首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A549细胞对壳寡糖及其纳米粒的摄取作用   总被引:5,自引:0,他引:5  
万丽卿  胡富强  袁弘 《药学学报》2004,39(3):227-231
目的研究壳寡糖及其纳米粒的A549肺上皮细胞摄取作用,探讨壳寡糖纳米粒作为药物载体的可能性。方法溶剂扩散法制备壳寡糖纳米粒,以A549肺上皮细胞评价壳寡糖及其纳米粒的细胞毒性,由荧光倒置显微镜、流式细胞仪研究A549细胞对壳寡糖及其纳米粒的摄取作用。结果壳寡糖及其纳米粒的细胞毒性均较低,IC50分别为944.36和643.16 mg·L-1。壳寡糖及其纳米粒的细胞摄取作用与其浓度及细胞孵育时间相关;在同一孵育时间壳寡糖纳米粒的摄取量比等浓度的壳寡糖增加0.49~13.9倍。结论壳寡糖及其纳米粒的细胞毒性较低。壳寡糖形成纳米粒后,可显著增加A549细胞的摄取作用。  相似文献   

2.
Uptake of FITC-chitosan nanoparticles by A549 cells   总被引:9,自引:0,他引:9  
Huang M  Ma Z  Khor E  Lim LY 《Pharmaceutical research》2002,19(10):1488-1494
Purpose. The objective of this study was to evaluate the extent and mechanism of uptake of fluorescent chitosan nanoparticles by the A549 cells, a human cell line derived from the respiratory epithelium. Methods. Covalent conjugation with fluorescein-5-isothiocyanate yielded stably labeled chitosan molecules, which were successfully formulated into nanoparticles by ionotropic gelation. Uptake of fluorescein-5-isothiocyanate-chitosan nanoparticles and chitosan molecules by confluent A549 cells was quantified by fluorometry. Results. Cellular uptake of chitosan nanoparticles was concentration and temperature dependent, having Km and Vmax of 3.84 M and 58.14 g/mg protein/h, respectively. Uptake of chitosan nanoparticles was up to 1.8-fold higher than that of chitosan molecules alone and was not inhibited by excess unlabeled chitosan molecules. Hyperosmolarity, chlorpromazine and K+ depletion inhibited by 65, 34, and 54%, respectively, the uptake of chitosan nanoparticles at 37°C, but filipin had no influence on the uptake. Confocal imaging confirmed the internalization of the chitosan nanoparticles by the A549 cells at 37°C. Conclusions. Formulation of chitosan into nanoparticles significantly improved its uptake by the A549 cells. Internalization of chitosan nanoparticles by the cells seems to occur predominantly by adsorptive endocytosis initiated by nonspecific interactions between nanoparticles and cell membranes, and was in part mediated by clathrin-mediated process.  相似文献   

3.
Ultrasonication of chitosan and chitosan nanoparticles   总被引:2,自引:0,他引:2  
The objective of this study was to evaluate the effects of ultrasonication on chitosan molecules and nanoparticles. Molecular weight (M(v)) of chitosan HCl (M(v) 146 kDa and degree of deacetylation (DD) 96%) decreased linearly with increasing duration and amplitude of ultrasonication. DD and FTIR absorption were unaffected. X-ray diffraction (XRD) analysis suggested greater chain alignment in the ultrasonicated chitosan samples. Chitosan nanoparticles had mean diameter of 382 nm, polydispersity of 0.53 and zeta potential of 47 mV. Ultrasonication administered at increasing duration or amplitude decreased the mean diameter and polydispersity of the nanoparticles. Zeta potential and FTIR absorbance were unaffected, while XRD suggested a greater disarray of chain alignment in the nanoparticle matrix. Under the transmission electron microscope (TEM), freshly prepared nanoparticles were dense spherical structures which became fragmented after ultrasonication for 10 min at amplitude of 80. Untreated nanoparticle formulation turned turbid upon storage for 3 weeks at ambient conditions due to substantial swelling of the nanoparticles. Ultrasonicated nanoparticle formulation remained clear on storage. Although the particles had also swelled, they were no longer spherical, assuming instead an irregular shape with branching arms. In conclusion, high-intensity ultrasonication induced considerable damage on the chitosan nanoparticles which could affect their function as drug carriers.  相似文献   

