首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anterior cruciate ligament (ACL) can be anatomically divided into anteromedial (AM) and posterolateral (PL) bundles. Current ACL reconstruction techniques focus primarily on reproducing the AM bundle, but are insufficient in response to rotatory loads. The objective of this study was to determine the distribution of in situ force between the two bundles when the knee is subjected to anterior tibial and rotatory loads. Ten cadaveric knees (50+/-10 years) were tested using a robotic/universal force-moment sensor (UFS) testing system. Two external loading conditions were applied: a 134 N anterior tibial load at full knee extension and 15 degrees, 30 degrees, 60 degrees, and 90 degrees of flexion and a combined rotatory load of 10 Nm valgus and 5 Nm internal tibial torque at 15 degrees and 30 degrees of flexion. The resulting 6 degrees of freedom kinematics of the knee and the in situ forces in the ACL and its two bundles were determined. Under an anterior tibial load, the in situ force in the PL bundle was the highest at full extension (67+/-30 N) and decreased with increasing flexion. The in situ force in the AM bundle was lower than in the PL bundle at full extension, but increased with increasing flexion, reaching a maximum (90+/-17 N) at 60 degrees of flexion and then decreasing at 90 degrees. Under a combined rotatory load, the in situ force of the PL bundle was higher at 15 degrees (21+/-11 N) and lower at 30 degrees of flexion (14+/-6 N). The in situ force in the AM bundle was similar at 15 degrees and 30 degrees of knee flexion (30+/-15 vs. 35+/-16 N, respectively). Comparing these two external loading conditions demonstrated the importance of the PL bundle, especially when the knee is near full extension. These findings provide a better understanding of the function of the two bundles of the ACL and could serve as a basis for future considerations of surgical reconstruction in the replacement of the ACL.  相似文献   

2.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/ MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30 degrees and 60 degrees of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60 degrees of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

3.
《Acta orthopaedica》2013,84(2):267-274
Background?Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods?10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130?N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results?ACL reconstruction restored anterior tibial translation to within 2.6?mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation?Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

4.
Background Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods 10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130 N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results ACL reconstruction restored anterior tibial translation to within 2.6 mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

5.
Unicompartmental knee arthroplasty (UKA) has regained popularity in recent years. However, limited data exist on how UKA affects knee biomechanics. The role of the anterior cruciate ligament (ACL) after fixed bearing UKA remains controversial. In this study, a robotic testing system was used to apply a quadriceps/hamstrings load to cadaveric knee specimens in the intact state, after medial UKA, and after transection of the ACL in UKA. The load was applied to the knee from full extension to 120 degrees of flexion in 30 degrees increments. UKA generally did not affect anterior-posterior (AP) femoral position, but did cause external tibial rotation and variations in varus-valgus rotation compared to the intact knee. ACL transection after UKA shifted the femur posteriorly compared to the intact and UKA knees and increased internal tibial rotation compared to the UKA knee at low flexion. The AP motion of the articular contact position in the implant was increased after ACL transection. These data might help explain the mechanism of tibial component loosening and provide insight into further investigations of polyethylene wear in UKA. Based on the kinematic data, the ACL should be functional to provide patients the greatest opportunity for long-term success after medial UKA.  相似文献   

6.
目的比较单隧道双束和单隧道单束ACL重建膝关节稳定性的差异。方法选用6侧人体膝关节标本,保留完整的关节囊及周围韧带,行单隧道双束和单束ACL重建,在MTS-858生物材料试验系统上测试膝关节在胫前加载(134N)和旋转加载(5N·m内旋胫骨)下屈曲0°、15°、30°、60°、90°位时的运动学反应。每个膝关节在4个不同条件下进行测试:ACL完整、ACL损伤、单隧道双束重建ACL以及单隧道单束重建ACL,其中单隧道双束及单束ACL均采用双股腘绳肌腱。结果 (1)胫前加载:双束组在屈曲30°、60°和90°位,单束组在屈曲90°位时关节前后稳定性获得良好恢复(P0.05);在屈曲60°位时双束组的胫前位移明显低于单束组,差异有统计学意义(P0.05)。(2)旋转加载:与ACL完整组相比较,双束组的胫骨内旋角度在屈曲0°、60°位时无明显变化(P0.05),屈曲90°位时明显减少(P0.05);单束组在屈曲0°时无明显变化(P0.05)。屈曲60°和90°位时双束组的胫骨内旋角度明显小于单束组,差异有统计学意义(P0.05)。结论与单隧道单束ACL重建相比,单隧道双束ACL重建能够更好地恢复膝关节前后稳定性及旋转稳定性。  相似文献   

