首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cells of origin and terminal fields of the amygdalo-hypothalamic projections in the lizard Podarcis hispanica were determined by using the anterograde and retrograde transport of the tracers, biotinylated dextran amine and horseradish peroxidase. The resulting labeling indicated that there was a small projection to the preoptic hypothalamus, that arose from the vomeronasal amygdaloid nuclei (nucleus sphericus and nucleus of the accessory olfactory tract), and an important projection to the rest of the hypothalamus, that was formed by three components: medial, lateral, and ventral. The medial projection originated mainly in the dorsal amygdaloid division (posterior dorsal ventricular ridge and lateral amygdala) and also in the centromedial amygdaloid division (medial amygdala and bed nucleus of the stria terminalis). It coursed through the stria terminalis and reached mainly the retrochiasmatic area and the ventromedial hypothalamic nucleus. The lateral projection originated in the cortical amygdaloid division (ventral anterior and ventral posterior amygdala). It coursed via the lateral amygdalofugal tract and terminated in the lateral hypothalamic area and the lateral tuberomammillary area. The ventral projection originated in the centromedial amygdaloid division (in the striato-amygdaloid transition area), coursed through the ventral peduncle of the lateral forebrain bundle, and reached the lateral posterior hypothalamic nucleus, continuing caudally to the hindbrain. Such a pattern of the amygdalo-hypothalamic projections has not been described before, and its functional implications in the transfer of multisensory information to the hypothalamus are discussed. The possible homologies with the amygdalo-hypothalamic projections in mammals and other vertebrates are also considered. J. Comp. Neurol. 384:537–555, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The projection from the dorsal lateral geniculate complex to the visual cortex in Pseudemys and Chrysemys turtles was examined by using the anterograde transport of horseradish peroxidase (HRP) in vitro and the retrograde transport of HRP in vivo. In vitro HRP injections into the lateral forebrain bundle were used to fill geniculocortical axons anterogradely, which were then analyzed in cortical wholemount preparations. Geniculocortical axons gain access to the visual cortex along its entire rostral-caudal extent. They course in slightly curved trajectories for up to 2 mm from the lateral edge of the cortex through both the lateral (or pallial thickening) and medial parts of Desan's cortical area D2. Single axons are of fine caliber. They tend to cross each other and sometimes branch in the pallial thickening, but are generally unbranched in the medial part of D2. They bear small, fusiform varicosities at irregular intervals along their lengths. Although axons show small variations in the number of varicosities per 100 microns segment, no consistent variation in varicosity number as a function of distance could be detected. These results indicate that geniculocortical axons project to the visual cortex in an orderly pattern. The retrograde transport experiments provide some clue as to the significance of this pattern. Small, ionotophoretic injections of HRP in the visual cortex retrogradely labeled neurons in the dorsal lateral geniculate complex. Injections in the rostral visual cortex retrogradely labeled neurons in the caudal pole of the geniculate complex. Injections at progressively more caudal loci within the visual cortex labeled neurons at progressively more rostral loci within the geniculate complex. Thus, there is a representation of the rostral-caudal axis of the geniculate complex along the caudal-rostral axis of the visual cortex. Consistent with the anterograde transport experiments that showed individual geniculocortical axons coursing through both lateral and medial parts of the visual cortex, HRP injections restricted to the medial edge of the visual cortex retrogradely labeled neurons along the entire dorsal-ventral axis of the geniculate complex at the appropriate rostral-caudal position. The neurophysiological studies of Mazurskaya ('72: J. Evol. Biochem. Physiol. 8:550-555; respond to a small, moving stimulus anywhere in visual space, implying a convergence of inputs from all points in visual space somewhere along the retinogeniculocortical pathway. The experiments reported here suggest a convergence in the geniculocortical projections of information along the vertical meridians, or azimuth lines, of visual space onto neurons lying along lateral to medial transects through the visual cortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A wide range of evidence indicates that olfactory perception is strongly involved in food intake. However, the polysynaptic circuitry linking the brain areas involved in feeding behavior to the olfactory regions is not well known. The aim of this article was to examine such circuits. Thus, we described, using hodological tools such as transsynaptic viruses (PRV152) transported in a retrograde manner, the long-distance indirect projections (two to three synapses) onto the main olfactory bulb (MOB). The ß-subunit of the cholera toxin which is a monosynaptic retrograde tracer was used as a control to be able to differentiate between direct and indirect projections. Our tracing experiments showed that the arcuate nucleus of the hypothalamus, as a major site for regulation of food intake, sends only very indirect projections onto the MOB. Indirect projections to MOB also originate from the solitary nucleus which is involved in energy homeostasis. Other indirect projections have been evidenced in areas of the reward circuit such as VTA and accumbens nucleus. In contrast, direct projections to the MOB arise from melanin-concentrating hormone and orexin neurons in the lateral hypothalamus. Functional significances of these projections are discussed in relation to the role of food odors in feeding and reward-related behavior.  相似文献   

