首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elimination of auditory nerve activity results in death and atrophy of neurons in the cochlear nucleus, nucleus magnocellularis (NM), of the chick. One early event believed to lead to cell death and atrophy is the disruption of ribosomes in the NM neuron. A useful assay for visualizing these ribosomal changes is immunolabeling with the antibody Y 10B, which recognizes ribosomal RNA. Activity-dependent changes in Y10B labeling have been observed both in vivo, after unilateral cochlea removal and in vitro after unilateral auditory nerve stimulation. Although it is clear that activity is crucial for maintaining ribosomal integrity, the identity of the important transynaptic signal(s) is not known. It is possible that this trophic signal is glutamate, the neurotransmitter release from the auditory nerve. The present study investigates the role of ionotropic glutamate receptors in the activity-dependent regulation of ribosomes, as measured by the Y10B immunoreactivity. Brain slices containing the auditory nerve and NM on both sides were obtained from hatchling chicks. The auditory nerve on one side of the slice was stimulated for 1 h. The slice was then processed for Y10B immunoreactivity. As expected, greater Y10B immunolabeling was observed on the stimulated side of the slice. Unexpectedly, however, this immunolabeling difference was still observed after blocking NMDA receptors (50μM dl-APV), non-NMDA receptors (20 μM CNQX), or blocking both ionotropic receptor subtypes (APV and CNQX). This was true even though CNQX eliminated driven postsynaptic potentials. These data suggest that ionotropic glutamate receptors are not necessary for the activity-dependent regulation of ribosomes in NM neurons.  相似文献   

2.
The cellular mechanisms by which afferents influence their target neurons were investigated using a slice preparation of the chick brain-stem auditory system. Each brain slice contained portions of the auditory nerve and the second-order auditory nucleus, nucleus magnocellularis (NM), bilaterally. NM neurons on one side of the slice were stimulated either orthodromically, via activation of the ipsilateral auditory nerve, or antidromically, via electrical stimulation of their axons. NM neurons on the other side of the slice were not stimulated and served as a within-animal control population. Evoked activity was monitored extracellularly in all preparations. Orthodromic activation of NM neurons for either 1.5 or 3.5 hr resulted in enhanced protein synthesis by these neurons. This result is similar to those of previous in vivo experiments (Steward and Rubel, 1985; Born and Rubel, 1988). When slices were maintained in a medium having low Ca2+ and high Mg2+ concentrations, both synaptic transmission from the auditory nerve to NM and also the difference in protein synthesis between the stimulated and unstimulated sides of the brain were blocked. Antidromic activation of NM neurons did not enhance protein synthesis, but rather resulted in reliably less synthesis by the stimulated cells. Together, these results suggest that activity-dependent release of some "trophic" substance from the auditory nerve is necessary for this form of transneuronal regulation. Electrical activity of the postsynaptic neuron per se is not sufficient for increasing protein synthesis in these cells.  相似文献   

3.
Elimination of auditory nerve activity results in atrophy and death of nucleus magnocellularis (NM) neurons in the chick. One early event in the degeneration of NM neurons is a disruption of their ribosomes. This experiment examines the role of metabotropic glutamate receptors in afferent regulation of ribosomes. The auditory nerve on one side of a chick brainstem slice was stimulated in vitro. Rapid stimulation-dependent changes in ribosomes were visualized by immunolabeling using an antibody, called Y10B, that recognizes ribosomal RNA. In normal media, NM neurons on the stimulated side of the slice show greater Y10B labeling than the unstimulated NM neurons on the opposite side of the same slice. The role of metabotropic glutamate receptors was evaluated by unilaterally stimulating the auditory nerve in media containing the metabotropic glutamate receptor antagonist (RS)-α-methyl-4-carboxyphenyl-glycine (MCPG). Addition of MCPG to the bath did not block EPSPs produced by stimulating the auditory nerve. However, MCPG did prevent the stimulation-dependent regulation of ribosomes in NM neurons (as indexed by Y10B labeling). These data suggest that glutamate may play a trophic role in the young auditory system through activation of metabotropic glutamate receptors.  相似文献   

4.