7.
Despite the numerous long-term success reports of posterior stabilized (PS) total knee arthroplasty (TKA), recent retrieval studies of various PS TKA designs revealed wear and deformation on the anterior side of the tibial post. This study investigated the mechanisms of anterior impingement of the post with the femoral component. Seven cadaveric knees were tested to study kinematics and tibial post biomechanics during simulated heel strike using an in vitro robotic testing system. Intact knee kinematics and in situ anterior cruciate ligament (ACL) forces were determined at hyperextension (0 degree to -9 degrees) and low flexion angles (0 degrees to 30 degrees) under the applied loads. The same knee was reconstructed using a PS TKA. The kinematics and the tibial post contact forces of the TKA were measured under the same loading condition. The ACL in the intact knee carried load and contributed to knee stability at low flexion angles and hyperextension. After TKA, substantial in situ contact forces (252.4 +/- 173 N at 9 degrees of hyperextension) occurred in the tibial post, indicating anterior impingement with the femoral component. Consequently, the TKA showed less posterior femoral translation compared to the intact knee after the impingement. At 9 degrees of hyperextension, the medial condyle of the intact knee translated 0.1 +/- 1.1 mm whereas the medial condyle of the TKA knee translated 5.6 +/- 6.9 mm anteriorly. The lateral condyle of the intact knee translated 1.5 +/- 1.0 mm anteriorly whereas the lateral condyle of the TKA knee translated 2.1 +/- 5.8 mm anteriorly. The data demonstrated that anterior tibial post impingement functions as a substitute for the ACL during hyperextension, contributing to anterior stability. However, anterior post impingement may result in additional polyethylene wear and tibial post failure. Transmitted impingement forces might cause backside wear and component loosening. Understanding the advantages and disadvantages of the tibial post function at low flexion angles may help to further improve component design and surgical techniques and thus enhance knee stability and component longevity after TKA.  相似文献   

8.
Application of axial tibial force to the knee at a fixed flexion angle has been shown to generate ACL force. However, direct measurements of ACL force under an applied axial tibial force have not been reported during a passive flexion–extension cycle. We hypothesized that ACL forces and knee kinematics during knee extension would be significantly different than those during knee flexion, and that ACL removal would significantly increase all kinematic measurements. A 500 N axial tibial force was applied to intact knees during knee flexion–extension between 0° and 50°. Contact force on the sloping lateral tibial plateau produced a coupled internal + valgus rotation of the tibia, anterior tibial displacement, and elevated ACL forces. ACL forces during knee extension were significantly greater than those during knee flexion between 5° and 50°. During knee extension, ACL removal significantly increased anterior tibial displacement between 0° and 50°, valgus rotation between 5° and 50°, and internal tibial rotation between 5° and 15°. With the ACL removed, kinematic measurements during knee extension were significantly greater than those during knee flexion between 5° and 45°. The direction of knee flexion–extension movement is an important variable in determining ACL forces and knee kinematics produced by axial tibial force. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:89–95, 2014.  相似文献   

9.
The movement of the posterior cruciate ligament (PCL) during flexion of the living knee is unknown. The purpose of the present study was to analyze the movement of the PCL using magnetic resonance imaging (MRI). The posterior cruciate ligaments in 20 normal knees were visualized using MRI from extension to deep flexion. Sagittal inclination relative to the longitudinal axis of the tibia was measured and analyzed with reference to the patellar tendon (PT) and the anterior cruciate ligament (ACL). Although the PCL was slack in extension, it straightened with anterior inclination (24.1+/-5.1 degrees ) at 90 degrees flexion. At active maximum flexion (129.2+/-8.1 degrees ), the ligament was almost parallel (3.9+/-7.4 degrees inclination) to the longitudinal axis of the tibia. At passive maximum flexion (158.8+/-5.8 degrees ), the inclination was reversed anteroposteriorly, measuring -23.0+/-6.7 degrees . The PCL and PT moved in a corresponding manner within 20 degrees of discrepancy. The results of this in vivo study of the PCL have clinical relevance to conservative therapy for PCL knee injuries. The results of this study could also be useful in PCL reconstruction surgery to determine the optimum graft position to allow maximum postoperative motion.  相似文献   

