首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Dual chamber pacemaker programmability allows the possibility of atriallytracked ventricular pacing in patients who would otherwise have intrinsic atrioventricular (AV) conduction. Thirteen patients with permanent AV sequential pacemakers (ages 50–79) were evaluated with paired exercise tests to determine the Cardiopulmonary effects of pacemaker induced right ventricular activation compared with normal AV and intraventricular conduction. Peak oxygen uptake (VO2), oxygen pulse (O2P), respiratory rate (RR), and respiratory exchange ratio (RER) were determined using breath by-breath analysis of expired gases. Patients exercised to fatigue and exercise tests were performed in random sequence. For patients with intrinsic AV conduction (group I, n = 8) the AV delay was programmed to preserve intrinsic conduction during one study; the alternate test used AV delay programming to produce ventricular pacing. Five patients with chronic AV block (group II) acted as a control for the effects of a rate adaptive AV delay compared to a fixed AV delay. Paired t-testing showed a significantly lower peak VO2 (P < 0.015) and O2P (P < 0.01) in patients with atrially-tracked ventricular pacing compared to intrinsic conduction. In contrast, group II showed a significant improvement in peak VO2 with rate adaptive AV delay compared to fixed AV delay programming (P < 0.05). In conclusion, intrinsic conduction should be preserved in patients with dual chamber pacemakers whenever possible.  相似文献   

2.
This study examined the acute and long-term effects of DDD pacing on ergospirometric parameters and neurohormonal activity in patients with hypertrophic obstructive Cardiomyopathy (HOCM). We studied eight patients (five males), aged 56 ± 7 years, with HOCM refractory to drugs. In all patients a DDD pacemaker was implanted and programmed with an atrioventricular (AV) delay that insured full ventricular activation. The patients underwent echocardiographic examination and exercise stress testing before and 3 days, 3 months, and 12 months after pacemaker implantation. Oxygen consumption was measured at the anaerobic threshold (VO2AT) and peak exercise (pVO2). Atrial natriuretic peptide (ANP) and cyclic adenosine monophosphate (c-AMP) levels were measured concomitantly. Left ventricular outflow tract (LVOT) pressure gradient decreased significantly from 70 ± 18 to 25 ± 12 mmHg (P < 0.05) 3 days after pacing and remained unchanged at 3 and 12 months. pVO2 and VO2AT increased significantly, from 20.1 ± 3 to 23.4 ± 3 mL/kg/min and from 16 ± 3 to 17.8 ± 2 mL/kg/min, respectively (P < 0.05). This improvement continued up to 3 months, and then remained stable until the end of the 12-month follow-up period. ANP levels decreased at 3 days from 85.4 ± 5.7 to 75.4 ± 7.3 fmol/mL (P < 0.05), and remained unchanged over the 12 months. c-AMP levels did not change significantly after the onset of pacing. DDD pacing in patients with HOCM not only reduces the LVOT pressure gradient but also causes a significant early and long-term improvement in exercise capacity and neurohormonal profile.  相似文献   