Studies of the avian auditory system indicate that neurons in nucleus magnocellularis (NM) and nucleus laminaris of young animals are dramatically altered by changes in the auditory receptor. We examined the role of presynaptic activity on these transneuronal regulatory events. TTX was used to block action potentials in the auditory nerve. TTX injections into the perilymph reliably blocked all neuronal activity in the cochlear nerve and NM. Far-field recordings of sound-evoked potentials revealed that responses returned within 6-12 hr after a single TTX injection. Changes in protein synthesis by NM neurons were measured by determining the incorporation of 3H-leucine using autoradiography. NM neurons on the side of the brain ipsilateral to the TTX injection were compared to normally active cells on the other side of the same tissue section. Grain counts over individual neurons revealed that a single injection of TTX produced a 40% decrease in grain density in ipsilateral NM neurons within 1.5 hr after the TTX injection. However, by 24 hr after a single TTX injection, grain densities were not different on the 2 sides of the brain. Continuous activity blockade for 6 hr caused the cessation of amino acid incorporation in a portion of NM neurons and a 15-20% decrease in the remaining neurons. These changes in amino acid incorporation are comparable to those following complete removal of the cochlea (Steward and Rubel, 1985). We also examined NM for neuron loss and soma shrinkage after blocking eighth nerve action potentials. TTX injected every 12 hr for 48 hr caused a 20% neuron loss and an 8% shrinkage of the remaining neurons. Similar reductions were found following cochlea removal (Born and Rubel, 1985). It is concluded that neuronal activity plays a major role in the maintenance of normal NM neurons. Furthermore, these results suggest that transneuronal morphological changes seen in neurons following deafferentation or alterations of sensory experience are a result of changes in the level of presynaptic activity.  相似文献   

5.
Previous studies of the avian auditory system have revealed that removal of the peripheral receptor (the cochlea) leads to a transneuronal degeneration of auditory relay neurons in nucleus magnocellularis (NM) of the brain stem. An early manifestation of the degeneration which can be observed within 12 hours is a decrease of histochemical staining for RNA (Nissl staining); such a decrease could reflect an alteration in protein synthetic activity within the NM neurons. The present study evaluates this possibility by determining whether the cochlea removal led to an alteration incorporation of protein precursors in the target neurons which exhibit transneuronal degeneration and if so, how early the changes appeared. The cochlea was removed unilaterally in seventeen 10-day-old chicks and two 66-week-old mature chickens, and incorporation of protein precursors was evaluated in the neurons of NM at 0.5, 1.5, 3, 6, 12, and 24 hours following the cochlea removal. Each chick received an intravenous injection of 3H leucine, and was allowed to survive for 30 minutes after the injection of precursor. The brains were then prepared for autoradiography. The extent of incorporation by neurons in NM was determined by counting grains overlying each cell body and determining grain density/micrometers2 of neuron cross-sectional area. We found that auditory relay neurons whose synaptic inputs have been silenced exhibit dramatic decreases in protein synthesis within 30 minutes after removal of the cochlea; leucine incorporation was reduced by about 50%. In chicks sacrificed 3 to 24 hours after removal of the cochlea, some neurons (about 1/3) were entirely unlabeled despite heavy labeling of their neighbors and heavy labeling of all NM neurons on the opposite side of the brain. The remaining neurons exhibited about a 15% reduction in incorporation in comparison with the cells in the contralateral (control) NM. While the decreases in incorporation were apparent at all survival intervals, there was no consistent decrease in Nissl staining until 6 hours after cochlea removal. There were no changes in protein precursor incorporation following removal of the cochlea in adult birds, a result which is in keeping with the relative absence of transneuronal degeneration following removal of the cochlea at maturity. The results suggest a very rapid transneuronal regulation of protein metabolism within target neurons in young animals, perhaps by activity-related events.  相似文献   

6.