10.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

11.
We studied 79 patients with unilateral injury to the anterior cruciate ligament (ACL). The patients were randomly allocated to reconstruction with autologous patellar bone-tendon-bone (BTB) grafts (49 knees) or hamstring tendon (ST) grafts (30 knees). We measured anterior tibial translation (ATT) during isokinetic concentric contraction exercise 18-20 months after surgery using a computerized electrogoniometer. In both groups the highest ATT during exercise was observed at a knee flexion of about 20 degrees and was 13.5+/-3.0 mm in the BTB group and 13.9+/-3.4 mm in the ST group. There was no difference in the ATT between the reconstructed and healthy knees. For a range of knee flexion between 30 and 50 degrees the ATT in the ST group was significantly higher on the reconstructed side than on the healthy side. In the BTB group, the mean ATT in the reconstructed group was similar to that on the healthy side at a knee flexion angle between 0 and 90 degrees .  相似文献   

12.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

13.
Eight lower extremities from cadavera were tested for anterior-posterior laxity in two positions before and after transection of the anterior cruciate ligament. At critical points in the tests, electrogoniometric and radiographic measurements of tibiofemoral translation were compared. By direct measurement, we determined the accuracy of the radiographic method to +/- 0.4 millimeter (95 per cent) in measuring anterior-posterior translations of the tibia with respect to the femur. The electrogoniometer estimated displacement of the tibia with respect to the femur during the anterior drawer test to be 3.5 +/- 8.2 millimeters at 90 degrees of flexion of the knee and 11.1 +/- 16.1 millimeters at 30 degrees of flexion. Direct comparison of these measurements with those obtained by means of the radiographic technique showed that the electrogoniometer tended, on average, to overestimate the tibial translation. The amount of overestimation was 0.7 millimeter for intact knees and 1.9 millimeters after sacrifice of the anterior cruciate ligament. Despite this small average error in measurement of tibial translation, the difference between individual electrogoniometric and radiographic measurements varied greatly, with a 95 per cent confidence limit of +/- 5.5 millimeters. The error of the electrogoniometric measurements varied with the angle of flexion of the knee during testing, both the accuracy and the reliability of the electrogoniometric measurements being greatly diminished at 30 degrees of flexion. The electrogoniometric method also tended to overestimate tibial internal rotation (by an average of 10.5 degrees) and external rotation (by an average of 9.3 degrees); the reliability of these measurements was +/- 6.9 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Introduction  Recently, several publications investigated the rotational instability of the human knee joint under pivot shift examinations and reported the internal tibial rotation as measurement for instrumented knee laxity measurements. We hypothesize that ACL deficiency leads to increased internal tibial rotation under a simulated pivot shift test. Furthermore, it was hypothesized that anatomic single bundle ACL reconstruction significantly reduces the internal tibial rotation under a simulated pivot shift test when compared to the ACL-deficient knee. Methods  In seven human cadaveric knees, the kinematics of the intact knee, ACL-deficient knee, and anatomic single bundle ACL reconstructed knee were determined in response to a 134 N anterior tibial load and a combined rotatory load of 10 N m valgus and 4 N m internal tibial rotation using a robotic/UFS testing system. Statistical analyses were performed using a two-way ANOVA test. Results  Single bundle ACL reconstruction reduced the anterior tibial translation under a simulated KT-1000 test significantly compared to the ACL-deficient knee (P < 0.05). After reconstruction, there was a statistical significant difference to the intact knee at 30° of knee flexion. Under a simulated pivot shift test, anatomic single bundle ACL reconstruction could restore the intact knee kinematics. Internal tibial rotation under a simulated pivot shift showed no significant difference in the ACL-intact, ACL-deficient and ACL-reconstructed knee. Conclusion  In conclusion, ACL deficiency does not increase the internal tibial rotation under a simulated pivot shift test. For objective measurements of the rotational instability of the knee using instrumented knee laxity devices under pivot shift mechanisms, the anterior tibial translation should be rather evaluated than the internal tibial rotation. This study was supported in part by a grant of the German Speaking Association of Arthroscopy (AGA).  相似文献   

