首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been increasing interest in peptides containing the Arg-Gly-Asp (RGD) sequence for targeting of alpha(v)beta(3) integrins to image angiogenesis. [(18)F]Galacto-RGD has been successfully used for positron emission tomography applications in patients. Here we report on the preclinical characterization of a (99m)Tc-labeled derivative for single-photon emission computed tomography. c(RGDyK) was derivatized with HYNIC at the amino group of the lysine [c(RGDyK(HYNIC)) or HYNIC-RGD]. (99m)Tc labeling was performed using coligands (tricine and EDDA), as well as (99m)Tc(CO)(3)(H(2)O)(3). Radiolabeled peptides were characterized with regard to lipophilicity, protein binding and stability in buffer, serum and tissue homogenates. Integrin receptor activity was determined in internalization assays using alpha(v)beta(3)-receptor-positive M21 and alpha(v)beta(3)-receptor-negative M21L melanoma cells. Biodistribution was evaluated in normal and nude mice bearing M21, M21L and small cell lung tumors. HYNIC-RGD could be labeled at high specific activities using tricine, tricine-trisodium triphenylphosphine 3,3',3'-trisulfonate (TPPTS), tricine-nicotinic acid (NA) or EDDA as coligands. [(99m)Tc]EDDA/HYNIC-RGD, [(99m)Tc]tricine-TPPTS/HYNIC-RGD and [(99m)Tc]tricine-NA/HYNIC-RGD showed protein binding (<5%) considerably lower than [(99m)Tc](CO)(3)/HYNIC-RGD and [(99m)Tc]tricine/HYNIC-RGD. [(99m)Tc]EDDA/HYNIC-RGD revealed high in vitro stability accompanied by low lipophilicity with a log P value of -3.56, comparable to that of [(18)F]Galacto-RGD. In M21 cells for this compound, the highest level of specific and rapid cell uptake (1.25% mg protein(-1)) was determined. In vivo, rapid renal excretion, low blood retention, low liver and muscle uptakes and low intestinal excretion 4 h postinjection were observed. Tumor uptake values were 2.73% ID/g in M21 alpha(v)beta(3)-receptor-positive tumors versus 0.85% ID/g in receptor-negative tumors 1 h postinjection. Small cell lung tumors could be visualized using gamma camera imaging. [(99m)Tc]EDDA/HYNIC-RGD shows encouraging properties to target alpha(v)beta(3) receptors in vivo with high stability and favorable pharmacokinetics. Tumor uptake studies showed specific targeting of alpha(v)beta(3)-receptor-positive tumors with tumor-to-organ ratios comparable to those of [(18)F]Galacto-RGD.  相似文献   

2.
In this paper the preclinical evaluation of the somatostatin analogue RC160 labelled with technetium-99m using bifunctional chelators (BFCs) based on the hydrazinonicotinamide (HYNIC) and N(3)S system is described and a comparison made with [Tyr(3)]-octreotide (TOC). Conjugates of both peptides with HYNIC, and of RC160 with benzoyl-MAG(3) and an N(3)S-adipate derivative were prepared and radiolabelling performed at high specific activities using tricine, tricine/nicotinic acid and ethylenediamine-N,N'-diacetic acid (EDDA) as co-ligands for HYNIC conjugates. All conjugates and (99m)Tc-labelled peptides showed preserved binding affinity for the somatostatin receptor (IC50, Kd<5 nM). The biodistribution was markedly dependent on the BFC and co-ligand used, with the amidothiol ligands showing a greater degree of hepatobiliary clearance, the HYNIC/tricine complex higher blood levels and the HYNIC/EDDA complex the highest level of renal excretion and lowest blood levels. All peptide conjugates showed receptor-mediated uptake in tumour xenografts, but tumour uptake was significantly lower for the (99m)Tc-RC160 derivatives compared with (99m)Tc-EDDA/HYNIC-[Tyr(3)]-octreotide (0.2%-3.5%ID/g vs 9.7%ID/g) and correlated well with the reduced internalisation rate for RC160 derivatives. Our results show that the selection of the labelling approach as well as the right choice of the peptide structure are crucial for labelling peptides with (99m)Tc to achieve complexes with favourable biodistribution. Despite the relatively low tumour uptake compared with (99m)Tc-EDDA/HYNIC-[Tyr(3)]-octreotide, (99m)Tc-RC160 could play a role in imaging tumours that do not bind octreotide derivatives.  相似文献   