4.
Development of primary visual projections was examined in a lizard Ctenophorus ornatus by anterograde and retrograde tracing with DiI and by GAP-43 immunohistochemistry. Visual pathway development was essentially similar to that in birds and mammals and thus differed from patterns in fish or amphibians. A number of features characterised the development as mammalian-like. Three phases occurred in rapid succession after laying: outgrowth (2-3 weeks, early), exuberance (4-5 weeks, intermediate), and retraction to the adult pattern (6-8 weeks, late) at about the time of hatching and eye opening. Furthermore, ipsilateral projections developed with only a slight lag relative to the contralateral ones. The dorsally located fovea could be identified from early stages. Optic axons formed transient exuberant projections to the ipsilateral optic tectum, to the opposite optic nerve, and to nonvisual regions. The pattern resembled that formed in the long term by regenerating optic axons in C. ornatus (Dunlop et al. [2000b] J. Comp. Neurol. 416:188-200), suggesting that axons recognise molecular signals associated with the initial exuberant innervation but not those associated with subsequent refinement.  相似文献   

5.
Features of the organization of the efferent axonal projections from the medial superior olivary nucleus (MSO) in the cat were studied. In order to determine the origin and distribution of projections from MSO, the retrograde horseradish peroxidase (HRP) and autoradiographic tracing methods were used. The results showed that (1) in both HRP and autoradiographic studies the projection to the inferior colliculus was largely ipsilateral, although a contralateral component was present; (2) the projection field of MSO was confined to the ventral division of the central nucleus of the inferior colliculus, and within this field the labeling was heavier in the rostral and dorsolateral parts of the ventral division; (3) the projection to the inferior colliculus was topographic with ventral parts of MSO projecting ventrally and dorsal parts of MSO projecting dorsolaterally; (4) the projection field in the central nucleus formed successive laminae oriented from ventrolateral to dorsomedial; (5) the axonal course was via the medial or internal segment of the lateral lemniscus; and (6) some fibers in this course ended additionally within the dorsal nucleus of the lateral lemniscus. This latter projection was also topographically organized. These observations supported previously described features of lamination and tonotopic order for afferents of the inferior colliculus, as well as recent suggestions that functional segregation of afferent connections exists within the laminated portion of the central nucleus of the inferior colliculus.  相似文献   

6.
The distribution of neurons projecting through the corpus callosum (callosal neurons) was examined in retinotopically defined areas of cat visual cortex. As many callosal neurons as possible were labeled in a single animal by surgically dividing the posterior two-thirds of the corpus callosum and exposing the cut ends of callosal axons to horseradish peroxidase. The distribution of callosal neurons within a visual field representation was related to standard electrophysiological maps as well as to recording sites marked by electrolytic lesions. Callosal neurons were found in every retinotopically defined cortical area. The portion of the visual field representation that contained callosal neurons increased progressively from the area 17/18 border to area 19, to areas 20 and 21, and to the lateral suprasylvian visual areas. In area 17, the portion of the visual field representation containing callosal neurons extended from the vertical meridian out to a maximum of 10 degrees azimuth. In the posteromedial lateral suprasylvian visual area, callosal neurons were present in a region extending from the vertical meridian representation out to a representation of 60 degrees azimuth. Most callosal neurons were medium to large pyramids at the border of layers III and IV. A few layer IV stellates were among the callosal neurons of areas 17 and 18. In area 19 and even more so in the lateral suprasylvian visual areas, callosal neurons included pyramidal and fusiform-shaped cells in layers V and VI. The laminar distributions of callosal neurons in areas 20 and 21 were similar to those of area 19 and the lateral suprasylvian visual areas. The widespread distribution of callosal neurons in areas 20 and 21 and in the lateral suprasylvian visual areas suggests that the regions of peripheral visual field representation in cat cortex, as well as the representations of the vertical meridian, have access to the opposite cerebral hemisphere. This finding is significant in light of demonstrations of the importance of some of these cortical areas in the interhemispheric transfer of visual learning.  相似文献   