3.
Background: Atrial rate-adaptive pacing may improve cardiopulmonary reserve in patients with left ventricular dysfunction.
Methods: A randomized, blinded, single-crossover design enrolled dual-chamber implantable defibrillator recipients without pacing indications and an ejection fraction ≤40% to undergo cardiopulmonary exercise treadmill stress testing in both atrial rate-adaptive pacing (AAIR) and ventricular demand pacing (VVI) pacing modes. The primary endpoint was change in peak oxygen consumption (VO2). Secondary endpoints were changes in anaerobic threshold, perceived exertion, exercise duration, and peak blood pressure.
Results: Ten patients, nine males, eight with New York Heart Association class I, mean ejection fraction 24 ± 7%, were analyzed. Baseline VO2 was 3.6 ± 0.5 mL/kg/min. Heart rate at peak exercise was significantly higher during AAIR versus VVI pacing (142 ± 18 vs 130 ± 23 bpm; P = 0.05). However, there was no difference in peak VO2 (AAIR 23.7 ± 6.1 vs VVI 23.8 ± 6.3 mL/kg/min; P = 0.8), anaerobic threshold (AAIR 1.3 ± 0.3 vs VVI 1.2 ± 0.2 L/min; P = 0.11), rate of perceived exertion (AAIR 7.3 ± 1.5 vs VVI 7.8 ± 1.2; P = 0.46), exercise duration (AAIR 15 minutes, 46 seconds ± 2 minutes, 54 seconds vs VVI 16 minutes, 3 seconds ± 2 minutes, 48 seconds; P = 0.38), or peak systolic blood pressure (AAIR 155 ± 22 vs VVI 153 ± 21; P = 0.61) between the two pacing modes.
Conclusion: In this study, AAIR pacing did not improve peak VO2, anaerobic threshold, rate of perceived exertion, or exercise duration compared to VVI backup pacing in patients with left ventricular dysfunction and no pacing indications.  相似文献   

4.
Dual chamber, rate responsive (DDDR) pacing is felt to be superior to ventricular, rate responsive (VVIR) pacing since it more closely mimics the normal electrical and hemodynamic activity of the heart. This reasoning has been used to justify the higher initial costs and increased complexity of dual chamber systems. This study was designed to determine if objective criteria could be identified during acute testing to justify implanting a dual chamber instead of a single chamber system in patients with left ventricular dysfunction. Eight patients with DDDR pacemakers (implanted for chronotropic incompetence) and left ventricular dysfunction underwent exercise radionuclide angiography and graded exercise treadmill testing. Each patient performed the tests in the single (VVIR) and dual (DDDR) chamber modes in a randomized, blinded fashion. We found that objective parameters such as ejection fraction (31%± 13% vs 31%± 10%), exercise tolerance (6.1 ± 2.7 min vs 6.3 ± 2.9 min), oxygen consumption (VO2) (941 ± 286 mL/min vs 994 ± 314 mL/min), carbon dioxide production (VCO2) (995 ± 332 mL/min vs 1054 ± 356 mL/min), and maximum attainable workload (43 ± 24 W vs 46 ± 22 W) did not differ between the single and dual chamber pacing modes. These findings suggest that in the acute setting, the additional cost and complexity of dual chamber, rate responsive pacing cannot be justified by objective improvements in exercise tolerance in patients with underlying left ventricular dysfunction.  相似文献   

5.
Cardiac stimulation threshold of implanted pacemakers may be influenced by a variety of endogenous and exogenous factors. High altitude provokes hypoxemia, which may change stimulation thresholds, besides causing other important physiological changes. The aim of our study was to investigate the influence of high altitude on ventricular stimulation thresholds in pacemaker patients. Thirteen patients (10 men; aged 65.5 ± 4.8 years) with implanted single chamber pacemakers (nine with Pacesetter Regency SR+ with the Autocapture feature) were exposed to an altitude of 4,000 m above sea level, as simulated in a hypobaric chamber. Stepwise ascension was performed with a speed of 5 m/s starting at 450 m above sea level. A 5-minute rest was performed every 500 m to measure stimulation threshold at each step. After a stay of 30 minutes at 4,000 m stimulation threshold was measured, followed by a stepwise descent. Pacemaker interrogation and arterial blood gas analysis were performed at 450 and at 4,000 m, and a strength-duration curve was determined. Blood pressure, heart rate, and oxygen saturation were monitored continuously during the study. Ascent to 4,000 m above sea level induced a significant decrease in arterial pO2 (10.7 ± 1.1 vs 5.5 ± 0.3 kPa), pCO2 (5.3 ± 0.3 vs 4.7 ± 0.4 kPa), oxygen saturation measured by arterial blood gas analysis (95.5%± 1.2% vs 79.1%± 2.5%), and increase in pH (7.39 ± 0.02 vs 7.45 ± 0.04) (P < 0.0001). Stimulation thresholds and the strength-duration curve remained unchanged in all patients throughout the study. In conclusion, exposure to an altitude of 4,000 m above sea level with resultant hypobaric hypoxemia has no impact on ventricular stimulation thresholds. Therefore, in regard to the safety of pacing, pacemaker patients can safely be exposed to this altitude.  相似文献   