3.
The aim of this study was to help establish if ubiquicidin peptide 29-41 fragment (UBI) contains a specific site for 99mTc labeling by a new direct method under alkaline conditions. Since this peptide does not have cysteine residues, it is possible that neighboring arginine and lysine in the peptide amino acid sequence (Thr-Gly-Arg-Ala-Lys-Arg-Arg-Met-Gln-Tyr-Asn-Arg-Arg) could be a specific coordination site to form a stable 99mTc-UBI complex. Following direct labeling, the in vitro stability of 99mTc-UBI was compared to UBI radiolabeled by one indirect method using HYNIC/tricine and HYNIC/tricine/EDDA. Radiochemical purity of 99mTc-UBI averaged 97% compared to 88% for 99mTc-HYNIC-UBI/tricine and 98% for 99mTc-HYNIC-UBI/tricine/EDDA. Both 99mTc-HYNIC-UBI (tricine or EDDA) and 99mTc-UBI showed stability in human serum and solutions of cysteine. 99mTc-UBI radiochemical purity 24 h after dilution in 0.9% NaCl was greater than 90% at pH 9 and greater than 95% at pH 6.5. Under one set of experimental conditions, in vitro binding to bacteria of 99mTc-UBI was 35% and identical to that of 99mTc-HYNIC-UBI/tricine and 99mTc-HYNIC-UBI/tricine/EDDA at 32% and 31% respectively. The biodistribution of 99mTc-UBI in mice showed a rapid renal clearance. To help identify the site(s) of 99mTc binding following direct labeling, molecular mechanics and quantum-mechanical calculations were performed which showed that the amine groups of Arg(7) and Lys are the most probable site. The calculations show that these groups can form a square pyramid with two water molecules for the Tc cation (dxysp(3)). It will be necessary to isolate and characterize the 99Tc(V)(O)-UBI.(H2O)n complex to confirm these results.  相似文献   

4.
In this paper the preclinical evaluation of the somatostatin analogue RC160 labelled with technetium-99m using bifunctional chelators (BFCs) based on the hydrazinonicotinamide (HYNIC) and N3S system is described and a comparison made with [Tyr3]-octreotide (TOC). Conjugates of both peptides with HYNIC, and of RC160 with benzoyl-MAG3 and an N3S-adipate derivative were prepared and radiolabelling performed at high specific activities using tricine, tricine/nicotinic acid and ethylenediamine-N,N’-diacetic adic (EDDA) as co-ligands for HYNIC conjugates. All conjugates and 99mTc-labelled peptides showed preserved binding affinity for the somatostatin receptor (IC50, Kd<5 nM). The biodistribution was markedly dependent on the BFC and co-ligand used, with the amidothiol ligands showing a greater degree of hepatobiliary clearance, the HYNIC/tricine complex higher blood levels and the HYNIC/EDDA complex the highest level of renal excretion and lowest blood levels. All peptide conjugates showed receptor-mediated uptake in tumour xenografts, but tumour uptake was significantly lower for the 99mTc-RC160 derivatives compared with 99mTc-EDDA/HYNIC-[Tyr3]-octreotide (0.2%–3.5%ID/g vs 9.7%ID/g) and correlated well with the reduced internalisation rate for RC160 derivatives. Our results show that the selection of the labelling approach as well as the right choice of the peptide structure are crucial for labelling peptides with 99mTc to achieve complexes with favourable biodistribution. Despite the relatively low tumour uptake compared with 99mTc-EDDA/HYNIC-[Tyr3]-octreotide, 99mTc-RC160 could play a role in imaging tumours that do not bind octreotide derivatives. Received 26 January and in revised form 16 April 1999  相似文献   

5.
Endothelial cells in tumor angiogenesis are highly accessible, genetically stable and present unique molecular markers for targeted therapy. Neoplasia is also characterized by enhanced vascular permeability and disordered lymphatics so that both active and passive targeting strategies may play a role in localizing angiogenesis-targeted agents. To investigate the relative importance of these targeting strategies, the tissue biodistribution of both endothelial-specific and nonspecific peptides and their macromolecular peptide-copolymer conjugates were studied in 2 xenograft models of prostate cancer. Tumor-to-normal tissue background ratios (T/B) of these constructs were compared to evaluate the effect of molecular size on blood clearance and nonspecific vascular permeability. METHODS: Water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers were synthesized with side chains terminated in a doubly cyclized Arg-Gly-Asp motif KACDCRGDCFCG (RGD4C: active peptide targeting the alpha(V)beta(3) integrin) and KACDCRGECFCG (RGE4C: nonactive peptide). The bioactivity of the polymer conjugates and free peptides was characterized in vitro by endothelial cell adhesion assay. The (99m)Tc(CO)(3)-labeled compounds were injected into SCID mice bearing DU145 or PC-3 prostate tumor xenografts for scintigraphic imaging and necropsy organ counting. RESULTS: HPMA copolymer-RGD4C conjugates showed similar inhibition of cell adhesion as free RGD4C attached to (99m)Tc(CO)(3) chelator N-omega-bis(2-pyridylmethyl)-L-lysine (RGD4C-DPK) and were significantly higher (P < 0.05) than RGE4C, HPMA copolymer-RGE4C, and a hydrolyzed HPMA copolymer precursor. Scintigraphic images obtained at 24 h showed specific tumor localization of HPMA copolymer-RGD4C and RGD4C compared with RGE4C conjugates in both prostate tumor models. Twenty-four-hour necropsy data in the DU145 model showed significantly higher (P < 0.001) tumor localization for HPMA copolymer-RGD4C (4.60 +/- 1.80%ID/g [percentage injected dose per gram tissue]) and RGD4C-DPK (3.37 +/- 0.32%ID/g) compared with HPMA copolymer-RGE4C (1.24 +/- 0.15%ID/g) and RGE4C-DPK (0.32 +/- 0.04%ID/g). Similar results were observed in the PC-3 model. Moreover, higher T/B for the polymer conjugates indicated reduced extravasation of the targeted polymeric conjugates in normal tissues. CONCLUSION: Specific molecular targeting of the alpha(v)beta(3) integrin and nonspecific vascular permeability are both significant in the relative tumor localization of polymeric conjugates of RGD4C. Extravascular leak in nonspecific organs appears to be a major factor in reducing the T/B for the peptide molecules.  相似文献   