4.
Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200–250?nm in diameter with smooth surface and were negatively charged with a zeta potential of???17.4?mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.  相似文献   

5.
Chitosan nanoparticles (CS NP) with various formations were produced based on ionic gelation process of tripolyphosphate (TPP) and chitosan. They were examined with diameter 20-200 nm and spherical shape using TEM. FTIR confirmed tripolyphosphoric groups of TPP linked with ammonium groups of chitosan in the nanoparticles. Factors affecting delivery properties of bovine serum albumin (BSA) as model protein have been tested, they included molecular weight (Mw) and deacetylation degree (DD) of chitosan, the concentration of chitosan and initial BSA, and the presence of polyethylene glycol (PEG) in encapsulation medium. Increasing Mws of chitosan from 10 to 210 kDa, BSA encapsulation efficiency was enhanced about two times, BSA total release in PBS (phosphate buffer saline) pH 7.4 in 8 days was reduced from 73.9 to 17.6%. Increasing DD from 75.5 to 92% promoted slightly the encapsulation efficiency and decelerated the release rate. The encapsulation efficiency was highly decreased by increase of initial BSA and chitosan concentration; higher loading capacity of BSA speeded the BSA release from the nanoparticles. Adding PEG hindered the BSA encapsulation and accelerated the release rate.  相似文献   

6.
丁建潮  胡富强  袁弘 《药学学报》2004,39(11):876-880
目的考察单硬脂酸甘油酯固体脂质纳米粒(monostearin solid lipid nanoparticles,MSLN)经PEG2000修饰后,对A549细胞摄取MSLN及J774A1细胞吞噬MSLN的影响。方法采用溶剂扩散法制备MSLN,测定其粒径和zeta电位;以罗丹明B(Rhodamine B)为荧光标记物,研究A549细胞对MSLN的摄取作用和J774A1细胞对MSLN的吞噬作用。结果MSLN的细胞毒性较低,A549细胞对MSLN的摄取可快速接近饱和,其摄取百分率与MSLN在细胞外的浓度呈负相关。结论MSLN经PEG2000修饰,可显著抑制J774A1细胞对MSLN的吞噬,但可增加A549细胞对MSLN的摄取。  相似文献   

7.
目的:制备柚皮素壳聚糖纳米粒,初步探讨其对人肺腺癌细胞A549的细胞毒性和细胞摄取。方法:以壳聚糖和鱼精蛋白作为载体材料,采用离子胶凝法制备柚皮素壳聚糖纳米粒,透射电镜(TEM)观察其形态,马尔文激光粒度仪测定其粒径、分散度(PDI)和Zeta电位,离心法测定其包封率和载药量,采用恒温振荡水浴法对柚皮素壳聚糖纳米粒进行体外释放度研究,最后采用人肺癌细胞系A549细胞进行了细胞毒性、细胞摄取研究。结果:柚皮素壳聚糖纳米粒为球形或类球形粒子,结构完整,大小均一、球形度好,分散均匀,PDI、粒径、Zeta电位和包封率分别为0.268,139 nm、+15.7 mV和83.34%,柚皮素壳聚糖纳米粒体外释放呈缓释,24 h累积释放量达到了80%以上,体外释药过程用Higuchi方程拟合较好。MTT试验显示不同浓度的壳聚糖纳米粒和细胞作用72 h后,细胞活力均大于95%,本文所制备的壳聚糖纳米粒无细胞毒性。细胞摄取试验表明载FITC的壳聚糖纳米粒和A549细胞作用3 h后,可明显看到大量带绿色荧光的纳米粒穿过细胞膜进入细胞。结论:离子凝胶法成功制得粒径较小的柚皮素壳聚糖纳米粒,具有缓释性好,毒性小,壳聚糖纳米粒摄取率较高,可大大提高药物的利用率,具有广泛的应用前景。  相似文献   

