共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的 研究快速老化模型小鼠(senescence accelerated mice,SAM)学习记忆能力及其大脑皮层、海马和下丘脑单胺递质含量的增龄性变化及它们之间的关系。方法 分别采用跳台实验和穿梭箱实验测定SAM的被动和主动回避反应能力,采用高效液相色谱电化学检测法测定脑内单胺递质的含量。结果 2月龄快速老化亚系SAM-prone/8(SAMP8)的被动和主动回避反应能力已较同龄抗快速老化亚系SAM-resistance/1(SAMR1)明显降低,且其主动回避反应能力随增龄进一步降低。同时,SAMP8大脑皮层、海马及下丘脑内单胺递质水平多明显高于同龄SAMR1,且随增龄明显增高。结论 SAMP8学习记忆能力的衰退可能与其相关脑区单胺递质的变化密切相关。 相似文献
3.
Recently, we published a method for examining working and reference memory in mice using a spatial version of the water radial-arm maze. Here we describe a non-spatial version of the same maze. BXSB mice were able to learn the maze as shown by the decrease in the number of working and reference memory errors over sessions. This maze was used to examine learning differences between males and females and between mice with misplaced clusters of neurons in layer I of cortex (ectopias) and those without. In a prior study using the spatial version of the water radial-arm maze, male BXSB mice had poorer working memory than females during the acquisition phase. Similarly, in this study male BXSB mice demonstrated impaired working memory during the asymptotic phase of non-spatial radial-arm maze learning. Two prior studies showed that mice with neocortical ectopias demonstrated working memory impairments compared to non-ectopic littermates in the spatial version of the water radial-arm maze. Contrary to this, in the non-spatial radial-arm maze used here, ectopic mice were not impaired in working memory and showed better memory when the working memory 'load' was the highest. Overall, both versions of the maze can be useful tools to assess spatial and non-spatial working and reference memory in mice. 相似文献
4.
Two types of cholinergic neurons were transplanted into the hippoccampus of adult rats chemically damaged by lateral ventricular administration of AF64A, a cholinergic neurotoxin, and the effects were compared with respect to their ability to reinnervate the hippocampus and to repair behavioral deficit. Pieces of brain tissue containing the nucleus basalis magnocellularis (NBM) or the striatum were taken for grafting from 17-day rat fetuses. About 3 months after transplantation, the rats with bilateral NBM grafts showed significant amelioration in radial-arm maze performance and habituation to a novel environment in an open field box, although they had not recovered to the control level. In rats with NBM grafts that showed a good performance, there were surviving grafts and many ingrowths of AChE-positive fibers in the hippocampus. By contrast, rats with striatal grafts showed hardly any significant improvement in these behavioral measures. The AChE staining revealed poor outgrowth of the striatal grafts into the hippocampus. These results indicate that grafting of NBM cholinergic neurons, which are anatomically similar to septal neurons, into the hippocampus produces a partial restorative effect on the cognitive impairment associated with hypofunction of the septohippocampal system. 相似文献
5.
The enzymatic activity of choline acetyltransferase (ChAT) in the nucleus basalis (NBM) of young rats (30 days old at the time of the operation) drops by 50% thirty days after cortical damage. This is followed by a spontaneous recovery of the enzymatic activity at 120 days after the lesion. In the present study, similar changes were observed in rats which were lesioned at maturity (4 months old). However, a different response was noted when surgery was performed on aged rats (2 years old at the time of operation). In these aged rats the drop in enzymatic activity in the NBM at 30 days post-lesion was as marked as in the young and mature animals, and no recovery was observed, even at 120 days. These results are discussed in the context of age-related neurodegenerative disease with cholinergic involvement. 相似文献
6.
Estrogen receptors are expressed in several areas of the brain associated with cognition, including the basal forebrain cholinergic nuclei, and numerous reports have described improvements in memory in response to estrogen supplementation. The relationship between estrogen's effects on the basal cholinergic system and improvements in cognitive function, however, are obscure. We therefore undertook a study to determine the effects of estrogen on several parameters of the cholinergic system in ovariectomized rats and measured the concomitant effects on performance in the Barnes maze, a test of spatial memory. Six weeks of estradiol treatment caused an increase in choline acetyltransferase activity throughout the projection fields of the basal forebrain, including the hippocampal formation (14%), olfactory bulb (30%), and cerebral cortex (35%). Estrogen treatment also caused an increase in cell soma size of cholinergic neurons in the horizontal diagonal limb of the band of Broca and in the basal nucleus of Meynert. There was no change in the number of neurons positive for p75(NTR), nor in the level of p75(NTR) expression per neuron. Barnes maze performance was markedly improved after estradiol treatment, reinforcing the view that estrogen has beneficial cognitive effects, particularly on spatial memory. The beneficial cognitive effect was likely mediated in part by stimulation of the basal forebrain cholinergic system, especially in its neocortical projection, but was not associated with changes in the level of p75(NTR) expression. 相似文献
7.