6.
In this paper we describe the preclinical evaluation of 99mTc-hydrazinonicotinyl-Tyr3-octreotide (HYNIC-TOC) using different coligands for radiolabeling and a comparison of their in vitro and in vivo properties with 111In-diethylenetriaminepentaacetic acid (DTPA)-octreotide. METHODS: HYNIC-TOC was radiolabeled at high specific activities using tricine, ethylenediaminediacetic acid (EDDA), and tricine-nicotinic acid as coligand systems. Receptor binding was tested using AR42J rat pancreatic tumor cell membranes. Internalization and protein binding studies were performed, and biodistribution and tumor uptake were determined in AR42J tumor-bearing nude mice. RESULTS: All 99mTc-labeled HYNIC peptides showed retained somatostatin-receptor binding affinities (Kd < 2.65 nM). Protein binding and internalization rates were dependent on the coligand used. Specific tumor uptake between 5.8 and 9.6 percentage injected dose per gram (%ID/g) was found for the 99mTc-labeled peptides, compared with 4.3 %ID/g for 111In-DTPA-octreotide. Tricine as coligand showed higher activity levels in muscle, blood, and liver, whereas tricine-nicotinic acid produced significant levels of activity in the gastrointestinal tract. EDDA showed the most promising overall biodistribution profile, with tumor-to-liver and tumor-to-gastrointestinal tract ratios similar to those obtained with 111In-DTPA-octreotide, lower ratios in blood and muscle, but considerably higher tumor-to-kidney ratios. CONCLUSION: TOC can be radiolabeled to high specific activities using HYNIC as a bifunctional chelator. The high specific tumor uptake, rapid blood clearance, and predominantly renal excretion make 99mTc-EDDA-HYNIC-TOC a promising candidate for an alternative to 111In-DTPA-octreotide for tumor imaging.  相似文献   

7.
The aim of this study was to explore the effects of lipophilicity and stability on the biodistribution of 99mTc labelled peptides through the use of different co-ligands. 6-Hydrazinopyridine-3-carboxylic acid (HYNIC) was coupled to the somatostatin analogue RC160 and radiolabelled using a range of ethylendiaminediacetic acid (EDDA) and ethylenediaminetetraacetic acid (EDTA) derivatives as well as tricine and pyridine/tricine as co-ligands. After labelling with technetium-99m, chromatographic, stability, protein-binding, and rat biodistribution studies were performed. For most co-ligands, biodistribution correlated well with in vitro properties. Lipophilic substitution on EDDA resulted in higher protein binding, increased liver uptake, and intestinal excretion. Stabilisation of tricine with pyridines reduced blood levels and lowered liver uptake. EDTA derivatives showed high instability in vitro and in vivo.  相似文献   

8.
Integrin alpha(v)beta(3) plays a critical role in tumor angiogenesis and metastasis. Suitably radiolabeled cyclic arginine-glycine-aspartic (RGD) peptides can be used for noninvasive imaging of alpha(v)beta(3) expression and targeted radionuclide therapy. In this study, we developed (64)Cu-labeled multimeric RGD peptides, E{E[c(RGDyK)](2)}(2) (RGD tetramer) and E(E{E[c(RGDyK)](2)}(2))(2) (RGD octamer), for PET imaging of tumor integrin alpha(v)beta(3) expression. METHODS: Both RGD tetramer and RGD octamer were synthesized with glutamate as the linker. After conjugation with 1,4,7,10-tetra-azacyclododecane-N,N',N',N'-tetraacetic acid (DOTA), the peptides were labeled with (64)Cu for biodistribution and small-animal PET imaging studies (U87MG human glioblastoma xenograft model and c-neu oncomouse model). A cell adhesion assay, a cell-binding assay, receptor blocking experiments, and immunohistochemistry were also performed to evaluate the alpha(v)beta(3)-binding affinity/specificity of the RGD peptide-based conjugates in vitro and in vivo. RESULTS: RGD octamer had significantly higher integrin alpha(v)beta(3)-binding affinity and specificity than RGD tetramer analog (inhibitory concentration of 50% was 10 nM for octamer vs. 35 nM for tetramer). (64)Cu-DOTA-RGD octamer had higher tumor uptake and longer tumor retention than (64)Cu-DOTA-RGD tetramer in both tumor models tested. The integrin alpha(v)beta(3) specificity of both tracers was confirmed by successful receptor-blocking experiments. The high uptake and slow clearance of (64)Cu-DOTA-RGD octamer in the kidneys was attributed mainly to the integrin positivity of the kidneys, significantly higher integrin alpha(v)beta(3)-binding affinity, and the larger molecular size of the octamer, as compared with the other RGD analogs. CONCLUSION: Polyvalency has a profound effect on the receptor-binding affinity and in vivo kinetics of radiolabeled RGD multimers. The information obtained here may guide the future development of RGD peptide-based imaging and internal radiotherapeutic agents targeting integrin alpha(v)beta(3).  相似文献   