6.
The present study examined alterations in left atria! diameter (LAD) and diastolic left ventricular diameter (LVDd) in 37 patients (72.2 ± 9.8 years old) who received physiological pacemakers; 22 with atrioventricular (AV) block and 15 with sick sinus syndrome (SSS). After pacemaker implantation, LAD and LVDd were serially measured using echocardiography, and their diameters ware expressed per body surface area (LADI and LVDdl; mm/m). Pulmonary capillary wedge pressure (PCWP) and cardiac output (CO) were measured in ten patients with SSS and ten with AV block during both right ventricular and AV sequential pacing. After AV sequential pacing, CO increased in 19 of 20 patients (3.2 ± 0.9 L/min to 3.9 ± 1.0 L/min: P < 0.001). LADI decreased from 24.9 ± 4.2 mm/m2 to 21.8 ± 4.4 mm/m2 (P < 0.001) in 22 patients with AV block and from 24.1 ± 3.4 mm/m2 to 20.4 ± 3.8 mm/m2 (P < 0.001) in 15 SSS patients. However, LVDdl did not change significantly in either group of patients. The changes in LAD after the implantation of a physiological pacemaker occurred rapidly, i.e. LAD began to decrease within 1 minute after the procedure, and then reached a plateau. This plateau phase continued for at least 7 days during physiological pacing. There was a positive correlation between the changes in LADI after pacemaker implantation and those in PCWP observed during the AV sequential pacing performed prim- to the implantation (r = 0.86; P < 0.001). The reduction in LAD following pacemaker implantation was rapid and seemed to be accompanied by improvement of cardiac function. Thus, it is suggested that the serial measurement of LADI is useful to predict the efficacy of physiological pacemaker implantation.  相似文献   

7.
YABEK, S.M., ET AL.: Rate-Adaptive Cardiac Pacing in Children Using a Minute Ventilation Biosensor. Chronotropic integrity is required for a normal cardiac output response to exercise. We evaluated a rate-adaptive ventricular demand pacemaker (Telectronics, META-MV) which uses minute ventilation as the sensed physiological variable for adjusting pacing rate, in seven young patients with a mean age of 11.4 years. All patients had clinically significant bradycardia related to complete heart block (n = 4) or sinus node dysfunction (n = 3). For the entire group, paced heart rates increased from 70 ± 10 beats/min to 151 ± 19 beats/min with exercise testing. The onset of rate adaptation took < 30 seconds. Changes in paced rate were linearly related to workload, VO2 (5.9 to 20.7 mL/min/kg) and minute ventilation (8–65 L/min). The decline in pacing rate after exercise was related directly to the gradual decrease in minute ventilation and VO2. Our data show that minute ventilation closely and accurately reflects the metabolic demands of varying workloads in children and can be used to achieve physiological, rate-adaptive pacing.  相似文献   