Destruction of the cochlea causes secondary changes in the central auditory pathway through transynaptic regulation. These changes appear to be mediated by an activity-dependent process and can be detected in the avian auditory system as early as 30 minutes after deafferentation. We compared the early changes in cochlear nucleus neurons following deafferentation by cochlea ablation with those seen following activity deprivation by perilymphatic tetrodotoxin (TTX) exposure. Protein synthesis and size of large spherical cells in the anteroventral cochlear nucleus (AVCN) of 14-day-old gerbils were measured during the first 48 hours after the manipulations. Both cochlea ablation and TTX produced a reliable decrease in protein synthesis by AVCN neurons (30-40%) by 1 hour. The magnitude of change in tritiated leucine incorporation was similar at all survival times, in both experimental groups. In contrast to the rapid changes in protein synthesis, the decrease in cell size was first evident 18 hours after TTX exposure and 48 hours after cochlea ablation. There was no significant change in protein synthesis or cell size in control groups at any of the survival times. These findings are consistent with changes in the avian auditory system in response to deafferentation and TTX exposure. Cochlea ablation and TTX exposure induced similar transneuronal changes, supporting the hypotheses that activity of auditory afferents in young mammals plays a regulatory role in the metabolism and morphology of their target neurons in the central auditory pathway, and that early changes following destruction of the peripheral receptor are due to reduction of activity-dependent interactions of presynaptic and postsynaptic cells.  相似文献   

7.
Neuronal survival in the cochlear nucleus of young animals is regulated by afferent activity. Removal or blockade of nerve VIII input results in the death of 20–40% of neurons in the cochlear nucleus, nucleus magnocellularis (NM), of the 10–14 days posthatch chick. Neuronal death in NM is preceded by complete failure of protein synthesis and degradation of ribosomes. In addition, there is a biphasic change in the immunoreactivity of ribosomes for a monoclonal antiribosomal RNA antibody, Y10B. Initially, the entire population of afferentdeprived NM neurons loses Y10B immunoreactivity, but, after 6 or 12 hours of afferent deprivation, lack of Y10B immunoreactivity specifically marks dying NM neurons. Whether RNA synthesis is also altered in afferent-deprived NM neurons has not previously been studied. To determine whether RNA synthesis in NM neurons is regulated by loss of afferent activity, we injected chicks with 3H-uridine following unilateral cochlea removal and measured the incorporation of RNA precursor with tissue autoradiography. As early as 1 hour after cochlea removal, there was a significant decrease in 3H-uridine incorporation by afferent-deprived NM neurons. After longer periods of afferent deprivation (6 or 12 hours), the majority of dying NM neurons (marked by loss of Y10B immunoreactivity) fail to incorporate RNA precursor. Six or 12 hours following cochlea removal, the subpopulation of surviving NM neurons incorporates 3H-uridine at increased levels over those observed 1 or 3 hours after cochlea removal. These findings suggest that nuclear function is regulated by afferent synaptic activity and that failure of RNA synthesis occurs early in the cell death process. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Afferent activity, especially in young animals, can have profound influences on postsynaptic neuronal structure, function and metabolic processes. Most studies evaluating activity regulation of cellular components have examined the expression of ubiquitous cellular proteins as opposed to molecules that are specialized in the neurons of interest. Here we consider the regulation of two proteins (voltage-gated potassium channel subunits Kv1.1 and Kv3.1) that auditory brainstem neurons in birds and mammals express at uniquely high levels. Unilateral removal of the avian cochlea leads to rapid and dramatic reduction in the expression of both proteins in the nucleus magnocellularis (NM; a division of the avian cochlear nucleus) neurons as detected by immunocytochemistry. Uniform downregulation of Kv1.1 was reliable by 3 hours after cochlea removal, was sustained through 96 hours, and returned to control levels in the surviving neurons by 2 weeks. The activity-dependent changes in Kv3.1 appear to be bimodal and are more transient, being observed at 3 hours after cochlea removal and recovering to control levels within 24 hours. We also explored the functional properties of Kv1.1 in NM neurons deprived of auditory input for 24 hours by whole-cell recordings. Low-threshold potassium currents in deprived NM neurons were not significantly different from control neurons in their amplitude or sensitivity to dendrotoxin-I, a selective K+ channel antagonist. We conclude that the highly specialized abundant expression of Kv1.1 and 3.1 channel subunits is not permanently regulated by synaptic activity and that changes in overall protein levels do not predict membrane pools.  相似文献   

9.