9.
INTRODUCTION: alpha(v)beta(3) Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express alpha(v)beta(3) integrin. alpha(v)beta(3) Integrin, a transmembrane heterodimeric protein, binds to the arginine-glycine-aspartic acid (RGD) amino acid sequence of extracellular matrix proteins such as vitronectin and plays a pivotal role in invasion, proliferation and metastasis. Due to the selective expression of alpha(v)beta(3) integrin in tumors, radiolabeled RGD peptides and peptidomimetics are attractive candidates for tumor targeting. METHODS: A cyclic RGD peptide, a peptoid-peptide hybrid, an all-peptoid and a peptidomimetic compound were synthesized, conjugated with 1,4,7,10-tetraazadodecane-N,N',N',N'-tetraacetic acid (DOTA) and radiolabeled with (111)In. Their in vitro and in vivo alpha(v)beta(3)-binding characteristics were determined. RESULTS: IC(50) values were 236 nM for DOTA-E-c(RGDfK), 219 nM for DOTA-peptidomimetic, >10 mM for DOTA-all-peptoid and 9.25 mM for the peptoid-peptide hybrid DOTA-E-c(nRGDfK). (111)In-labeled compounds, except for [(111)In]DOTA-all-peptoid, showed specific uptake in human alpha(v)beta(3)-expressing tumors xenografted in athymic mice. Tumor uptake for [(111)In]DOTA-E-c(RGDfK) was 1.73+/-0.4% ID/g (2 h postinjection) and that of [(111)In]DOTA-peptidomimetic was 2.04+/-0.3% ID/g. Tumor uptake for the peptoid-peptide hybrid [(111)In]DOTA-E-c(nRGDfK) was markedly lower (0.45+/-0.07% ID/g). The all-peptoid [(111)In]DOTA-E-c(nRGnDnFnK) did not show specific uptake in tumors (0.11+/-0.04% ID/g). CONCLUSIONS: The peptidomimetic compound and the cyclic RGD peptide have a high affinity for alpha(v)beta(3) integrin, and these compounds have better tumor-targeting characteristics than the peptoid-peptide hybrid and the all-peptoid.  相似文献   

10.
Bone diseases are often a result of increased numbers of osteoclasts, or bone-resorbing cells. Bone metastases are a significant cause of morbidity in many types of cancer. An imaging agent targeting osteoclasts, which are upregulated in osteolytic lesions, may facilitate earlier follow-up in patients with osteolytic or mixed bone metastases. Osteoclasts express high levels of alpha(v)beta3 integrin, to which peptides containing the Arg-Gly-Asp (RGD) sequence are known to bind. We proposed that radiolabeled RGD peptides could be used to detect osteoclasts in lytic bone lesions. METHODS: The cross-bridged macrocyclic chelator 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A) was conjugated to c(RGDyK) for radiolabeling with 64Cu (t(1/2), 12.7 h; beta+, 17.4%; E(beta+ max), 656 keV; beta-, 39%; E(beta- max), 573 keV). The in vitro affinity of Cu(II)-CB-TE2A-c(RGDyK) for alpha(v)beta3 and alpha(v)beta5 was evaluated in a heterologous competitive binding assay. Ex vivo uptake was examined in osteoclasts prepared from bone marrow macrophages. As a proof of principle, biodistribution and imaging studies were performed on parathyroid hormone (PTH)-induced osteolysis in the calvarium. RESULTS: Cu-CB-TE2A-c(RGDyK) was shown to have a 30-fold higher affinity for alpha(v)beta3 than for alpha(v)beta5. Osteoclasts were shown to specifically take up (64)Cu-CB-TE2A-c(RGDyK). However, bone marrow macrophages showed only nonspecific uptake. PTH treatment increased calvarial uptake of 64Cu-CB-TE2A-c(RGDyK), compared with uptake in mice receiving a sham treatment. In addition, calvarial uptake correlated linearly with the number of osteoclasts on the bone surface. CONCLUSION: These results suggest that 64Cu-CB-TE2A-c(RGDyK) selectively binds alpha(v)beta3 on osteoclasts and may potentially be used to identify increased numbers of osteoclasts in osteolytic bone diseases such as osteolytic bone metastasis and inflammatory osteolysis.  相似文献   