8.
Tailorable cationic chitosan/PLGA nanoparticles (CPNP) were used for the delivery of an antisense 2′-O-methyl-RNA (2OMR) directed against RNA template of human telomerase. Here, we describe the influence of the chitosan content on binding efficiency, complex stability, uptake in different human lung cell types and finally demonstrate the efficacy of this nanoplex system.CPNPs were prepared by the emulsion-solvent evaporation method using different amounts of chitosan and purified by preparative size exclusion chromatography. The characterization by photon correlation spectroscopy and zeta potential measurements showed a small increase in size and an increase of zeta potential with increasing amounts of chitosan. Binding efficiency and complex stability with 2OMR was high in water and correlated well with the chitosan content of particles but was weak in physiologically relevant media (PBS and RPMI cell culture medium). However, flow cytometry analysis showed that the uptake of 2OMR into A549 lung cancer cells was considerably higher in combination with nanoparticles and dependent on the amount of chitosan when compared to 2OMR alone. Confocal laser scanning microscopy revealed that the uptake into A549 cells is mediated via complexes of 2OMR and chitosan/PLGA nanoparticles despite the weak binding in cell culture medium. The nanoparticles were well tolerated and efficient in inhibiting telomerase activity.  相似文献   

9.
Antisense oligonucleotide, 2'-O-Methyl-RNA (OMR), is known as potent telomerase inhibitor for the treatment of lung cancer but limited by poor intracellular uptake. Chitosan-coated polymeric nanoparticles were compared to chitosan solution as non-viral vectors for OMR. The study investigated the role of chitosan properties and concentration in improving the efficiency of the nanocarriers in terms of loading, viability, cellular uptake, and telomerase inhibition in human lung cancer cell lines. Certain concentration of chitosan on nanoparticle surface is necessary to significantly increase the cellular uptake. However, excessive chitosan negatively affected the transfection efficiency. Self-assembled nanoplexes with chitosan polymer are preferentially adsorbed to the cell membrane rather than being internalized. Thus, polymeric nanoparticles proved to be superior to cationic polymers as carrier for antisense oligonucleotides. Charge cannot be considered the principle factor behind improved transfection. Uptake studies carried out on air-interface cell cultures to mimic in vivo conditions supported the results on normal cultures showing enhanced uptake of nanoplexes over naked oligonucleotides. OMR nanoplexes reduced telomerase activity by ~50% in A549 cells concluding the potential of the system as a safe, non-invasive, and efficient treatment for lung carcinoma. These data are prerequisites for the ongoing studies on lung perfusion model and in vivo experiments.  相似文献   

10.
《Nanotoxicology》2013,7(2):139-148
A comparative cytotoxicity study with various chitosan/pDNA nanoparticles was performed in order to evaluate the influence of thiolation, surface charge and size. In particular, the impact of pH changes as encountered along gastrointestinal tract on zeta potential and subsequently toxicity was investigated. For this purpose chitosan and chitosan-N-acetylcysteine nanoparticles of different polymer:pDNA ratios were prepared and characterised by their physicochemical properties. As endpoints to assess cytotoxicity in Caco-2 cells LDH and MTT assay were utilized. The reduction of transepithelial electrical resistance (TEER) induced by nanoparticle treatment was measured and toxic effects on erythrocytes were evaluated to complete the toxicity profile. Size of particles and amount of bound thiol groups slightly affected toxicity. In contrast a high impact and correlation was found for zeta potential and cytotoxicity. While anionic and neutral nanoparticles causeda minor membrane damage and slightly altered mitochondrial activity, cationic nanoparticles caused severe cytotoxic effects. TEER monitoring indicated sub lethal toxicity for neutral nanoparticles by a reversible resistance reduction of up to a third from initial value depending on the concentration of nanoparticles. Cationic particles evinced also drawbacks in erythrocytes assays by causing agglutination. In conclusion, our results showed evidence that zeta potential is the key feature that contributes most to the toxicity of (thiolated) chitosan/DNA nanoparticles.  相似文献   