15.
Ten fresh-frozen knees from cadavera were instrumented with a specially designed transducer that measures the force that the anterior cruciate ligament exerts on its tibial attachment. Specimens were subjected to tibial torque, anterior tibial force, and varus-valgus bending moment at selected angles of flexion of the knee ranging from 0 to 45 degrees. Section of the medial collateral ligament did not change the force generated in the anterior cruciate ligament by applied varus moment. When valgus moment was applied to the knee, force increased dramatically after section of the medial collateral ligament; the increases were greatest at 45 degrees of flexion. Section of the medial collateral ligament had variable effects on the force generated in the anterior cruciate ligament during internal rotation but dramatically increased that generated during external rotation; these increases were greatest at 45 degrees. Section of the medial collateral ligament increased mean total torsional laxity by 13 degrees (at 0 degrees of flexion) to 20 degrees (at 45 degrees of flexion). Application of an anteriorly directed force to the tibia of an intact knee increased the force generated in the anterior cruciate ligament; this increase was maximum near the mid-part of the range of tibial rotation and minimum with external rotation of the tibia. Section of the medial collateral ligament did not change the force generated in the anterior cruciate ligament by straight anterior tibial pull near the mid-part of the range of tibial rotation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Quadrupeds are commonly used as animal models to study healing of anterior cruciate ligament (ACL) reconstructions. While rabbits, dogs, goats, and sheep have been used, goats and sheep are increasingly being employed because of the larger joint size that facilitates surgery, ease of availability, and lower expense to maintain in the farm environment. In spite of this, little is known about the function of the ACL in controlling primary and coupled motions in the quadruped. We report here on the measurements of these motions in goats, with the application of anterior-posterior forces, varus-valgus moments, and internal-external moments in the intact and ACL-deficient knee. Sectioning the ACL caused significant increases in primary anterior translation, and in varus-valgus and internal rotations. The increases in anterior translation were similar in amount and dependence on flexion angle to those seen in human knees. The increase in varus averaged 7 degrees and did not depend on flexion angle, whereas the increase in valgus was significant only in the flexed knee. The increases in internal tibial rotation were greatest in extension, whereas the increases in external rotation were small and independent of flexion angle. When the ACL was cut, coupled internal rotation increased with an anterior force as well as a valgus moment. Large increases were seen in coupled anterior translation with the application of varus and valgus moments, whereas smaller increases were seen with internal and external moments. These findings demonstrate that the ACL restrains multiple motions in the goat knee. This study also provides baseline data for future studies of ACL reconstruction.  相似文献   

17.
Kinematics measured during a short arc quadriceps knee extension exercise were compared in the knees of functionally unstable ACL-deficient patients, these patients' uninjured knees, and uninjured control subjects' knees. Cine phase contrast dynamic magnetic resonance imaging, in combination with a model-based tracking algorithm developed by the authors, was used to measure tibiofemoral kinematics as the subjects performed the active, supine posture knee extension exercise in the terminal 30 degrees of motion. Two determinants of tibiofemoral motion were measured: anterior/posterior location of the tibia relative to the femur, and axial rotation of the tibia relative to the femur. We hypothesized that more anterior tibial positioning, as well as differences in axial tibial rotation patterns, would be observed in ACL-deficient (ACL-D) knees when compared to uninjured knees. Multifactor ANOVA analyses were used to determine the dependence of the kinematic variables on (i) side (injured vs. uninjured, matched by subject in the control group), (ii) flexion angle measured at five-degree increments, and (iii) subject group (ACL-injured vs. control). Statistically significant anterior translation and external tibial rotation (screw home motion) accompanying knee extension were found. The ACL-D knees of the injured group exhibited significantly more anterior tibial positioning than the uninjured knees of these subjects (average difference over extension range=3.4+/-2.8 mm, p<0.01 at all angles compared), as well as the matched knees of the control subjects. There was a significant effect of interaction between side and subject group on A/P tibial position. We did not find significant differences in external tibial rotation associated with ACL deficiency. The changes to active joint kinematics documented in this entirely noninvasive study may contribute to cartilage degradation in ACL-D knees, and encourage more extensive investigations using similar methodology in the future.  相似文献   