7.
The terminal sites of floccular efferent fibers were investigated in the albino rat by an autoradiographic orthograde method. The corticonuclear fibers terminated in the caudoventral part of the lateral cerebellar nucleus and in the caudoventral region of the lateral part of the posterior interpositus nucleus. A few fibers from the rostral flocculus terminated in the granular cell layer of the basolateral part of the nodulus and uvula as mossy fiber type terminals. The projection to the nodulus and uvula was confirmed, by an additional retrograde HRP study, to originate from scattered spindle-shaped cells in the floccular stalk. The corticovestibular fibers terminated massively in the subnucleus y. The fibers passing through the subnucleus y divided into two bundles; one bundle coursed rostrally to terminate in the lateral and ventral parts of the superior vestibular nucleus, while the other bundle passed through the lateral and then ventral parts of the lateral vestibular nucleus, supplying a few terminals to these regions, to terminate sparsely in the rostral to intermediate part of the medial vestibular nucleus and the rostroventral part of the spinal vestibular nucleus. Some fibers passing through the lateral vestibular nucleus coursed rostrally to terminate in the medial part of the superior vestibular nucleus. Sparse terminals derived from the rostral flocculus were found in the prepositus hypoglossal nucleus. No definitive differential efferent projections were demonstrated in the rat flocculus.  相似文献   

8.
Intensity difference thresholds were assessed behaviorally in 7 painted turtles (Chrysemys picta) before and after lesions of nucleus rotundus thalami or control lesions. Three subjects with control lesions and two subjects with slight bilateral damage to nucleus rotundus showed no permanent elevation of threshold postoperatively. In contrast, two subjects with severe damage to nucleus rotundus showed threshold elevations postoperatively and did not recover with further training. The impairment shown by these subjects with damage to nucleus rotundus appeared to be only on the more difficult problems; they performed as they had preoperatively on easy discriminations.  相似文献   

9.
Cholinesterase (ChE) staining was used to reveal the timing and pattern of development of afferents to the prestriate visual cortex (areas 18, 19, 20, and 21 of Brodmann) in a series of developing human and monkey fetal brains. This investigation was possible because the nucleus pulvinaris of the thalamus, the main source of subcortical projections to the prestriate cortex, displays positive reactivity after thiocholine incubation during the last three quarters of gestation, while neighboring thalamic nuclei that project to the adjacent neocortical areas are unstained. Staining of the pulvinar and its prestriate projections passes through six broad stages. Stage I begins in both species at the end of the first third of gestation. Positively stained fibers originate from the pulvinar and enter but do not extend beyond the hemispheric stalk. During stage II, pulvinar axons gradually invade the intermediate zone of the occipital lobe, and in stage III they reach the level of the subplate zone. In stage IV, which occurs around mid-gestation in both species, cholinesterase-positive fibers accumulate within the subplate zone subjacent to the developing prestriate cortex. During stage V, ChE-positive fibers penetrate the prospective prestriate cortex but do not yet form the alternating columnar pattern characteristic of pulvinar input to this area in the adults. Rather, ChE activity is concentrated in two continuous bands situated within prospective layers III-IV and VI; also a narrow band is visible in upper layer I. In stage V a clear histochemical border forms between prestriate and striate areas with ChE activity in prospective area 17 limited mostly to the superficial strata of layers I and II. This histochemical differentiation precedes the emergence of cytoarchitectonic landmarks. During stage VI, which begins in the last fifth of gestation in both species, the pulvinar become progressively less stainable and its projections can no longer be traced by ChE histochemistry.  相似文献   