11.
Radiolabeled RGD peptides that target alpha(v)beta3 integrin are promising tracers for imaging tumor angiogenesis. Integrins and angiogenesis also play important roles in healing of ischemic lesions. Thus, we investigated the biodistribution of radiolabeled RGD and expression of alpha(v) integrin in a mouse model of hindlimb ischemia. METHODS: 125I-3-Iodo-D-Tyr4-cyclo(-Arg-Gly-Asp-D-Tyr-Val-) (125I-c(RGD(I)yV)) was synthesized and tested for endothelial binding. Hindlimb ischemia was induced in ICR mice through femoral artery ablation, and perfusion was measured with laser Doppler blood flowmetry. 125I-c(RGD(I)yV) biodistribution was evaluated in control animals (n = 7) and ischemic models on day 3, 8, or 14 (n = 6 each). Control experiments were performed using a radiolabeled peptide with a scrambled amino acid sequence (125I-GfVGV). Microsections of hindlimb tissue were immunostained for alpha(v) integrin expression and stained with alkaline phosphatase to localize vascular endothelial cells. RESULTS: 125I-c(RGD(I)yV) retained specific binding to human umbilical vein endothelial cells. Perfusion in ischemic hindlimbs immediately fell to 10% +/- 4% of contralateral levels and gradually recovered to 22% +/- 11% and 64% +/- 9% on days 8 and 14, respectively. 125I-c(RGD(I)yV) uptake in ischemic muscles significantly increased from a control level of 0.16 +/- 0.05 %ID/g (percentage injected dose per gram of tissue) to 0.85 +/- 0.76 %ID/g at day 3, 0.43 +/- 0.23 %ID/g at day 8, and 0.43 +/- 0.28 %ID/g at day 14 (all P < 0.05). Ischemic muscle-to-lung count ratios had a virtually identical trend: 0.42 +/- 0.25 for controls, 2.34 +/- 1.70 at day 3 (P < 0.02), 1.46 +/- 0.52 at day 8 (P < 0.001), and 1.39 +/- 0.94 at day 14 (P < 0.02). In contrast, uptake of the control peptide in ischemic hindlimbs was not different from that of controls. Immunohistochemistry revealed substantially increased alpha(v) integrin staining in ischemic hindlimb tissue. CONCLUSION: Radioiodine RGD uptake is significantly enhanced in ischemic hindlimbs of a mouse model, and is accompanied by an increase in alpha(v) integrin expression. Further investigation is thus warranted to illuminate the potential role of radiolabeled RGD for noninvasive monitoring of peripheral ischemic lesions.  相似文献   

12.
目的 制备99Tcm标记的含有精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)序列的环肽四聚体99Tcm-联肼尼克酰胺(HYNIC)-E{E[c(RGDfK)]2}2,评价其在整合素αvβ3表达阳性的荷人神经胶质瘤裸鼠模型的生物分布和显像.方法 以HYNIC为双功能螫合剂,以三羟甲基甘氨酸(tricine)和三苯基膦三磺酸钠(TPfffS)为协同配体,采用两步法制备99Tcm-HYNIC-E{E[c(RGDfK)2}2.通过体外受体竞争结合实验比较e(RGDyK)单体、HYNIC-E[c(RGDfK)2二聚体和HYNIC-E{E[c(RGDfK)]2}2四聚体与整合素αvβ3亲和力.生物分布实验数据显示,99Tcm-HYNIC-E{E[c(RGDtK)]2}2主要经肾排泄;注射后1h,肿瘤对99Tcm-HYNIC-E{E[c(RGDfK)]2}2的摄取为99Tcm-HYNIC-E[c(RG-DfK)]2的2倍,分别为(10.32±0.07)%ID/g和(5.15±O.52)%ID/g,与体外受体竞争结合实验数据相一致;注射后4h,肿瘤对99Tcm-HYNIC-E{E[c(RGDfK)]2}2的摄取仍达(9.35.4±1.35)%ID/g,表明标记物在肿瘤中的滞留时间足够长.r显像结果显示,注射后1h肿瘤清晰可见.注射后4h显像效果更佳.结论 99Tcm-HYNIC-E{E[c(RGDfK)]2}2具有较高的肿瘤摄取和较长的肿瘤滞留时间,可以用于整合素αvβ3表达阳性肿瘤的显像;放射性核素(如90Y)标记的RGD环肽四聚体可用于整合素(αvβ3表达阳性肿瘤的治疗.  相似文献   

