.63·f c·–1) decreased from 0.20 beats·min–1·s–1, SD 0.05 to 0.14 beats·min–1·s–1, SD 0.04 (P<0.02). The major part of the changes in and A occurred during the first 4 weeks of training. It was concluded that heart acceleration following incremental exercise intensities slowed down in the early phase of endurance training, most probably due to diminished sympathetic activation.  相似文献   

20.
Summary The present study sought to evaluate the inconsistencies previously observed regarding the predominance of continuous or interval training for improving fitness. The experimental design initially equated and subsequently maintained the same relative exercise intensity by both groups throughout the program. Twelve subjects were equally divided into continuous (CT, exercise at 50% maximal work) or interval (IT, 30 s work, 30 s rest at 100% maximal work) training groups that cycled 30 min day–1, 3 days week–1, for 8 weeks. Following training, aerobic power (VO2max), exercising work rates, and peak power output were all higher (9–16%) after IT than after CT (5–7%). Vastus lateralis muscle citrate synthase activity increased 25% after CT but not after IT. A consistent increase in adenylate kinase activity (25%) was observed only after IT. During continuous cycling testing the CT group had reduced blood lactate (1ab) levels and respiratory quotient at both the same absolute and relative (70% VO2max) work rates after training, while the IT group displayed similar changes only at the same absolute work rates. By contrast, both groups responded similarly during intermittent cycling testing with lower 1ab concentrations seen only at absolute work rates. These results show that, of the two types of training programs currently employed, IT produces higher increases in VO2max and in maximal exercise capacity. Nevertheless, CT is more effective at increasing muscle oxidative capacity and delaying the accumulation of 1ab during continuous exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号