10.
Studies of lateral, median, and ventral eyes of the chelicerate arthropod Limulus polyphemus (the common American horseshoe crab) are providing important basic information about mechanisms for information processing in the peripheral visual system and for the modulation of visual responses by light and circadian rhythms. The processing of visual information in Limulus brain is less well understood in part because the specific central projections of the various classes of visual neurons are not known. This study describes a mouse monoclonal antibody, 3C6A3, which binds to Limulus photoreceptor cell bodies, their axons, and terminals, but not to any other cell type in the central nervous system. This antibody, and intracellular injection of biocytin, are used to demonstrate the central projections of each type of photoreceptor. Our main conclusions are that: 1) the photoreceptors (retinular cells) of the lateral eye project only to the lamina; 2) the photoreceptors of the lateral rudimentary eye project to both the lamina and medulla; 3) the photoreceptors of the median ocellus project only to the ocellar ganglion; and 4) the photoreceptors of the rudimentary median (endoparietal) eye project to the ocellar ganglion and also into the optic tract. These results, along with previous studies, allow us to infer the projections of the secondary cells. The eccentric cells of the lateral eye project to the lamina, medulla, optic tract, and ocellar ganglion. The arhabdomeral cells of the median ocellus project through the ocellar ganglion and to optic tract to the medulla.  相似文献   

11.
The laminar distribution and branching pattern of corticocortical neurons were studied in areas 17, 18, 19, 20, 21, and the lateral suprasylvian areas of the adult cat neocortex. This was done by examining the laminar position of single-labelled neurons and the proportions of double-labelled cells in these areas after paired injections of the fluorescent retrograde labels fast blue and diamidino yellow in areas 17, 18, and 19 of the ipsilateral hemisphere. After injections in areas 18 and 19, the labelled neurons in area 17 were mostly confined to the supragranular layers, with a small proportion of labelled cells in lamina 5 and upper lamina 6. Double-labelled neurons were rare and were found in the region of overlap between the two populations of labelled cells. They were mostly found in the upper laminae but a few were observed in laminae 5 and 6. The cells projecting to either area were often grouped in patches which were seen to overlap or interdigitate depending on the region examined. As a population, the neurons projecting to area 18 occupied a deeper position in laminae 2 and 3 than those projecting to area 19. Labelled cells in area 18 after injections in areas 17 and 19 were mostly found in the upper laminae with a few double-labelled cells which were restricted to the region of overlap between the two populations of labelled cells. The pattern of labelling in area 19 after injections in areas 17 and 18 was different from the one seen in areas 17 and 18. Neurons were almost equally distributed between the supra- and infragranular layers and there was a substantial proportion of double-labelled neurons (10%) which tended to belong mostly to lamina 5 and upper lamina 6. In area PMLS, the laminar position of corticocortical cells was somewhat similar to the one observed in area 19, in that a substantial number of labelled neurons were found in the deep laminae, especially after injections in 17 or 18. After injections in area 19, labelled cells were mostly found in the upper layers. Double-labelled cells were numerous (20%) when the injections were placed in areas 17 and 18 but quite rare in the other cases (17-19 and 18-19). Most of the double-labelled neurons were found in the deep layers. After injections in areas 17, 18, and 19, labelled cells were found in area 20, thus demonstrating a hitherto unknown projection from area 20 to areas 17 and 18. Labelled cells in area 20 were almost exclusively confined to the infragranular layers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Signals from lumbar primary afferent fibers are important for modulating locomotion of the hind-limbs.However,silver impregnation techniques,autoradiography,wheat germ agglutinin-horseradish peroxidase and cholera toxin B subunit-horseradish peroxidase cannot image the central projections and connections of the dorsal root in detail.Thus,we injected 3-k Da Texas red-dextran amine into the proximal trunks of L4 dorsal roots in adult rats.Confocal microscopy results revealed that numerous labeled arborizations and varicosities extended to the dorsal horn from T12–S4,to Clarke's column from T10–L2,and to the ventral horn from L1–5.The labeled varicosities at the L4 cord level were very dense,particularly in laminae I–Ⅲ,and the density decreased gradually in more rostral and caudal segments.In addition,they were predominately distributed in laminae I–IV,moderately in laminae V–VⅡ and sparsely in laminae VⅢ–X.Furthermore,direct contacts of lumbar afferent fibers with propriospinal neurons were widespread in gray matter.In conclusion,the projection and connection patterns of L4 afferents were illustrated in detail by Texas red-dextran amine-dorsal root tracing.  相似文献   

13.
Jan J. Dekker 《Brain research》1981,205(2):229-244
A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [3H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections.  相似文献   

