首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The cytotoxic effects, the generation of reactive oxygen species (ROS) and lipid peroxidation (LPO) as well as the cell cycle disruption, the induction of apoptosis and changes in mitochondrial membrane potential (ΔΨm) as a function of increasing time have been determined in human colorectal adenocarcinoma (Caco-2) cells after exposure to enniatins (ENs) A, A1, B and B1. IC50 values obtained by the MTT and Neutral Red assay, after 24, 48 and 72 h of exposure ranged from 0.5 ± 0.1 to >15 μM. A significant increase (p ≤ 0.05) in ROS generation and LPO production, as determined by the fluorescent probe H2-DCFDA and TBARS method respectively, was observed for all mycotoxins tested at 3.0 μM concentration. The highest increase in ROS generation (2.6 fold higher than control) and LPO production (111%, as compared to control) was observed with EN A. Cell cycle was significantly arrested at G2/M phase after 24 h of exposure to EN A, A1, B1, whereas after 72 h of exposure an arrest in S phase was observed almost for all mycotoxins tested. Moreover, after 24 and 48 h of exposure, ENs increased the early apoptotic cells, whereas after 72 h of exposure necrosis was observed. In addition the loss of ΔΨm was produced on Caco-2 cells after ENs exposure. ENs A, A1, B and B1 cytotoxicity involved early ROS generation that induced LPO oxidative damage, apoptosis and necrosis via the mitochondrial pathway. ENs A, A1 and B1 induced DNA damage. However the same effects cannot be proposed for EN B. Further studies on the toxicological effects induced by ENs A, A1, B and B1 are needed.  相似文献   

2.
The cytotoxicity of beauvericin (BEA) on human colon adenocarcinoma (Caco-2) cells was studied as a function of time. Moreover, the oxidative damage and cell death endpoints were monitored after 24, 48 and 72 h. After BEA exposure, the IC50 values ranged from 1.9 ± 0.7 to 20.6 ± 6.9 μM. A decrease in reduced glutathione (GSH; 31%) levels, as well as an increase in oxidized glutathione (GSSG, 20%) was observed. In the presence of BEA, reactive oxygen species (ROS) level was highly increased at an early stage with the highest production of 2.0-fold higher than the control that was observed at 120 min. BEA induced cell death by mitochondria-dependent apoptotic process with loss of the mitochondrial membrane potential (ΔΨm; 9% compared to the control), increase in LPO level (from 120% to 207% compared to the control) and reduced G0/G1 phase, with an arrest in G2/M, in a dose and time-dependent manner. Cell proliferation, apoptosis and ΔΨm determined, were in a dose- time-dependent manner. Moreover, DNA damage was observed after 12.0 μM concentration. This study demonstrated that oxidative stress is one of the mechanism involved in BEA toxicity, moreover apoptosis induction and loss of ΔΨm contribute to its cytotoxicity in Caco-2 cells.  相似文献   

3.
Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 μg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号