Galanin (GAL) is a biologically active 29 amino acid (30 in humans) which participates in the modulation of several ascending neurotransmitter systems including cholinergic basal forebrain (CBF) neurons, which undergo extensive degeneration in Alzheimer's disease (AD). GAL immunoreactive fibers within the CBF display hypertrophy and hyperinnervate surviving CBF neurons in late AD. Over the years, this unique neuronal plasticity response has been an active area of research for our group. We have examined tissue from a clinically well characterized cohort of retired elderly clergy to determine whether people with mild cognitive impairment display GAL hyperinnervation upon CBF neurons. We found that GAL hyperinnervation is a late stage event and that CBF neuron reduction is not correlated with GAL over expression during prodromal AD. Interestingly, findings from our laboratory using tau immunohistochemistry and single cell gene array technologies suggest that GAL remodeling may influence neurofibrillary tangle formation by altering tau phosphorylation events in CBF neurons in AD. Studies using GAL-tg mice suggest that GAL over expression reduces the cholinergic phenotype but does not produce a frank loss of CBF cells. This phenotypic down regulation of ChAT is reminiscent of the lack of a frank CBF neuron loss in prodromal AD. Moreover, studies using mice transgenic for both the amyloid precursor protein (APP) and presenilin-1 (PS1) bearing AD-related mutations (APPswe/PS1delta9) displayed increased GAL immunoreactive fibers, neurities and plaques in cortex and hippocampus. These fin'dings provide evidence for a mechanistic relationship between amyloidosis and GAL over expression in AD. Understanding GALs role in the clinical and pathological features of AD, may lead to novel drug treatments for this disease. 相似文献
8.
Trimethyltin (TMT) was used as a positive control neurotoxicant to evaluate a repeated acquisition procedure for the 8-arm radial maze. Ten male Long-Evans rats were trained to collect a single food pellet at the end of each baited arm on each trial of a daily 12-trial test session. Four of the eight arms were baited on all trials of a given session. The set of four baited arms was changed each day: thus the rats were required to learn a new set of baited arms in each session. In trained rats, error frequencies (entries into unbaited arms) declined from about 4 on Trial 1 to less than 1 on Trials 4-12 in each session: this within-session error reduction thus defined an acquisition baseline which was evaluated for its sensitivity to TMT. Learning was impaired after 7 mg/kg (iv) TMT, as shown by a slower decline in within-session error frequencies in all treated rats. Errors and response times were elevated for 5 weeks after TMT but returned to control levels thereafter. Histological examination of hippocampi showed damage in all treated rats 18 weeks after treatment; however, no significant relationship between degree of damage and behavioral effect was observed. Analysis of errors showed that TMT more strongly impaired the rats' ability to avoid arms in the current unbaited set than those baited arms already entered on a given trial (i.e., working memory). These dissociations between behavior and hippocampal morphology in terms of time course, magnitude of effect across animals, and error type suggest that performance of this task does not depend upon hippocampal integrity, as do other tasks involving spatial working memory. Recovery of function in this kind of task may shed light on processes of neural plasticity after exposure to neurotoxic compounds. 相似文献
9.
Survival and plasticity of basal forebrain cholinergic systems in mice transgenic for presenilin-1 and amyloid precursor protein mutant genes 总被引:1,自引:0,他引:1
The basalo-cortical cholinergic system was characterized in mice expressing mutant human genes for presenilin-1 (PS1), amyloid precursor protein (APP), and combined PS/APP. Dual immunocytochemistry for ChAT and A beta revealed swollen cholinergic processes within cortical plaques in both APP and PS/APP brains by 12 months, suggesting aberrant sprouting or redistribution of cholinergic processes in response to amyloid deposition. At 8 months, cortical and subcortical ChAT activity was normal (PS/APP) or elevated (PS, APP frontal cortex), while cholinergic cell counts (nBM/SI) and receptor binding were unchanged. ChAT mRNA was up-regulated in the nBM/SI of all three transgenic lines at 8 months. The data indicate that the basal forebrain cholinergic system does not degenerate in mice expressing AD-related transgenes, even in mice with extreme amyloid load. The 相似文献
10.