14.
Warm cells were identified by Fura-PE3-based microfluorimetry of Ca2+ in cultured dorsal root ganglion (DRG) neurons. In response to a physiologically relevant stimulus temperature (43°C), a subpopulation of small DRG neurons from new born rats increased the intracellular Ca2+ concentration ([Ca2+]i). Seven percent of the cells responded to the warm stimulus. The stimulus evoked elevation in [Ca2+]i from 52.5±9.5 nM (mean±S.D., n=18) to 171.0±15.6 nM in cells between 15 and 25 μm in diameter. The depletion of extracellular Ca2+ diminished the Ca2+ elevation. The Na+-free condition also diminished the response. We concluded that the heat stimulation opens nonselective cation channels in putative warm cells from DRG neurons.  相似文献   

15.
The present study is the first of a series on descending supraspinal pathways in amphibians in which hodologic and developmental aspects are studied. Representative species of anurans (the green frog, Rana perezi, and the clawed toad, Xenopus laevis), urodeles (the Iberian ribbed newt, Pleurodeles waltl), and gymnophionans (the Mexican caecilian, Dermophis mexicanus) have been used. By means of retrograde tracing with dextran amines, previous data in anurans were largely confirmed and extended, but the studies in P. waltl and D. mexicanus present the first detailed data on descending pathways to the spinal cord in urodeles and gymnophionans. In all three orders, extensive brainstem-spinal pathways were present with only minor representation of spinal projections originating in forebrain regions. In the rhombencephalon, spinal projections arise from the reticular formation, several parts of the octavolateral area, the locus coeruleus, the laterodorsal tegmental nucleus, the raphe nucleus, sensory nuclei (trigeminal sensory nuclei and the dorsal column nucleus), and the nucleus of the solitary tract. In all species studied, the cerebellar nucleus and scattered cerebellar cells innervate the spinal cord, predominantly contralaterally. Mesencephalic projections include modest tectospinal projections, torospinal projections, and extensive tegmentospinal projections. The tegmentospinal projections include projections from the nucleus of Edinger-Westphal, the red nucleus, and from anterodorsal, anteroventral, and posteroventral tegmental nuclei. In the forebrain, diencephalospinal projections originate in the ventral thalamus, posterior tubercle, the pretectal region, and the interstitial nucleus of the fasciculus longitudinalis medialis. The most rostrally located cells of origin of descending spinal pathways were found in the suprachiasmatic nucleus, the preoptic area and a subpallial region in the caudal telencephalic hemisphere, probably belonging to the amygdaloid complex. Our data are discussed in an evolutionary perspective.  相似文献   

16.
17.
In order to describe the central relations of both the afferent and efferent components of the VIIIth cranial nerve in one reptile, the methods of anterograde and retrograde axonal transport and anterograde degeneration were used to study the vestibular and cochlear projections and the efferent system of this nerve in Varanus exanthematicus. On the basis of cresyl violet and Klüver-Barrera staining, five vestibular nuclei, four cochlear nuclei, and two clusters of small cells which could not be designated as strictly auditory or vestibular are distinguished. The vestibular nuclei include the nucleus dorsolateralis, nucleus ventrolateralis, nucleus tangentialis, nucleus ventromedialis, and nucleus descendens. The well-developed cochlear nuclear complex includes the nucleus angularis, nuclei magnocellulares medialis and lateralis, and nucleus laminaris. The two cell clusters are located dorsolaterally in the brainstem just ventrolateral to the acoustic tubercle. The primary afferent vestibular fibers coursing in the anterior VIIIth nerve root distribute to the ventral portions of all vestibular nuclei except nucleus ventromedialis, whereas the fibers coursing in the posterior root project to the dorsal portions of these nuclei. In nucleus ventromedialis fibers of both roots do not segregate into ventral and dorsal portions. Other targets of the vestibular fibers are the two cell clusters, the granular layer of the ipsilateral cerebellum, the reticular formation, and the descending trigeminal tract and its nucleus. The primary cochlear fibers coursing in the posterior root terminate in nucleus angularis, nuclei magnocellulares medialis and lateralis, and the inner cell strand of nucleus laminaris. The efferent system is, ipsi- and contralaterally in the brainstem, composed of ventral and dorsal cell groups that extend from the level of the principal abducens nucleus caudally where they overlap with the facial motor nucleus. The fibers, which originate from the contralaterally located efferent cells, course beneath the IVth ventricle to exit the brainstem on the ipsilateral side.  相似文献   