8.
The physiological benefits of activity sensing rate responsive ventricular pacing)VVIR) over fixed rate pacing)VVI) were investigated in 14 children during incremenlal cycle exercise. Based on their heart rhythm response during exercise, children were divided into two groups. Group I patients)13 ± 4 years) remained in a paced-only rhythm when exercised. Group II patients)16 ± 7 years) were paced at rest but converted to sinus rhythm with exercise. In Group I patients, the significant physioJogicol benefits of VVIR over VVI pacing were evidenced hy a 51% increase in peak heart rate)HRmax) and a 16% increase in exercise duration and maximum oxygen uptake)VO2max). Additionally, a 27% reduction in peak oxygen pulse)O2Pmax) was found, reflecting a similar decrease in stroke volume. The cardiorespiraiory responses of Group I and 11 patients were compared in terms of percent of predicted normal values. Although Group I patients in the VVIR mode attained a better exercise performance than in the VVI mode and a normal O2Pmax)108% pred). their HRmax)62% pred) and VO2max)70% pred) fell far below normal values. In comparison. Group II patients, who went into sinus rhythm, achieved normal values for HRmax)84% pred), VO2max)90% pred), and O2Pmax)97% pred). The higher pacing rates attained by Group I patients in the VVIR mode may have allowed them to reach not only a higher cardiac output but also a more normal stroke volume at peak exercise than in the VVI mode. However, the overall exercise performance of children paced in the VVI and VVIR modes were significantly diminished compared to the performance of children who went into sinus rhythm with exercise.)  相似文献   

9.
COOK, L., et al. : Impact of Adaptive Rate Pacing Controlled by a Right Ventricular Impedance Sensor on Cardiac Output in Response to Exercise. This study examined the effects of adaptive rate pacing controlled by closed-loop right ventricular impedance sensing on exercise hemodynamics. Twelve patients in whom Biotronik INOS2+ pacemakers had been implanted 4–6 weeks earlier participated in the study. All patients completed two graded, symptom-limited exercise tests. The pacemaker was programmed to DDDR with an upper rate limit of 75–85% of the age-predicted maximum heart rate and a lower rate limit of 45–60 ppm. Heart rate was recorded continuously. An average of 5 beats during the last 10 seconds of each exercise stage was used in the analysis. Oxygen uptake (VO2) was measured using open circuit spirometry. The VO2 values from the final 15 seconds of each exercise stage were used for analysis. Stroke volume and cardiac output were measured during the last minute of each stage using impedance cardiography. The test-retest reliability of heart rate and cardiac output responses to graded exercise was assessed using repeated measures analysis of variance, for which the reliability coefficients were r = 0.993 and r = 0.954, respectively (P < 0.01). There were significant correlations (P < 0.01) between VO2 and heart rate and between VO2 and cardiac output, with correlation coefficients of r = 0.907 and r = 0.824, respectively. This method of adaptive rate pacing produced reliable, positive hemodynamic responses to graded exercise on a test-retest basis. (PACE 2003; 26:[Pt. II]:244–247)  相似文献   

10.
Direct His-Bundle Pacing:   总被引:4,自引:0,他引:4  
Direct His-bundle pacing (DHBP) produces rapid sequential multisite synchronous ventricular activation and, therefore, would be an ideal alternative to right ventricular apical (RVA) pacing. In 54 patients with cardiomyopathy, ejection fraction (EF) 0.23 ± 0.11, persistent atrial fibrillation, and normal QRS < 120 ms. DHBP was attempted. This was successful in 39 patients. In seven patients, the effect of increasing heart rate on contractility (Treppe effect) was investigated. Twelve patients who also received a RVA lead underwent cardiopulmonary testing. After a mean follow-up of 42 months, 29 patients are still alive with EF improving from 0.23 ± 0.11 to 0.33 ± 0.15. Functional class improved from 3.5 to 2.2. DP/dt increased at each pacing site (P < 0.05) as the heart rate increased to 60, 100, and 120 beats/min. Rise in dP/dt by DHBP pacing at 120 beats/min was at least 170 ± mmHg/s, greater than any other site in the ventricle (P < 0.05). Cardiopulmonary testing revealed longer exercise time (RVA 255 ± 110 s) (His 280 ± 104 s) (P < 0.05), higher O2 uptake (RVA 15 ± 4 mL/kg per minute) (His 16 ± 4 mL/kg minute) (P < 0.05), and later anaerobic threshold (RVA 126 ± 71 s) (His 145 ± 74 s) (P < 0.05) with DHBP compared to RVA pacing. Long-term DHBP is safe and effective in humans. DHBP is associated with a superior Treppe effect and increased cardiopulmonary reserve when compared to RVA pacing. (PACE 2004; 27[Pt. II]:862–870)  相似文献   