Basal forebrain cholinergic neurons (BFCN) are depleted early in the course of Alzheimer's disease (AD). BFCN voltage-gated K(+) channels regulate acetylcholine release and may play a role in BFCN neurodegeneration. Neuronal voltage-gated K(+) channels are heterotetrameric assemblies of K(v) and accessory subunits. Currently, there is no available information about the K(v) proteins expressed in BFCN. Immunohistochemical techniques were used to investigate the expression of specific K(v) subunits in rat brain BFCN. Our results showed that BFCN express both K(v)3.1 and K(v)2.1 subunits. However, the K(v)2.1 subunit showed a wider distribution in noncholinergic neurons than the K(v)3.1 subunit. K(v)3.1 and K(v)2.1 immunostaining was noticeable not only in neuronal cell bodies but also in the dendritic ramifications of these neurons. Insofar as the K(v)3.1 subunit has been classically associated with "fast-spiking neurons" and BFCN have low firing rates and long-duration action potentials, K(v)3.1 subunits may have functions other than facilitating high-frequency firing in BFCN. 相似文献
11.
Greferath U Bennie A Kourakis A Bartlett PF Murphy M Barrett GL 《The European journal of neuroscience》2000,12(3):885-893
The p75 low affinity neurotrophin receptor (p75) can induce apoptosis in various neuronal and glial cell types. Because p75 is expressed in the cholinergic neurons of the basal forebrain, p75 knockout mice may be expected to show an increased number of neurons in this region. Previous studies, however, have produced conflicting results, suggesting that genetic background and choice of control mice are critical. To try to clarify the conflicting results from previous reports, we undertook a further study of the basal forebrain in p75 knockout mice, paying particular attention to the use of genetically valid controls. The genetic backgrounds of p75 knockout and control mice used in this study were identical at 95% of loci. There was a small decrease in the number of cholinergic basal forebrain neurons in p75 knockout mice at four months of age compared with controls. This difference was no longer apparent at 15 months due to a reduction in numbers in control mice between the ages of 4 and 15 months. Cholinergic cell size in the basal forebrain was markedly increased in p75 knockout mice compared with controls. Spatial learning performance was consistently better in p75 knockout mice than in controls, and did not show any deterioration with age. The results indicate that p75 exerts a negative influence on the size of cholinergic forebrain neurons, but little effect on neuronal numbers. The markedly better spatial learning suggests that the function, as well as the size, of cholinergic neurons is negatively modulated by p75. 相似文献
12.
Katsunori Ohnishi Hidekazu Tomimoto Ichiro Akiguchi Naoyuki Seriu Toshio Kawamata Shinichi Nakamura Jun Kimura Takeshi Nishio Keiichi Higuchi Masanori Hosokawa 《Acta neuropathologica》1995,90(1):11-16
The senescence-acceleratedmouse P10 (SAMP10) is a murine model of accelerated senescence characterized by the deterioration of learning and memory with advancing age. In the present study, we examined the distribution of nerve growth factor (NGF) immunohistochemically in SAMP10 mice and its control strain, SAMR1. In both strains, NGF-like immunoreactivity (NGF-IR) was observed in neurons throughout the entire forebrain and in glial cells in a particular location. In aged SAMP10 mice, each layer of the cerebral cortex retained its NGF-IR, although the thickness of the cortical mantle was markedly decreased in comparison with younger animals. There was an age-related decline in NGF-IR in the substantia innominata of SAMP10 mice at the age of 10 months, when compared to 2-month-old SAMP10. These results indicate age-related decrease of NGF in the basal forebrain in SAMP10 mice. 相似文献
13.
The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex. 相似文献
14.