11.
Chitosan-modified paclitaxel-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles with a mean diameter of 200-300 nm in distilled water were prepared by a solvent evaporation method. The mean diameter increased dramatically in contact with the mouse (CDF(1)) plasma, as a function of chitosan concentration in the modification solution (e.g., 2670.5 nm for 0.7% chitosan-modified nanoparticles, NP(3)), but reverted to almost its original size (i.e., 350.7 nm for NP(3)) following 5 min of gentle agitation. The zeta potential of PLGA nanoparticles was changed to positive by the chitosan modification. The in vitro uptake into, and cytotoxicity of the nanoparticles against, a lung cancer cell line (A549) were significantly increased by the modification. Most importantly, a lung-specific increase in the distribution index of paclitaxel (i.e., AUC(lung)/AUC(plasma)) was observed for chitosan-modified nanoparticles (e.g., 99.9 for NP(3) vs. 5.4 for Taxol) when nanoparticles were administered to lung-metastasized mice via the tail vein at a paclitaxel dose of 10 mg/kg. Transient formation of aggregates in the blood stream followed by enhanced trapping in the lung capillaries, and electrical interaction-mediated enhanced uptake across the endothelial cells of the lung tumor capillary appear to be responsible for the lung-tumor-specific distribution of the chitosan modified nanoparticles.  相似文献   

12.
A commercially available chitosan with a degree of deacetylation (DD) of 85% and a molecular weight (Mw) of 400 kDa was modified by acetylation with acetic anhydride to obtain a chitosan with a DD of 75%. Both polysaccharides were used to prepare DNA-chitosan nanoparticles by charge interactions with pDNA (coacervation process). Both resulting nanoparticles showed an almost total DNA loading efficiency (96%) and displayed similar physico-chemical properties with a size of ~200 nm and a zeta potential close to +20 mV. In order to study the effect of the DD on the properties of DNA-chitosan nanoparticles as gene delivery systems, the hydrodynamics-based procedure was used. The transgene expression was observed using either the green fluorescent protein (GFP) or the luciferase (Luc) as reporter genes. After the hydrodynamic injection, the DNA-chitosan nanoparticles were accumulated in the liver, where the transgene expression was mostly localized. Interestingly, the decrease of the DD affected the transgene expression, improving the initial burst effect and accelerating the DNA release. Both combined effects led to an increase in the transgene expression levels. In addition, the emitted bioluminescence could be detected over 105 days for all the formulations injected. The calculation of the kinetic parameters (Cmax, AUC, Ke, t1/2 Ke and MET) gave some interesting information regarding the abilities to control the DNA release of the two DNA-chitosan formulations tested and allowed narrower comparisons.  相似文献   

13.
Gene-based therapeutics has emerged as a promising approach for human cancer therapy. Among a variety of non-viral vectors, polymer vectors are particularly attractive due to their safety and multivalent groups on their surface. This study focuses on guanidinylated O-carboxymethyl chitosan(GOCMCS) along with poly-β-amino ester(PBAE) for si RNA delivery. Binding efficiency of PBAE/si RNA/GOCMCS nanoparticles were characterized by gel electrophoresis. The si RNA-loaded nanoparticles were found to be stable in the presence of RNase A, serum and BALF respectively. Fine particle fraction(FPF) which was determined by a two-stage impinger(TSI) was 57.8% ± 2.6%. The particle size and zeta potential of the nanoparticles were 153.8 ± 12.54 nm and + 12.2 ± 4.94 m V. In vitro cell transfection studies were carried out with A549 cells. The cellular uptake was significantly increased. When the cells were incubated with si Survivin-loaded nanoparticles, it could induce 26.83% ± 0.59% apoptosis of A549 cells and the gene silencing level of survivin expression in A549 cells were 30.93% ± 2.27%. The results suggested that PBAE/GOCMCS nanoparticle was a very promising gene delivery carrier.  相似文献   