Auditory nerve fibers were labeled by extracellular injections of horseradish peroxidase into the spiral ganglion in mice. The labeled fibers were traced in an anterograde direction through the auditory nerve into the cochlear nucleus. In almost half of the injections, the labeled endings of auditory nerve fibers contacted cochlear nucleus neurons that were also labeled with horseradish peroxidase and were presumably transneuronally labeled. Only darkly labeled endings were associated with transneuronally labeled neurons, but not all darkly labeled endings had targets that were transneuronally labeled. Transneuronal labeling occurred almost exclusively in the ventral cochlear nucleus, often between endbulbs and bushy cells. Both "modified" endbulbs and the larger endbulbs of Held transneuronally labeled the bushy cells that they contacted. At the ultrastructural level, transneuronal labeling was evident as a darkening of ribosomes and the membrane surfaces of mitochondria, endoplasmic reticulum, and the nucleus. Transneuronal labeling occurred rarely in octopus, small, and stellate cells, and in neurons of the dorsal cochlear nucleus. Spiral ganglion injections also label olivocochlear fibers, efferent fibers that pass through the ganglion en route to the hair cells. These fibers give off branches to the cochlear nucleus that were rarely associated with transneuronal labeling. In eight instances, the targets of olivocochlear branches were stellate cells or small cells. We suggest that in our mouse preparation, horseradish peroxidase is effective as a transneuronal marker because the short distance from injection site to the cochlear nucleus results in a high concentration of horseradish peroxidase in the endings of the auditory nerve fibers.  相似文献   

10.
Activity-dependent transneuronal regulation of neuronal soma size has been studied in the medial nucleus of the trapezoid body and ventral cochlear nucleus of adolescent gerbils. Cochlear ablation or tetrodotoxin has been used to eliminate afferent electrical activity in auditory nerve fibers permanently or for 24 or 48 hours. Previous studies have shown that the cross-sectional area of spherical cell somata in the ipsilateral anteroventral cochlear nucleus decreases within 24 hours of electrical activity blockade with tetrodotoxin, which is fully reversible when activity is restored. The present findings extend this work by directly comparing the results of unilateral blockade of auditory nerve action potentials or unilateral cochlear ablation on the size of spherical and globular cell bodies in the ventral cochlear nucleus with changes produced by the same manipulations in third-order cells, principal neurons in the medial nucleus of the trapezoid body. Soma size in both ventral cochlear nucleus cell types decreases reliably by 24 hours after cochlear removal or eighth nerve activity blockade by tetrodotoxin. Soma size of neurons in the contralateral medial nucleus of the trapezoid body decreases 48 hours, but not 24 hours, after either manipulation. When activity in auditory nerve fibers is allowed to resume for 7 days following a 48-hour activity blockade, soma size fully recovers in the medial nucleus of the trapezoid body as well as in ventral cochlear nucleus neurons. We also report that the cross-sectional area of neuronal soma in the medial nucleus of the trapezoid body is larger in lateral regions of medial nucleus of the trapezoid body (low-frequency representation) than in the medial regions of the nucleus (high-frequency representation). We conclude that cell body size changes in brainstem auditory neurons are reversible and that the signals associated with the loss and subsequent recovery of soma size are activity related. However, the delayed effect of activity deprivation in the medial nucleus of the trapezoid body suggests that trophic substances released by afferent axons may contribute to the maintenance of anatomical characteristics. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The pattern of primary auditory projections to the brain stem of young chickens was investigated using terminal degeneration methods and orthograde transport of horseradish peroxidase (HRP) or tritiated amino acid. Of particular interest was the question of whether nucleus laminaris (NL) receives primary afferents. A study of silver-stained degeneration pattersn in nucleus magnocellularis (NM) and NL at three intervals following unilateral interruption of the cochlear nerve revealed that by 48 hours after the lesion, degenerating terminals were found only in the ipsilateral nucleus angularis (NA), NM and lagenar projection areas but not in NL. Five- and eight-day survival times, however, also revealed degeneration bilaterally in NL. The appearance of terminal degeneration in NL at the longer survival times is attributed to the previously-reported severe and rapid transneuronal degeneration of neurons in NM following deafferentation and not to the presence of cochlear nerve terminals in NL. Injection of HRP or tritiated proline into the basilar papilla produced patterns of labeling similar to that seen in the 2-day degeneration material; HRP reaction product or autoradiographic label were seen only in the ipsilateral NA and NM and in the ipsilateral projection areas of the macula lagena but not in either NL. The patterns of primary auditory projections revealed by the three methods were quite similar to each other and to that previously reported for the pigeon and confirm the conslucion that the laminar nucleus of chickens does not receive primary afferents.  相似文献   

12.
Third-order auditory neurons in the avian nucleus laminaris (NL) are the first to receive binaural input. In the chick, NL consists of a monolayer of neurons with polarized dendritic arbors oriented dorsally and ventrally. Afferents from second-order neurons in the ipsilateral nucleus magnocellularis (NM) innervate the dorsal dendrites of NL neurons, distributing processes of approximately equal length to NL neurons along an isofrequency band (roughly caudomedial to rostrolateral). Afferents from the contralateral NM innervate the ventral dendrites of NL neurons, distributing collateral branches sequentially as they proceed from caudomedial to rostrolateral along the isofrequency band of neurons. This innervation pattern could be the basis of a "delay line" circuit, as postulated in models of neural networks mediating sound localization. We examined this circuit by analyzing evoked field potentials using a brain slice preparation containing both NL and NM. The results were consistent with the previous anatomical findings. When the ipsilateral auditory nerve or ipsilateral NM was stimulated, there was no consistent variation in the latency of postsynaptic field potentials across the medial-to-lateral extent of NL. In contrast, when the contralateral NM or NM axons in the crossed dorsal cochlear tract were stimulated, a linear increase in the latency of postsynaptic potentials was observed from medial to lateral positions in NL. When stimulation amplitudes for both the ipsilateral and contralateral inputs were adjusted so as to produce little or no postsynaptic field potential, simultaneous bilateral stimulation evoked a pronounced response. Thus, NL neurons can act as "coincidence detectors." The amplitude of the postsynaptic response was dependent on the relative timing of stimulation of the two inputs. The optimal time difference changed systematically across the medial-to-lateral extent of NL. This system of delay lines and coincidence detectors could provide a mechanism for converting interaural time differences into a "place map" within NL.  相似文献   

13.