S. Roßner Reinhard Schliebs J. R. Perez-Polo R. G. Wiley V. Bigl 《Journal of neuroscience research》1995,40(1):31-43
The aim of this study was to characterize the effects of cortical cholinergic denervation on cholinergic parameters in the cerebral cortex and basal forebrain using a novel immunotoxin (conjugate of the monoclonal antibody 192IgG against the low-affinity nerve growth factor receptor armed with cytotoxin saporin) to efficiently and selectively lesion cholinergic neurons in rat basal forebrain. Seven days following an intracerebroventricular injection of the cholinergic immunotoxin 192IgG-saporin the binding levels of nicotinic and M1- and M2-muscarinic acetylcholine receptors (mAChR), high-affinity choline uptake sites, as well as the m1-m4 mAChR mRNA were determined in coronal brain sections by both receptor autoradiography and in situ hybridization, and quantified by image analysis. Hemicholinium-3 binding to high-affinity choline uptake sites was decreased by up to 45% in all cortical regions and in the hippocampus after a single injection of the immunotoxin compared to controls. In contrast, M1-mAChR sites were increased over the corresponding control value in the anterior parts of cingulate, frontal, and piriform cortex by about 20%, in the hindlimb/forelimb areas (18%), in the parietal cortex (35%), in the occipital cortex area 2 (17%), as well as in the temporal cortex (25%) following immunolesion. M2-mAChR levels were found to be significantly increased in the posterior part of the parietal cortex area 1 (by about 22%) and in the occipital cortex area 2 (20%) only. With respect to laminar cortical localization, M2-mAChRs and choline uptake sites were altered in all cortical layers, whereas M1-mAChRs were preferentially affected in the upper cortical layers by the immunolesion. The increase in M1-mAChR binding in the temporal and occipital cortex as a consequence of the immunolesion was complemented by an increase in the amount of m1 and m3 mAChR mRNA of about 20% in these regions. The elevated levels of M2-mAChR sites in the occipital and temporal cortex following immunolesion were accomplanied by an increase in the m4 (by 25%) but not m2 mAChR mRNA. There was no effect of the immunolesion on the m1-m4 mAChR mRNA in frontal cortical regions. In the basal forebrain, however, immunolesioning caused about a 40% decrease in the level of m2 mAChR mRNA in the medial and lateral septum as well as in the vertical and horizontal limb of the diagonal band, whereas M1- and M2-mAChR binding and the levels of m1, m3, and m4 mAChR mRNA were not affected by the immunolesion in any of the basal forebrain nuclei studied. Seven days after a single dose of the 192IgG-saporin immunotoxin there was no change in the level of cortical nicotinic acetylcholine receptor sites in any of the regions studied compared to corresponding controls. The region-specific changes in the level of M1- and M2-mAChRs, as well as corresponding receptor gene expression and the lack of effects on cortical nicotinic receptors, may be part of an adaptive mechanism in response to cholinergic degeneration. These data further support the usefulness of the 192IgG-saporin conjugate as an appropriate tool to produce cortical cholinergic dysfunction. © 1995 Wiley-Liss, Inc. 相似文献
15.
The degree of lesion produced by 192 IgG-saporin relative to controls was compared using three independent methods. Microdialyzed acetylcholine (ACh), choline acetyltransferase (ChAT) activity, and the rate of ACh synthesis were compared in the frontal cortex and hippocampus. Microdialysis of rats was performed 1 and 15 weeks post-lesion. In week 16, the rats were sacrificed after an injection of deuterated choline (Ch) for determination of the rate of ACh synthesis. ChAT activity was determined at the same timepoints in a separate set of rats. At 1 week, ChAT activity and microdialyzed ACh showed similar degrees of depletion. At 15 weeks, microdialyzed ACh was significantly lower than the synthesis rate in cortex, but not in hippocampus. A small increase in ChAT activity between 1 and 15 weeks was found in the cortex, but not hippocampus. In the hippocampus, however, the rate of ACh synthesis was significantly greater than ChAT activity. This was true for two doses of immunotoxin; the greater compensation occurring with the lesser lesion. Microdialyzed ACh levels were not different from the other measures in hippocampus. Residual cholinergic terminals in the hippocampus, but not frontal cortex, compensate for a selective cholinergic lesion by increasing the rate of synthesis and may thereby alleviate hippocampus-dependent behavioral deficits. 相似文献
16.
The postnatal development of basal forebrain cholinergic projections to the medial prefrontal cortex in mice was analyzed by means of the double labeling track-tracing study. The tracer was injected into the medial prefrontal cortex of mice, on the day of birth (P0) to 60 days after birth. The total number of basal forebrain neurons increased from P4 to P8, and began to decrease until P13 (52.9% vs. the maximal average (P8)). After P13, the mean average remains stable up to P60. On the other hand, differential pattern of frontocortical projections of the anterior, intermediate, and posterior regions can be observed. 相似文献
17.