11.
Our objective was to determint; the adequate pacing rate during exercise in ventricular pacing by measuring exercise capacity, cardiac output, and sinus node activity. Eighteen patients with complete AV block and an implanted pacemaker underwent cardiopulmonary exercise tests under three randomized pacing rates: fixed rate pacing (VVJ) at 60 beats/min and ventricular rate-responsive pacing (VVIR) programmed to attain a heart rate of about 110 beats/min ar 130 beats/min (VVIR 110 and VVIR 130, respectively) at the end of exercise. Compared with VVI and VVIR 130, VVIR 110 was associated with an increased peak oxygen uptake(VVIR 110:20.3 ± 4.5 vs VVI: 16.9 ± 3.1; P < 0.01; and VVIR 130: 19.0 ± 4.1 mL/min per kg, respectively; P < 0.05) and a higher oxygen uptake at anaerobic threshold (15.3 ± 2.7, 12.7 ± 1.9; P < 0.01, and 14.6 ± 2.6 mL/min per kg; P < 0.05). The atrial rate during exercise expressed as a percentage of the expected maximal heart rate was lower in VVIR 110 than in VVI or VVIR 130 (VVIR 110: 75.9%± 14.6% vs VVI: 90.6%± 12.8%; P < 0.01; VVIR 110 vs VVIR 130: 89.1%± 23.1%; P < 0.05). There was no significant difference in cardiac output at peak exercise between VVIR 110 and VVIR 130. We conclude that a pacing rate for submaximal exercise of 110 beats/min may be preferable to that of 130 beats/min in respect to exercise capacity and sympathetic nerve activity.  相似文献   

12.
Although the beneficial effects of DDD pacing are well known, currently available ICDs provide only fixed rate ventricular antibradycardia pacing. In a consecutive series of 139 patients with ICDs, we have analyzed the need for antibradycardia pacing and the indications for DDD pacing. We also report our initial experience with the Defender 9001 (ELA Medical, France) DDD-ICD. Out of 139 patients, 25 (18%) were in need of antibradycardia pacing. Ten patients already had a pacemaker at the time of ICD implantation and ten other patients had a conventional pacemaker indication at that time. Five patients became pacemaker dependent during a follow-up of 20 ± 8 months. The disorders necessitating pacemaker therapy were high degree AV conduction disturbances in 72%, sick sinus syndrome in 12%, and AF with a slow ventricular response in 16% of patients. Based upon current indications, DDD pacing was indicated in 20 (80%) of 25 patients. The Defender 9001 DDD-ICD (ELA Medical) was used in two patients with ischemic cardiomyopathy and pacemaker syndrome with VVI pacing. Cardiac output during DDD pacing increased by 36% in one patient with an increase in VO2 max during exercise of 29%. The other patient showed an increase in cardiac output of 50% with DDD pacing, and, while unable to exercise with VVI pacing, had a VO2max of 24 mL/kg per minute during DDD pacing. Up to 18% of our ICD patients are in need of antibradycardia pacing. Of these pacemaker dependent patients, 80% have an indication for DDD pacing. Our first clinical experience with a DDD-ICD confirms the hemodynamic benefit of AV synchronous pacing in ICD patients with pacemaker syndrome.  相似文献   