13.
The association of the alpha(v)beta(3) integrin with tumor metastasis and tumor related angiogenesis has been suggested. Therefore, by imaging the alpha(v)beta(3) receptor with PET, information concerning the tumor status could be obtained. Cyclic peptides including the RGD sequence, were radiolabeled by direct electrophilic fluorination with [(18)F]AcOF. In tumor-bearing mice, the labeled peptides accumulated at the tumor with a high tumor to blood ratio. These findings suggest that an assessment of tumor characteristics may be obtained by using these (18)F-labeled peptides.  相似文献   

14.
PURPOSE: Radiolabeled somatostatin analogues are important tools for the in vivo localization and targeted radionuclide therapy of somatostatin-receptor-positive tumors. The aim of this study was to evaluate a new somatostatin analogue designed for the labeling with (99m)Tc: [6-hydrazinopyridine-3-carboxylic acid (HYNIC(0)), 1-Nal(3), Thr(8)]-octreotide ([HYNIC]-NATE), using ethylenediamine-N,N'-diacetic acid (EDDA) and tricine as coligands. METHODS: Synthesis was preformed on a solid phase using a standard Fmoc strategy. Labeling with (99m)Tc was performed at 100 degrees C for 10 min using SnCl(2) as a reductant. Radiochemical analysis involved ITLC and high-performance liquid chromatography methods. Peptide conjugate affinity was determined in AR4-2J cell membranes. The internalization and externalization rates were studied in sstr(2)-expressing AR4-2J cells. Biodistribution of radiopeptide was studied in rats bearing the AR4-2J tumor. RESULTS: Radiolabeling was performed at high specific activities, and radiochemical purity was >95%. Peptide conjugate showed high affinity binding for sstr(2). The radioligand showed a moderate and specific internalization into AR4-2J cells (14.13+/-0.61% at 4 h). In animal biodistribution studies, a receptor-specific uptake of radioactivity was observed in somatostatin-receptor-positive organs. After 4 h, uptake in the AR4-2J tumor was 1.33+/-0.23%ID/g (percentage of injected dose per gram of tissue). CONCLUSION: These data show that [(99m)Tc/EDDA/tricine/HYNIC]-NATE is a specific radioligand for the somatostatin-receptor-positive tumors and is a suitable candidate for clinical studies.  相似文献   

15.
Radiolabeled cyclic peptides containing the amino acid sequence arginine-glycine-aspartate (RGD peptides) have successfully been used to image the expression of the alpha(v)beta(3) integrin in malignant tumors. However, the alpha(v)beta(3) integrin also plays an important role in angiogenesis induced by chronic inflammatory processes. Therefore, the aim of this study was to evaluate whether radiolabeled RGD peptides may also be used to assess alpha(v)beta(3) expression in inflammatory diseases. We studied a hapten-induced delayed-type hypersensitivity reaction (DTHR) as a model for inflammatory processes, since DTHRs are involved in many human autoimmune disorders. METHODS: The abdominal skin of mice was sensitized by application of 2,4,6-trinitrochlorobenzene (TNCB). One week later, a DTHR was elicited by challenging the right ear with TNCB. Application of TNCB was then repeated every 48 h to induce chronic skin inflammation. Small-animal PET and autoradiography with the alpha(v)beta(3) ligands (18)F-galacto-RGD and (125)I-gluco-RGD were performed at various times after TNCB application. The time course of tracer uptake by the treated ears was compared with histologic skin changes. RESULTS: The first challenge with TNCB caused, within 12 h, an acute inflammatory response with dense dermal infiltrates of polymorphonuclear leukocytes and lymphocytes. However, autoradiography revealed no significant increase in (125)I-gluco-RGD uptake at that time (mean uptake ratio for treated ear to untreated ear, 1.02 +/- 0.1 [SD]). Further challenges with TNCB resulted in chronic skin inflammation with markedly increased small-vessel density in the ear tissue. This was paralleled by a continuous increase in uptake of (125)I-gluco-RGD. After 13 challenges, the uptake ratio had increased to 2.30 +/- 0.27 (P < 0.005 compared with baseline). Enhanced uptake of radiolabeled RGD peptides in chronic inflammation was also demonstrated noninvasively by PET with (18)F-galacto-RGD. Pretreatment of the mice with nonradiolabeled cyclic peptide c(RGDfV) almost completely blocked uptake of (18)F-galacto-RGD by the challenged ear, thus confirming the specificity of tracer uptake. CONCLUSION: Radiolabeled RGD peptides allow a noninvasive assessment of alpha(v)beta(3) expression in inflammatory processes. PET with (18)F-galacto-RGD might become a powerful tool to distinguish between the acute and chronic phases of T cell-mediated immune responses and may represent a new biomarker for disease activity in autoimmune disorders.  相似文献   