18.
A pair of long visual fibers projects from each ommatidium of the compound eye of the dragonfly Sympetrum. They arise from retinular cell R7 and its slender partner R6. To investigate the segregation of lamina input pathways between these and the well-described short retinular terminals, we have examined the cell morphology and en passant synaptic involvements of R7 and 6 in the ventral lamina using serial-EM and combined Golgi-EM. In the retinula, R7 has a large apical rhabdomere with microvilli aligned along the animal's horizon, and a basal axon. R6 has a few microvilli at all depths, which align with those of neighboring rhabdomeres. In the lamina, R7 and 6 neighbor on MV, the fifth monopolar cell. The stout axon of R7 has many diffusely distributed spines which contact the neighboring terminals of R5 and 8, and MII. In one entire cartridge R7 was presynaptic to MII at 24 dyads and triads throughout the lamina and also to MV at dyads exclusively in the distal lamina. Another class of element which derives from the unidentified processes called alpha was also postsynaptic to R7 at dyads, and, mostly in the proximal lamina, was reciprocally presynaptic to R7, along with R5 and 8. R6 is slender with a single conspicuous spine. At a total of three zones in the proximal lamina and distal chiasma it was presynaptic at 38 dyads--also upon MII and MV and often in combination with other elements; it was not postsynaptic in the lamina. R6 and 7 thus provide the sole input to MV and contribute to the general retinular input to MII. They form the lowest ratios of triad:dyad synapses of all lamina retinular elements. Comparison is made with the long visual fibers of other arthropods but known examples are too diverse to detect functional commonalities.  相似文献   

19.
Thalamic projections from the caudal medulla of the cat were examined using the method of retrograde axonal transport of horseradish peroxidase (HRP). Injections were made unilaterally in various thalamic regions. Large injections labeled cells in the subnuclei: zonalis (Vcz), gelatinosus (Vcg), magnocellularis (Vcm), reticularis dorsalis (Vcrd) and ventralis (Vcv) medullae oblongatae. The largest number of labeled cells were in Vcz, Vcrd and Vcrv. Most of the labeled cells in Vcz and Vcrd were contralateral to the injection site, although the labeled cells in the Vcrv were bilateral. Small injections were made into the medial, lateral and dorsal regions of the nucleus ventralis posteromedialis (VPM), rostral regions of the posterior nuclei (POm and PO1), caudal POm, the nucleus centralis lateralis (CL) and the center median-parafascicular nuclear complex (CM-Pf). Most of the neurons in Vcz were found to project to the medial VPM and some to the caudal POm. A small number of cells in the Vcrd project to the medial VPM, but a large number project to the caudal POm and CM-Pf complex. The largest number of neurons projecting to the CM-Pf complex was present in Vcrv, where the labeled cells were bilateral. The types of trigeminothalamic projecting cells and the sizes of their somata were observed for different subnuclei and a considerable difference was found to exist among the subnuclei. This anatomical differentiation of the trigeminothalamic projections probably reflects a functional specialization of neuronal location since the functional properties of neurons vary according to their locations.  相似文献   

20.
Guidance of cranial motor axons to their targets conforms to a segmental plan in the chick embryo. Trigeminal motor neurons lie within rhombomeres 2 and 3 and project via an exit point in rhombomere 2 to innervate the first branchial arch. Facial motor neurons lie within rhombomeres 4 and 5 and grow out via an exit point in rhombomere 4 to innervate the second branchial arch. We have investigated the axial level-specific matching of motor neurons and branchial arches using donor to host transplantation in avian embryos. Previous work has shown that rostrocaudal reversal of a single hindbrain segment (rhombomere 3) leads to misprojection of a contingent of trigeminal axons via the facial nerve exit point. Using the same experimental manipulation in chick embryos and quail-chick chimaeras, we have analysed the pathways of these aberrant projections. We have found that in the majority of embryos analysed from stage 19 to 31, trigeminal axons from the transplanted rhombomere projected towards second branchial arch muscles, in addition to their normal first arch muscle targets. However, from stage 32 to 36, aberrant projections to second arch-derived muscles were detected only in a small minority of embryos. These experiments show that trigeminal motor neurons show a lack of specificity in their early projection into the periphery but that inappropriate projections may be later eliminated. This suggests that segmental mechanisms intrinsic to the hindbrain specify motor neurons with respect to their eventual innervation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号