13.
Fourteen patients were implanted with a single chamber dual sensor pacemaker (Legend Plus®) that measures minute ventilation (VE) via variations in impedance between a bipolar lead and the pacemaker case, and activity via a piezoelectric crystal bonded to the pacemaker case. Chronotropic incompetent patients were exercised an a treadmill and a bicycle in dual sensor mode. Activity only indicated pacing rate was measured using a strap-on pacemaker. Both implanted and strap on pacemakers were adjusted to yield a steady-state pacing rate of 100 beats/min during hall walk. Pacing rate, VE, and oxygen uptake (VO2) were measured continuously. Linear curve fit analysis slopes for plots of VE versus pacing rate during exercise (1.33-1.49) compared favorably to values reported in normals. Peak pacing rates achieved for treadmill and bicycle testing for dual sensor mode were higher than activity mode alone. Slopes of heart rate to VE or VO2 were not significantly different (P < 0.05) for dual sensor mode in contrast to activity alone. In conclusion, the Legend Plus dual sensor rate adaptive pacing therapy delivered pacing rates more proportional to VE and VO2 under different types of exercise than rates indicated by a strap-on pacemaker in activity mode.  相似文献   

14.
A new rate adaptive pacemaker (Sensorithm) controlled by an activity sensor providing electrical signals induced by a magnetic ball moving freely in an elliptical cavity surrounded by two copper coils, was implanted in ten patients; mean age of 75 years (range 64–89). Six patients had atrioventricular block and four had sinus node disease. In auto-set testing procedure during a 1-minute walk in the corridor, a slope resulting in a maximum rate of 95 beats/min was selected in every patient, and a medium reaction time was programmed. During graded treadmill exercise tests the heart rate increased 63 ± 7 beats/min to 135 ± 6 beats/min in rate adaptive pacing mode (VVIR), and 15 ± 6 beats/min (P < 0.0001) in ventricular pacing mode (VVI). The symptom-limited exercise time was 9.1 ± 1.1 minutes and 8.2 ±1.2 minutes (P = NS), and the exercise distance was 501 ± 95 meters and 428 ± 92 meters (P < 0.05) in VVIR and VVI pacing mode, respectively. The maximum oxygen uptake was 20.6 ± 2.6 mL/kg per minute in VVIR pacing and 18.1 ± 2.1 mL/kg per minute (P < 0.05) in VVI pacing. The delay time until the pacing rate increased 10% of the total rate increase at onset of treadmill exercise was 4.4 ± 0.7 seconds. Assuming a linear relation between metabolic workload and heart rate response from rest to the age predicted maximum heart rate, a deviation of heart rate ranging from 13.5 ± 11.2% to –1.6 ± 5.2% from the expected heart rate at mid-point and endpoint of each quartile of workload was observed during treadmill testing. Conclusions : By using a 1 -minute walk test for selecting an appropriate slope setting, Sensorithm provided a significant and proportional heart rate increase during exercise resulting in an improvement of exercise capacity during VVIR pacing compared to VVI pacing.  相似文献   

15.
Following successful BF ablation of the atrioventricular node (AVN), temporary pacing is necessary prior to insertion of a permanent pacemaker. The risks and inconvenience of temporary pacing could be avoided if a permanent pacemaker is already in place. This study reports the feasibility of RF ablation of the AVN in 27 patients (age 55 ± 17 years, 15 males) with hypertrophic cardiomyopathy and pacemakers, Indications for AVN ablation were drug refractory atrial fibrillation in 24 patients, and rapid AVN conduction preventing septal pre-excitation by DDD pacemaker, inserted for relief of left ventricular outflow obstruction, in three cases. Sixteen patients had DDD devices and 11 patients had VVI devices. During RF ablation, each pacemaker was programmed to VVI at 50 beats/min. The ablation catheter was manipulated with fluoroscopic control to avoid close contact with or disturbance of the pacing leads. In 16 patients, RF ablation was performed immediately following pacemaker implantation but in the remaining patients, the AVN was ablated 6–32 months after pacemaker implantation. The power applied was 25–50 watts for a duration of 15–60 seconds. AV block was achieved in all cases but required 34 ± 36 applications for 16.5 ± 17.8 min/case. RF ablation consistently caused reversion to magnet rate in one patient and temporarily inhibited appropriate pacemaker discharge in another. However, no other pacemaker or lead malfunction was detected so that temporary pacing was not required in any case. At 6 ± 3 months follow-up, all pacemakers were functioning normally without alteration in pacing parameters from baseline. Thus. RF ablation of the AVN can be performed safely in the presence of a recently implanted permanent pacemaker, without temporary pacing.  相似文献   