16.
The integrin alpha v beta3 receptor is upregulated on tumor cells and endothelium and plays important roles in angiogenesis and metastasis. Arg-Gly-Asp (RGD) peptide ligands have high affinity for these integrins and can be radiolabeled for PET imaging of angiogenesis or tumor development. We have assessed the safety, stability, and tumor distribution kinetics of a novel radiolabeled RGD-based integrin peptide-polymer conjugate, 18F-AH111585, and its feasibility to detect tumors in metastatic breast cancer patients using PET. METHODS: The biodistribution of 18F-AH111585 was assessed in 18 tumor lesions from 7 patients with metastatic breast cancer by PET, and the PET data were compared with CT results. The metabolic stability of 18F-AH111585 was assessed by chromatography of plasma samples. Regions of interest (ROIs) defined over tumor and normal tissues of the PET images were used to determine the kinetics of radioligand binding in tissues. RESULTS: The radiopharmaceutical and PET procedures were well tolerated in all patients. All 18 tumors detected by CT were visible on the 18F-AH111585 PET images, either as distinct increases in uptake compared with the surrounding normal tissue or, in the case of liver metastases, as regions of deficit uptake because of the high background activity in normal liver tissue. 18F-AH111585 was either homogeneously distributed in the tumors or appeared within the tumor rim, consistent with the pattern of viable peripheral tumor and central necrosis often seen in association with angiogenesis. Increased uptake compared with background (P = 0.002) was demonstrated in metastases in lung, pleura, bone, lymph node, and primary tumor. CONCLUSION: 18F-AH111585 designed to bind the alpha v beta3 integrin is safe, metabolically stable, and retained in tumor tissues and detects breast cancer lesions by PET in most anatomic sites.  相似文献   

17.
Compared with the recent advancements in radiohalogenated Arg-Gly-Asp (RGD) peptides for alpha(v)beta(3)-targeted imaging, there has been limited success with (99m)Tc-labeled RGD compounds. In this article, we describe the favorable in vivo kinetics and tumor-imaging properties of a novel (99m)Tc-RGD compound that contains a glucosamine moiety. METHODS: Glucosamino (99m)Tc-d-c(RGDfK) was prepared by incorporating (99m)Tc(CO)(3) to the glucosamino peptide precursor in high radiochemical yield. Cell-binding characteristics were tested on human endothelial cells. Mice bearing RR1022 fibrosarcoma and Lewis lung carcinoma (LLC) tumors were used for in vivo biodistribution and blocking experiments and for imaging studies. Separate LLC-bearing mice underwent antiangiogenic therapy with 0, 20, or 40 mg of paclitaxel per kilogram of body weight every 2 d. Tumor volume was serially monitored, and tumor glucosamino (99m)Tc-d-c(RGDfK) uptake and Western blots of alpha(v) integrin expression were analyzed at day 14. RESULTS: Glucosamino (99m)Tc-d-c(RGDfK) binding to endothelial cells was dose-dependently inhibited by excess RGD. Biodistribution in mice showed rapid blood clearance of glucosamino (99m)Tc-d-c(RGDfK), with substantially lower liver uptake and higher tumor uptake compared with (125)I-c(RGD(I)yV). Tumor uptake was 1.03 +/- 0.21 and 1.18 +/- 0.26 %ID/g at 1 h and 0.85 +/- 0.05 and 0.89 +/- 0.28 %ID/g at 4 h for sarcomas and carcinomas, respectively. Excess RGD blocked uptake by 76.5% and 70.2% for the respective tumors. gamma-Camera imaging allowed clear tumor visualization, with an increase of sarcoma-to-thigh count ratios from 5.5 +/- 0.7 at 1 h to 10.1 +/- 2.2 at 4 h and sustained carcinoma-to-thigh count ratios from 4 to 17 h. Pretreatment with excess cRGDyV significantly reduced tumor contrast on images. Paclitaxel therapy in LLC tumor-bearing mice significantly retarded tumor growth. This was accompanied by a corresponding reduction of tumor glucosamino (99m)Tc-d-c(RGDfK) uptake, which correlated significantly with tumor alpha(v) integrin expression levels. CONCLUSION: Glucosamino (99m)Tc-d-c(RGDfK) has favorable in vivo biokinetics and tumor-imaging properties and may be useful for noninvasive evaluation of tumor integrin expression and response to antiangiogenic therapeutics. Because of the wide accessibility of gamma-cameras and high availability and excellent imaging characteristics of (99m)Tc, glucosamino (99m)Tc-d-c(RGDfK) may be an attractive alternative to radiohalogenated RGD peptides for angiogenesis-imaging research.  相似文献   