18.
The purpose of this study was to investigate in vivo three- dimensional tibiofemoral kinematics and femoral condylar motion in knees with anterior cruciate ligament (ACL) deficiency during a knee bend activity. Ten patients with unilateral ACL rupture were enrolled. Both the injured and contralateral normal knees were imaged using biplane radiography at extension and at 15°, 30°, 60°, 90°, and 120° of flexion. Bilateral knees were next scanned by computed tomography, from which bilateral three-dimensional knee models were created. The in vivo tibiofemoral motion at each flexion position was reproduced through image registration using the knee models and biplane radiographs. A joint coordinate system containing the geometric center axis of the femur was used to measure the tibiofemoral motion. In ACL deficiency, the lateral femoral condyle was located significantly more posteriorly at extension and at 15° (p < 0.05), whereas the medial condylar position was changed only slightly. This constituted greater posterior translation and external rotation of the femur relative to the tibia at extension and at 15° (p < 0.05). Furthermore, ACL deficiency led to a significantly reduced extent of posterior movement of the lateral condyle during flexion from 15° to 60° (p < 0.05). Coupled with an insignificant change in the motion of the medial condyle, the femur moved less posteriorly with reduced extent of external rotation during flexion from 15° to 60° in ACL deficiency (p < 0.05). The medial- lateral and proximal-distal translations of the medial and lateral condyles and the femoral adduction-abduction rotation were insignificantly changed after ACL deficiency. The results demonstrated that ACL deficiency primarily changed the anterior-posterior motion of the lateral condyle, producing not only posterior subluxation at low flexion positions but also reduced extent of posterior movement during flexion from 15° to 60°.

Key Points

  • Three-dimensional tibiofemoral kinematics and femoral condylar motion in ACL-deficient knees during upright weight-bearing flexion were measured using biplane radiography with the geometric center axis.
  • ACL deficiency caused posterior subluxation of the lateral condyle with excess external femoral rotation at early flexion positions.
  • On flexion from 15° to 60°, the lateral condyle moved slightly posteriorly in ACL deficiency leading to reduced extent of external femoral rotation.
Key words: anterior cruciate ligament, injury, kinematics, tibiofemoral, femoral condyle, radiography  相似文献   

19.
This study evaluated strain in the normal anterior cruciate ligament (ACL) and compared it to four different double-strand hamstring tendon reconstructive techniques. Seventeen fresh-frozen knees from 11 cadavers were tested. The strain in the anteromedial and posterolateral bands of the native ACL and their equivalents in four autograft techniques were measured using differential variable reluctance transducers. The anteromedial band of the intact ACL shortened from 0 degree -30 degrees of flexion, then lengthened to 120 degrees; the posterolateral band of the intact ACL shortened from 0 degree - 120 degrees of flexion. Following ACL excision, these knees underwent reconstruction with double-strand hamstring tendons with either single tibial and femoral tunnels, single tibial and dual femoral tunnels, dual tibial and single femoral tunnels, or dual tibial and dual femoral tunnels. With the exception of the dual-band, dual-tunnel technique, all of the procedures placed greater strain on the reconstructive tissues than was observed on the native ACL, after approximately 30 degrees of flexion. These results indicate that dual-band hamstring tendon reconstructions placed with single tibial and femoral tunnels do not address the complexity of the entire ACL. Rather, these procedures appear to only duplicate the effect of the anteromedial band, while perhaps overconstraining the joint as a result of its inability to reproduce the function of the posterolateral band. During rehabilitation following ACL reconstruction, therefore, only from 0 degree - 30 degrees of the graft tissues are not significantly strained. Dual tibial and femoral tunnel techniques should be evaluated further to more closely recreate knee kinematics following ACL reconstruction.  相似文献   

20.

Background

The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction.

Methods

Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction.

Results

Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees.

Conclusions

Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号