The relationships between protein synthesis and neuronal survival are poorly understood. In chicken nucleus magnocellularis (NM), significant alterations in overall protein synthesis precede neuronal death induced by deprivation of excitatory afferent activity. Previously we demonstrated an initial reduction in the overall rate of protein synthesis in all deprived NM neurons, followed by quick recovery (starting at 6 hours) in some, but not all, neurons. Neurons with recovered protein synthesis ultimately survive, whereas others become “ghost” cells (no detectable Nissl substance) at 12–24 hours and die within 48 hours. To explore the mechanisms underlying this differential influence of afferent input on protein synthesis and cell survival, the current study investigates the involvement of eukaryotic translation elongation factor 2 (eEF2), the phosphorylation of which reduces overall protein synthesis. Using immunocytochemistry for either total or phosphorylated eEF2 (p‐eEF2), we found significant reductions in the level of phosphorylated, but not total, eEF2 in NM neurons as early as 0.5–1 hour following cochlea removal. Unexpectedly, neurons with low levels of p‐eEF2 show reduced protein synthesis at 6 hours, indicated by a marker for active ribosomes. At 12 hours, all “ghost” cells exhibited little or no p‐eEF2 staining, although not every neuron with a comparable low level of p‐eEF2 was a “ghost” cell. These observations demonstrate that a reduced level of p‐eEF2 is not responsible for immediate responses (including reduced overall protein synthesis) of a neuron to compromised afferent input but may impair the neuron's ability to initiate recovery signaling for survival and make the neuron more vulnerable to death. J. Comp. Neurol. 521:1165–1183, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
We studied the chick auditory system to determine whether there is a normal developmental reduction in the number of cochlear nerve axons innervating individual cochlear nucleus (nucleus magnocellularis, NM) neurons. We also examined the preterminal branching patterns of cochlear nerve axons during development. The number of cochlear nerve axons innervating individual NM neurons was estimated by counting the increments in the postsynaptic response as the intensity of cochlear nerve electrical stimulation was varied gradually; this number fell from a mean of 4.0 on embryonic day 13 (E13) to a mean of 2.2 on E17 and E18 and the 4th day after hatching. This highly reliable decline in functional convergence was accompanied by a decrease in the number of preterminal branches of cochlear nerve fibers innervating the NM. On E13 and E14, most axons stained by iontophoretic injections of horseradish peroxidase showed two distinct preterminal branches in the NM. By E17 and E18 and thereafter, cochlear nerve axons were unbranched and terminated with a characteristic single large calycine ending in the NM. There are about twice as many cochlear nerve axons as neurons in the NM and the number of fibers in the nerve appears to decline only slightly between E13 and E17. The 50% decline in the number of cochlear nerve axons making functional synapses on individual NM neurons therefore is associated principally with the concurrent elimination of cochlear nerve axon branching in the NM.  相似文献   

15.
The barn owl's head grows after hatching, causing interaural distances to more than double in the first 3 weeks posthatch. These changes expose the bird to a constantly increasing range of interaural time cues. We have used Golgi and ultrastructural techniques to analyze the development of the connections and cell types of the nucleus magnocellularis (NM) and the nucleus laminaris (NL) with reference to the growth of the head. The time coding circuit is formed but immature at the time of hatching. In the month posthatch, the auditory nerve projection to the NM matures, and appears adult-like by posthatch day (P)21. NM neurons show a late growth of permanent dendrites starting at P6. Over the first month, these dendrites change in length and number, depending upon rostrocaudal position, to establish the adult pattern in which high best frequency neurons have few or no dendrites. These changes are not complete by P21, when NM neurons still have more dendrites than in the adult owl. The neurons of NL have many short dendrites before hatching. Their number is greatly reduced by P6, and then does not change during later development. Like NM neurons, NL neurons and dendrites grow in the first month posthatch, and at P21, NL dendrites are longer than those in the adult owl. Thus, the auditory brainstem circuits grow in the first month after hatching, but are not yet mature at the time the head reaches its adult size. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Second-order auditory neurons in nucleus magnocellularis (NM) of the chick brainstem undergo a series of rapid metabolic changes following unilateral cochlea removal, culminating in the death of 25% of NM neurons. Within hours of cochlea removal, ipsilateral NM neurons show marked increases in histochemical staining for the mitochondrial enzymes succinate dehydrogenase and cytochrome oxidase. We investigated corresponding ultrastructural changes in NM neurons by preparing animals undergoing unilateral cochlea removal for transmission electron microscopy. We quantified changes in NM mitochondrial volume by stereological methods and qualitatively compared mitochondrial morphology between NM neurons destined to survive and those destined to die after cochlea removal. Within hours of cochlea removal, ipsilateral NM neurons show striking increases in mitochondrial volume (84% at 12 hours and 236% at 12 hours after cochlea removal compared to unoperated, control animals). At 2 week survival times, ipsilateral NM neurons contain fewer mitochondria than contralateral neurons. Surprisingly, anesthesia alone causes short-term increases in NM mitochondrial volume. Animals anesthetized with pentobarbital and ketamine and sacrificed 6 or 12 hours later showed a 45% increase in mitochondrial volume compared to previously unanesthetized animals. NM neurons destined to die within days of cochlea removal can be identified within several hours after deafferentation by the appearance of their ribosomes. We observed qualitative differences in mitochondrial morphology in dying neurons. Mitochondria in neurons destined to die consistently showed mitochondrial swelling and vacuolization indicative of metabolic dysfunction. Similar mitochondrial changes have been reported when mitochondria take up excess calcium. Ultrastructural changes in NM after cochlea removal display features of both programmed and pathological cell death, in which increased intracellular calcium is thought to play a role. © 1994 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
Neurons in the auditory hindbrain pathway of the chicken are physiologically and morphologically highly specialized. It remains unclear to what extent independent differentiation vs. activity-dependent mechanisms determines the development of this system. To address this question we established a primary culture system of the early auditory hindbrain neurons. Primary cultures of neurons from nucleus magnocellularis and nucleus laminaris were prepared from embryonic day 6.5 chicken. These cells developed in culture under serum-free conditions for up to 15 days. Immunocytochemical staining and whole-cell patch recordings were used to characterize the development of the neurons. A stable expression of the calcium-binding protein calretinin, which serves as a characteristic marker of the auditory pathway, was found at all stages. A voltage-gated potassium channel (Kv3.1b) with a specific function in the auditory system was also expressed after about 1 week in culture. Electrophysiological recordings showed a general maturation of the neuronal phenotype as reflected by an increase in the mean resting membrane potential, a decrease in the mean input resistance as well as a maturation of action potential parameters. Four groups of neurons that generate action potentials could be distinguished. One of these showed the phasic firing pattern of auditory brainstem neurons known from slice preparations. In older cultures we demonstrated functional synaptogenesis in vitro by recording postsynaptic activity elicited by extracellular stimulation and styryl dye loading of vesicles. Thus, isolated neurons from the auditory region of the avian brainstem differentiate to specific neuronal subtypes and autonomously develop synaptic connections in vitro.  相似文献   

20.
In the avian auditory system, the neural network for computing the localization of sound in space begins with bilateral innervation of nucleus laminaris (NL) by nucleus magnocellularis (NM) neurons. We used antibodies against the neural specific markers Hu C/D, neurofilament, and SV2 together with retrograde fluorescent dextran labeling from the contralateral hindbrain to identify NM neurons within the anlage and follow their development. NM neurons could be identified by retrograde labeling as early as embryonic day (E) 6. While the auditory anlage organized itself into NM and NL in a rostral-to-caudal fashion between E6 and E8, labeled NM neurons were visible throughout the extent of the anlage at E6. By observing the pattern of neuronal rearrangements together with the pattern of contralaterally projecting NM fibers, we could identify NL in the ventral anlage. Ipsilateral NM fibers contacted the developing NL at E8, well after NM collaterals had projected contralaterally. Furthermore, the formation of ipsilateral connections between NM and NL neurons appeared to coincide with the arrival of VIIIth nerve fibers in NM. By E10, immunoreactivity for SV2 was heavily concentrated in the dorsal and ventral neuropils of NL. Thus, extensive pathfinding and morphological rearrangement of central auditory nuclei occurs well before the arrival of cochlear afferents. Our results suggest that NM neurons may play a central role in formation of tonotopic connections in the auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号