14.
It was the purpose of this study to evaluate the potential of different molecular-weight chitosan-EDTA conjugates as a carrier matrix for nanoparticulate gene delivery systems. Covalent binding of EDTA to more than one chitosan chain provides a cross-linked polymer that is anticipated to produce stabilized particles. pDNA/chitosan-EDTA particles, generated via coazervation, were characterized in size and zeta potential by electrophoretic light scattering and electron microscopy. Stability was investigated at different pH values by enzymatic degradation and subsequent gel retardation assay. Lactate dehydrogenase assay was performed to determine toxicity. Furthermore, transfection efficiency into Caco-2 cells was assessed using a beta-galactosidase reporter gene. Chitosan-EDTA produced from low-viscous chitosan with 68% amino groups being modified by the covalent attachment of EDTA showed the highest complexing efficacy resulting in nanoparticles of 43 nm mean size and exhibiting a zeta potential of +6.3 mV. These particles were more stable at pH 8 than chitosan control particles. The cytotoxicity of chitosan-EDTA particles was below 1% over a time period of 4 hours. These new nanoplexes showed 35% improved in vitro transfection efficiency compared with unmodified chitosan nanoparticles. According to these results, the chitosan-EDTA conjugate may be a promising polymer for gene transfer.  相似文献   

15.
Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. Blending nanoparticles with lactose microparticles (∼5 µm) could mutually reduce their agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were prepared by spray drying technique as a function of chitosan, surfactant and processing conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 microparticles, exhibited a comparable inhalation performance with the commercial dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade impactor analysis indicated that the aerosolization and inhalation performance of chitosan nanoparticles was promoted by their higher zeta potential and circularity, and larger size attributes of which led to reduced inter-nanoparticulate aggregation and favored nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into deep and peripheral lungs.  相似文献   

16.
Wang WX  Gao JQ  Liang WQ 《Drug delivery》2011,18(3):208-214
Surface modification of liposomes with polymer to optimize drug delivery was well developed recently. The objective of the present work was to evaluate the feasibility of chitosan-coated liposomes (CSLP) as vehicles for anti-sense oligodeoxynucleotides (ASON). CSLP was obtained by adding chitosan dropwise to liposomes under magnetic stirring. The effect of chitosan content on size, zeta potential, and coating efficiency was investigated, which showed that chitosan increased the size and zeta potential of CSLP, and the coating efficiency increased with chitosan content increasing. Agarose gel electrophoresis was employed to evaluate the loading efficiency of CSLP for ASON, from which one could see ASON was completely combined to CSLP when the mass ratio of total lipids:ASON was more than 50:1. MTT assay showed that CSLP took on very low cytotoxicity, which is much lower than chitosan. At last, cell uptake behavior was investigated by a flow cytometer, which showed that CSLP enhanced significantly the COS7 cells uptake of ASON. All the results indicated that the CSLP could be a promising non-viral ASON vehicle.  相似文献   

17.
《Drug delivery》2013,20(3):208-214
Surface modification of liposomes with polymer to optimize drug delivery was well developed recently. The objective of the present work was to evaluate the feasibility of chitosan-coated liposomes (CSLP) as vehicles for anti-sense oligodeoxynucleotides (ASON). CSLP was obtained by adding chitosan dropwise to liposomes under magnetic stirring. The effect of chitosan content on size, zeta potential, and coating efficiency was investigated, which showed that chitosan increased the size and zeta potential of CSLP, and the coating efficiency increased with chitosan content increasing. Agarose gel electrophoresis was employed to evaluate the loading efficiency of CSLP for ASON, from which one could see ASON was completely combined to CSLP when the mass ratio of total lipids:ASON was more than 50:1. MTT assay showed that CSLP took on very low cytotoxicity, which is much lower than chitosan. At last, cell uptake behavior was investigated by a flow cytometer, which showed that CSLP enhanced significantly the COS7 cells uptake of ASON. All the results indicated that the CSLP could be a promising non-viral ASON vehicle.  相似文献   