16.
Dual chamber pacemakers were implanted in nine patients with permanent second or third degree AV block feight had complete retrograde block). Two identical exercise tests were performed after at least 1 month after implantation. During the first test (T1) the pacemaker was programmed to the DDD mode and heart rates were recorded every 15 to 30 seconds during exercise and 30 minutes after exercise. Following 30 minutes of rest, the implanted pacemaker was programmed to the VVT mode and driven by an external pacemaker via a skin electrode. The second exercise test (T2) was then performed and the rate of the external pacemaker was progressively changed to reproduce exactly the rate observed during T1 at the same exercise stress. Atrial natriuretic factor (ANF) levels were determined at rest, at regular intervals during exercise, and 30 minutes after exercise. ANF levels and release were statistically higher during rate matched ventricular, than DDD pacing. It is concluded that preservation of AV synchrony reduces ANF release induced by heart rate acceleration during exercise.  相似文献   

17.
Rate Adaptive Atrial Pacing in the Bradycardia Tachycardia Syndrome   总被引:1,自引:0,他引:1  
In 42 patients (26 men, 16 women; mean age 69 ± 10 years), who were paced and medicated with antiarrhythmic drugs for the bradycardia tachycardia syndrome, chronotropic response and AV conduction with rapid atrial pacing during exercise were studied. Patients were included if they had no second- or third-degree AV block, no complete bundle branch or bifascicular block, and a PQ interval ≤ 240 ms during sinus rhythm at rest. The interval between the atrial spike and the following Q wave (SQ) was measured in the supine position at rest with an AAI pacing rate of 5 beats/min above the sinus rate (SQ-R+5), and at the end of exercise with 110 beats/min (SQ-E110). Bicycle ergometry was performed using the Chronotropic Assessment Exercise Protocol with the pacemakers being programmed to AAI with a fixed rate of 60 beats/min. Chronotropic incompetence was defined as peak exercise heart rate: (1) < 100 beats/min; (2) < 75% of the maximum predicted heart rate; or (3) the heart rate at half the maximum workload < 60 + 2 beats/min per mL O2/kg per minute (calculated O2 consumption). During exercise, one patient developed atrial fibrillation. Chronotropic incompetence was present in 71 % (29/41) of the patients according to definition 2, and in 76% (31/41) according to definition 1 or 3. Ten out of 41 patients (24%) exhibited a second-degree AV block with atrial pacing at 110 beats/min at the end of exercise. Only 9 out of the remaining 31 patients (29%) showed a physiological adaptation of the SQ-E110, and 21 patients (68%) exhibited a paradoxical increase of the SQ interval with rapid atrial pacing at the end of exercise as compared to the SQ-R+5. These observations indicate that the pacing system to be used in most patients paced and medicated for the bradycardia tachycardia syndrome should be dual chamber, and the option of rate adaptation should be considered.  相似文献   

18.
RF current delivery may cause acute and chronic dysfunction of previously implanted pacemakers. The aim of this study was to assess prospectively the effects of RF energy on Thera I and Kappa pacemakers in 70 consecutive patients (mean age 70 ± 11 years, mean left ventricular ejection fraction 48 ± 15%) who underwent RF ablation of the AV junction for antiarrhythmic drug refractory atrial fibrillation (permanent in 42 patients, paroxysmal in 28). These pacing systems incorporate protection elements to avoid electromagnetic interference. The pacemakers (Thera DR 7960 I in 20 patients, Thera SR 8960 1 in 30, Kappa DR 600–601 in 8, Kappa SR 700–701 in 12) were implanted prior to RF ablation in a single session procedure and were transiently programmed to VVI mode at a rate of 30 beats/min. Capsure SP and Z unibipolar leads were used. During RF application there was continuous monitoring of three ECG leads, endocavitary electrograms, and event markers. Complete AV block was achieved in all cases after 3.6 ± 2.9 RF pulses and 100 ± 75 seconds of RF energy delivery. The mean time of pacemaker implantation and RF ablation was 60 ± 20 minutes. Transient or permanent pacemaker dysfunction including under/oversensing, reversion to a "noise-mode" pacing, pacing inhibition, reprogramming, or recycling were not observed. Leads impedance, sensing, and pacing thresholds remained in the normal range in the acute and long-term phase (average follow-up 18 ± 12 months). In conclusion, Thera I and Kappa pacemakers exhibit excellent protection against interference produced by RF current. The functional integrity of the pacemakers and Capsure leads was observed in the acute and chronic phases. Thus, the implantation of these pacing systems prior to RF ablation of the AV junction can be recommended.  相似文献   