18.
Using a 12-amino acid peptide conjugated with HYNIC as a model, we investigated nitriles as possible coligands for labeling with (99m)Tc. After the preparation of the (99m)Tc labeled HYNIC-peptide using tricine as coligand, the addition of acetonitile was found by reverse phase HPLC to block further coligand exchange with ethylenediamine diacetic acid (EDDA) at room temperature. The addition of this nitrile changed the pharmacokinetics of the (99m)Tc labeled peptide in normal mice towards faster clearance and significant differences in accumulation in most tissues sampled. By replacing acetonitrile with cyanoacetate, a nitrile not present in the HPLC eluant, it was possible to show the existence of a new, more hydrophilic, species by reverse phase HPLC. We conclude that nitriles can act as coligands for HYNIC-conjugated peptides labeled with (99m)Tc and tricine. Furthermore, the presence of acetonitrile during Sep-Pak or HPLC purification may inadvertently generate a mixed tricine/acetonitile coligand (99m)Tc-HYNIC-peptide complex.  相似文献   

19.
18F-labeled BBN-RGD heterodimer for prostate cancer imaging.   总被引:2,自引:0,他引:2  
Both bombesin (BBN) analogs and cyclic RGD peptides have been suitably radiolabeled for prostate cancer imaging. However, the limited expression of gastrin-releasing peptide receptor (GRPR) and integrin alpha(v)beta(3) as well as unfavorable in vivo kinetics limited further applications of these imaging agents. We hypothesize that a peptide ligand recognizing both GRPR and integrin will be advantageous because of its dual-receptor-targeting ability. METHODS: A BBN-RGD heterodimer was synthesized from bombesin(7-14) and c(RGDyK) through a glutamate linker and then labeled with (18)F via the N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) prosthetic group. The receptor-binding characteristics and tumor-targeting efficacy of (18)F-FB-BBN-RGD were tested in vitro and in vivo. RESULTS: FB-BBN-RGD had comparable integrin alpha(v)beta(3)-binding affinity with c(RGDyK) and comparable GRPR-binding affinity with BBN(7-14). (18)F-FB-BBN-RGD had significantly higher tumor uptake compared with monomeric RGD and monomeric BBN peptide tracer analogs at all time points examined. The PC-3 tumor uptake of (18)F-FB-BBN-RGD was inhibited only partially in the presence of an excess amount of unlabeled BBN(7-14) or c(RGDyK) but was blocked completely in the presence of both BBN(7-14) and c(RGDyK). Compared with (18)F-FB-BBN and (18)F-FB-RGD, (18)F-FB-BBN-RGD also had improved pharmacokinetics, resulting in a significantly higher imaging quality. CONCLUSION: Dual integrin alpha(v)beta(3) and GRPR recognition showed significantly improved tumor-targeting efficacy and pharmacokinetics compared with (18)F-labeled RGD and BBN analogs. The same heterodimeric ligand design may also be applicable to other receptor system combinations and other imaging modalities.  相似文献   

20.
PURPOSE: We and others have reported that (18)F- and (64)Cu-labeled arginine-glycine-aspartate (RGD) peptides allow positron emission tomography (PET) quantification of integrin alpha(v)beta(3) expression in vivo. However, clinical translation of these radiotracers is partially hindered by the necessity of cyclotron facility to produce the PET isotopes. Generator-based PET isotope (68)Ga, with a half-life of 68 min and 89% positron emission, deserves special attention because of its independence of an onsite cyclotron. The goal of this study was to investigate the feasibility of (68)Ga-labeled RGD peptides for tumor imaging. METHODS: Three cyclic RGD peptides, c(RGDyK) (RGD1), E[c(RGDyK)](2) (RGD2), and E{E[c(RGDyK)](2)}(2) (RGD4), were conjugated with macrocyclic chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and labeled with (68)Ga. Integrin affinity and specificity of the peptide conjugates were assessed by cell-based receptor binding assay, and the tumor targeting efficacy of (68)Ga-labeled RGD peptides was evaluated in a subcutaneous U87MG glioblastoma xenograft model. RESULTS: U87MG cell-based receptor binding assay using (125)I-echistatin as radioligand showed that integrin affinity followed the order of NOTA-RGD4 > NOTA-RGD2 > NOTA-RGD1. All three NOTA conjugates allowed nearly quantitative (68)Ga-labeling within 10 min (12-17 MBq/nmol). Quantitative microPET imaging studies showed that (68)Ga-NOTA-RGD4 had the highest tumor uptake but also prominent activity accumulation in the kidneys. (68)Ga-NOTA-RGD2 had higher tumor uptake (e.g., 2.8 +/- 0.1%ID/g at 1 h postinjection) and similar pharmacokinetics (4.4 +/- 0.4 tumor/muscle ratio, 2.0 +/- 0.1 tumor/liver ratio, and 1.1 +/- 0.1 tumor/kidney ratio) compared with (68)Ga-NOTA-RGD1. CONCLUSIONS: The dimeric RGD peptide tracer (68)Ga-NOTA-RGD2 with good tumor uptake and favorable pharmacokinetics warrants further investigation for potential clinical translation to image integrin alpha(v)beta(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号