Administration of muscarinic cholinergic antagonists such as scopolamine impairs the acquisition of contextual fear conditioning, but the role of the basal forebrain (BF) cholinergic system in consolidation is unclear. To test the hypothesis that BF cholinergic neurons are critical for acquisition and consolidation of fear conditioning, male Sprague-Dawley rats with 192 IgG-saporin lesions of the entire cholinergic BF made either before or after fear conditioning were tested for conditioned fear to context and tone by assessing freezing and 22 kHz ultrasonic vocalization (USV) responses. Spatial learning in a 1-day water maze task provided a comparison for effects of the BF lesions on fear conditioning. In the test phase, neither pre-training nor posttraining BF lesions affected freezing to the context or tone. During both training and testing, pre-lesioned rats were impaired in production of USVs associated with fear. Postlesioned rats emitted fewer USVs only during testing. Acquisition of a spatial water maze task was mildly impaired in lesioned rats, although probe trial and cued performance was unimpaired. Nevertheless, these data suggest that conditioned fear-induced USVs are more sensitive to the loss of BF cholinergic neurons than is conditioned fear-induced freezing. The failure of BF cholinergic lesions to impair contextual fear conditioning indicates that scopolamine-induced impairments in fear conditioning may not be mediated by affecting cholinergic input to the hippocampus and neocortex. 相似文献
18.
Enomoto T Ishibashi T Tokuda K Ishiyama T Toma S Ito A 《Behavioural brain research》2008,186(2):197-207
We have previously shown that lurasidone, a novel atypical antipsychotic, potently reverses learning impairment induced by the N-methyl-D-aspartate receptor antagonist MK-801 in the rat passive avoidance test. However, the effects of lurasidone in other learning and memory tasks remain to be investigated. We investigated the effects of lurasidone and other marketed antipsychotics (risperidone, clozapine, aripiprazole, and haloperidol) on MK-801-induced impairment of learning and memory in the Morris water maze (MWM) and radial-arm maze (RAM) tests in rats. Learning and memory impairment in the MWM test, as measured by escape latency, escape distance, and diving behavior, and in the RAM test, as measured by reference and working memory errors, was induced by MK-801 (i.p.) at doses of 0.15 and 0.2 mg/kg, respectively. In the MWM test, lurasidone (1 and 3 mg/kg p.o.) potently reversed MK-801-induced learning impairment. In the RAM test, lurasidone (1 and 3 mg/kg p.o.) potently reversed MK-801-induced reference memory impairment and moderately but not significantly attenuated MK-801-induced working memory impairment. Risperidone (0.3 and 1mg/kg p.o.), clozapine (3 and 10 mg/kg p.o.), aripiprazole (0.3 and 1mg/kg p.o.), and haloperidol (0.3 and 1mg/kg p.o.) did not reverse MK-801-induced impairment of learning and memory in both tasks. Lurasidone, but not the other antipsychotics tested in this study, reverses MK-801-induced impairment of learning and memory in both the MWM test and the RAM test. These results suggest that lurasidone would be more effective in treating schizophrenics with cognitive dysfunction than current antipsychotics. 相似文献
19.
In brains of Alzheimer's disease (AD) patients, expression of the neuropeptide galanin is significantly upregulated and galanin-immunoreactive fibers hypertrophy and hyperinnervate cholinergic neurons of the basal forebrain. However, the role of galanin in AD, whether it is detrimental or neuroprotective, remains controversial. In this study, using primary cultured neurons from the rat basal forebrain, we show that pretreatment with galanin protects cholinergic neurons against beta-amyloid-induced apoptotic cell death as judged by visual observation, MTT assay, Live/dead cell assay, TUNEL and cleaved caspase-3 staining. These effects are mimicked by the galanin receptor 2 (GALR2) agonist, AR-M1896. Western blot analysis revealed Abeta-induced decrease in phospho-PKC and phospho-Akt levels was reversed by galanin. Galanin also attenuated cleavage of caspases-3 and -9 following exposure to Abeta. These findings support a neuroprotective role for galanin and may have implications for development of compounds based on this peptide to treat AD. 相似文献
20.
Norbert Vnek Lawrence F. Kromer Ronald G. Wiley Lawrence A. Rothblat 《Brain research》1996,710(1-2):265-270
Rats with near complete destruction of basal forebrain cholinergic neurons from intracerebroventricular injections of 192 IgG-saporin were trained on object discrimination problems and then retrained two weeks later to measure retention. Despite dramatic reductions of acetylcholinesterase-positive fibers in hippocampus and neocortex, these animals did not differ from controls on an analysis of savings scores. Thus, the basal forebrain cholinergic system may serve functions that support non-spatial memory but are not specifically mnemonic in nature. 相似文献