19.
To identify the effect of chronotropic responsive cardiac pacing on the ventilatory response to exercise, ten selected patients with complete atrioventricular block underwent paired cardiopulmonary exercise tests in fixed rate ventricular (WI) and dual chamber (DDD) or rate responsive ventricular (VVIR) pacing modes. Compared to VVI pacing, DDD or VVIR pacing increased peak oxygen uptake (P < 0.005) and augmented anaerobic threshold (P < 0.001), In eight patients, dyspnea was the major symptom limiting exercise with VAT pacing and this was markedly attenuated with DDD or VVIR pacing. In all patients, ventilation (VE) and the ratio of ventilation to CO2 production (VE/VCO2) were consistently higher with VVI pacing during exercise. To compare the response of the two pacing modes at the same workloads in an aerobic condition, we measured ventilatory variables 1 minute prior to the anaerobic threshold obtained with VVI pacing. When DDD or VVIR pacing was compared with VVI pacing, VE and VE/VCO2 significantly decreased from 20.5 ± 5.3 L/min to 18.3 ± 5.0 L/min (P < 0.005) and from 35.9 ± 5.8 to 31.9 ± 5.0 (P < 0.003), respectively. Respiratory frequency rose significantly more with VVI pacing (P < 0.001) despite an unchanged tidal vohame. Although peak VE did not differ between the two pacing modes, VE/VCO2 at the peak exercise increased significantly more with VVI pacing (P < 0.005). Respiratory frequency also rose more with VVI pacing (P < 0.005) and tidal volume did not change. This study suggests that chronotropic responsive cardiac pacing attenuates the exertional dyspnea by improving the ventilatory response to exercise as well as increasing the cardiac output in patients with complete atrioventricular block.  相似文献   

20.
The LEGEND-PLUS, a new rate adaptive pacemaker that combines activity and minute ventilation sensing for automatic rate adaptation was implanted in the right ventricle (VVIR) in 11 patients (mean age 62 ± 9 years). Initial programming was performed using the Programmer Exercise Protocol (a 3-minute walk). This programming was evaluated by treadmill tests, up-stairs and down-stairs walking, and Holier recordings. Results: Following the final programming of LEGEND-PLUS, the mean upper activity rate was 102 ± 7 beats/rain (range 90–120 beats/min), while the mean upper minute ventilation rate was 125 ± 16 beats/min (range 100–150 beats/min). The mean rate responses during the exercise protocol and the final programming in minute ventilation and activity sensing modes were 5.4 ± 2.3 (range 1–9), versus 4 ± 2.4 (range 1–8; P < 0.01) and 7.6 ±1.1 (range 5–9), versus 7.5 ± 0.8 (range 6–9; P = 0.8), respectively. In the combined sensing mode, the acceleration rate was identical to the activity rate response and the deceleration rate mimicked the minute ventilation. Conclusion: Dual sensor VVIR pacemakers have the potential to improve rate adaptation to exercise. The rate response to exercise in patients fitted with activity and minute ventilation sensors, VVIR pacemakers closely mimics the physiological rate response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号