18.
Enhancement of Nasal Absorption of Insulin Using Chitosan Nanoparticles   总被引:28,自引:2,他引:26  
Purpose. To investigate the potential of chitosan nanoparticles as a system for improving the systemic absorption of insulin following nasal instillation. Methods. Insulin-loaded chitosan nanoparticles were prepared by ionotropic gelation of chitosan with tripolyphosphate anions. They were characterized for their size and zeta potential by photon correlation spectroscopy and laser Doppler anemometry, respectively. Insulin loading and release was determined by the microBCA protein assay. The ability of chitosan nanoparticles to enhance the nasal absorption of insulin was investigated in a conscious rabbit model by monitoring the plasma glucose levels. Results. Chitosan nanoparticles had a size in the range of 300–400 nm, a positive surface charge and their insulin loading can be modulated reaching values up to 55% [insulin/nanoparticles (w/w): 55/100]. Insulin association was found to be highly mediated by an ionic interaction mechanism and its release in vitro occurred rapidly in sink conditions. Chitosan nanoparticles enhanced the nasal absorption of insulin to a greater extent than an aqueous solution of chitosan. The amount and molecular weight of chitosan did not have a significant effect on insulin response. Conclusions. Chitosan nanoparticles are efficient vehicles for the transport of insulin through the nasal mucosa.  相似文献   

19.
Chitosan has been extensively used as an absorption enhancer for macromolecules and as gene delivery vehicle. Both properties are molecular weight (MW) dependent. Here, we investigate factors affecting the oxidative depolymerization of chitosan and physicochemical properties of the resulting polymer fractions including their cytotoxicity. The molecular weight of the depolymerized chitosan was influenced by the initial concentration and the source of chitosan. At constant initial concentrations, the molecular weight decreased linearly with the chitosan/NaNO2 ratio and was a function of logarithm of the reaction time. Chitosan with larger molecular weight was more sensitive to depolymerization. No structural change was observed during the depolymerization process by infrared and proton nuclear magnetic resonance spectroscopy. In addition, thermal properties of chitosan fragments were studied by thermal gravimetric analysis and it was found that the decomposition temperature was molecular weight dependent. Furthermore, the solubility of different molecular weight chitosan was assayed as a function of pH and it increased with decreasing molecular weight. The cytotoxicity of chitosan was concentration dependent but almost molecular weight independent according to MTT assay using L929 cell line recommended by USP26. In summary, low molecular weight fractions of chitosan may potentially useful for the design of drug delivery systems due to the improved solubility properties.  相似文献   

20.
Chitosan is one of the most promising polymers for drug delivery through the mucosal routes because of its polycationic, biocompatible, and biodegradable nature, and particularly due to its mucoadhesive and permeation-enhancing properties. Bile salts are known to interact with lipid membranes, increasing their permeability. The addition of bile salts to chitosan matrices may improve the delivery characteristics of the system, making it suitable for mucosal administration of bioactive substances. In the present study we have developed chitosan nanoparticles using sodium deoxycholate as a counter ion and evaluated their potential as gene delivery carriers. Chitosan-sodium deoxycholate nanoparticles (CS/DS) obtained via a mild ionic gelation procedure using different weight ratios were used to encapsulate plasmid DNA (pDNA) expressing a "humanized" secreted Gaussia Luciferase as reporter gene (pGLuc, 5.7 kDa). Mean particle size, polydispersity index and zeta potential were evaluated in order to select the best formulation for further in vitro studies. The nanoparticles presented an average size of 153-403 nm and a positive zeta potential ranging from +33.0 to +56.9 mV, for nanoparticles produced with CS/DS ratios from 1:4 to 1:0.6 (w:w), respectively. The pDNA was efficiently encapsulated and AFM studies showed that pDNA-loaded nanoparticles presented a more irregular surface due to the interaction between cationic chitosan and negatively charged pDNA which results in a more compact structure when compared to empty nanoparticles. Transfection efficiency of CS/DS-pDNA nanoparticles into moderately (AGS) and well differentiated (N87) gastric adenocarcinoma cell lines was determined by measuring the expression of luciferase, while cell viability was assessed using the MTT reduction. The CS/DS nanoparticles containing encapsulated pDNA were able to transfect both AGS and N87 cell lines, being more effective with AGS cells, the less differentiated cell line. The highest enzymatic activity was achieved with 20% pDNA encapsulated and after 24 h of transfection time. Low cytotoxicity was observed for the CS/DS nanoparticles either with or without pDNA, suggesting this could be a new potential vehicle for mucosal delivery of pDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号