首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of cell bodies containing immunoreactivities to dopamine (DA), L-3,4-dihydroxyphenylalanine (DOPA) and tyrosine hydroxylase (TH) was studied immunohistochemically in the cat forebrain especially in the hypothalamus with or without intraventricular administration of colchicine. In normal cats, DA-immunoreactive (IR) neurons, whose intensity of immunostainings was variable from one to another, were localized exclusively in the hypothalamus and showed a distribution pattern similar to that of TH-IR ones. They were distributed in the posterior, dorsal and periventricular hypothalamic areas. Arcuate cells showed no or very weak DA-immunoreactivity. Weak to intense DOPA-IR cells were distributed in a similar manner to DA-IR ones but were far smaller in number. In colchicine-treated animals, DA- and DOPA-immunoreactivities were enhanced particularly in arcuate and dorsal hypothalamic cells. A cluster composed of small DA- and DOPA-IR cells was identified in the area ventral to the mamillothalamic tract equivalent to rat A13c TH-IR cell group. Colchicine treatment enabled us to visualize a large number of TH-IR perikarya in the medial and lateral preoptic areas, anterior commissure nucleus, basal forebrain, area closely related to the organum vasculosum laminae terminalis, and some in the bed nucleus of the stria terminalis as has been reported in other species. However, virtually none of these cells contained detectable DA- and DOPA-immunoreactivities.  相似文献   

2.
Using a double immunostaining technique with cholera toxin (CT) as a retrograde tracer, we examined the cells of origin and the histochemical nature of afferents to the cat posterior hypothalamus. After injection in the tuberomamillary nucleus, a number of CT-labeled cells were observed in: medial preoptic area, nuclei of the septum and the stria terminalis, amygdaloid complex, anterior hypothalamic, ventromedial hypothalamic and premamillary nuclei. CT injections in the lateral hypothalamic area gave an additional heavy labeling of neurons in: lateral preoptic area, nuclei of the diagonal band of Broca, substantia innominata, and nucleus accumbens. The posterior hypothalamus receives: 1) cholinergic inputs from the septum, the lateral preoptic area and the nuclei of the diagonal band of Broca; 2) dopaminergic afferents from A11, A13, and A14 groups; 3) histaminergic afferents from the posterior hypothalamus; and 4) peptidergic afferents such as methionin-enkephalin, galanin and neurotensin, substance P and corticotropin-releasing factor from the medial preoptic area, the nucleus of the stria terminalis and/or the posterior hypothalamic structures.  相似文献   

3.
Medial anterior hypothalamic connections were studied with H3-proline and autoradiography. Most of the axons projected to other hypothalamic nuclei. The major pathways were found ventral medial to the fornix and in the periventricular tract. Substantial projections were apparent in the ventromedial and dorsomedial nuclei with less label in the arcuate nucleus. The dorsal premammillary nuclei were labeled bilaterally, particularly with more caudal injections of anterior hypothalamus. Efferents were evident in the posterior hypothalamus and continued into the central gray of the midbrain. Labeled fibers reached the ventral tegmental area and in the reticular formation were traced only through pons. Rostral projections were to the medial and lateral preoptic areas and ventral lateral septum. The bed nucleus of stria terminalis was labeled and a very few fibers reached the medial amygdaloid nucleus. The periventricular nucleus of thalamus was labeled.  相似文献   

4.
The projections from the basal telencephalon and hypothalamus to each nucleus of the amygdaloid complex of the rat, and to the central amygdala of the cat, were investigated by the use of retrograde transport of horseradish peroxidase (HRP). The enzyme was injected stereotaxically by microiontophoresis, using three different approaches. The ventral pallidum (Heimer, '78) and ventral part of the globus pallidus were found to project to the lateral and basolateral nuclei of the amygdala. The substantia innominata projects diffusely to the entire amygdaloid complex, except to the lateral nucleus and the caudal part of the medial nucleus. The anterior amygdaloid area shows a similar projection field, the only difference being that this structure does not project to any parts of the medial nucleus. The dorsal subdivision of the nucleus of the lateral olfactory tract sends fibers to the ipsilateral as well as the contralateral basolateral nucleus, and possibly to the ipsilateral basomedial and cortical amygdala. The ventral subdivision of the nucleus of the lateral olfactory tract was massively labeled after an injection in the ipsilateral central nucleus, but this injection affected the commissural component of the stria terminalis. The nucleus of the horizontal limb of the diagonal band of Broca connects with the medial, central, and anterior cortical nuclei, whereas the bed nucleus of stria terminalis and medial preoptic area are related to the medial nucleus predominantly. The lateral preoptic area is only weakly labeled after intra-amygdaloid HRP injections. The hypothalamo-amygdaloid projections terminate preponderantly in the medial part of the amygdaloid complex. Thus, axons from neurons in the area dorsal and medial to the paraventricular nucleus of the hypothalamus distribute to the medial nucleus and intra-amygdaloid part of the bed nucleus of stria terminalis. Most of the amygdalopetal fibers from the ventromedial, ventral premammillary, and arcuate nuclei of the hypothalamus end in the medial nucleus, but some extend into the central nucleus. A few fibers from the ventromedial nucleus of the hypothalamus reach the basolateral nucleus. The lateral hypothalamic area projects heavily to the central nucleus, and more sparsely to the medial and basolateral nuclei. The dorsal hypothalamic area and supramammillary nucleus show restricted projections to the central and basolateral nuclei, respectively. There are only a modest number of crossed hypothalamo-amygdaloid fibers. Most of these originate in the ventromedial nucleus of the hypothalamus and terminate in the contralateral medial nucleus. The projections from the basal telencephalon and hypothalamus to the central nucleus of the amygdala of the cat are similar to the corresponding projections in the rat.  相似文献   

5.
6.
The distribution of cholecystokinin (CCK)-immunoreactive nerve fibers and cell bodies was studied in the forebrain of control and colchicine-treated guinea pigs by using an antiserum directed against the carboxyterminus of CCK octapeptide (CCK-8) in the indirect immunoperoxidase technique. Virtually all forebrain areas examined contained immunoreactive nerve fibers. A dense innervation was visualized in; neocortical layers II-III, piriform cortex, the medial amygdala, the medial preoptic area, a circumventricular organ-like structure located at the top of the third ventricle in the preoptic area, the subfornical organ, the posterior bed nucleus of the stria terminalis, the posterior globus pallidus (containing labeled woolly fiber-like profiles), the ventromedial hypothalamus, the median eminence, and the premammillary nucleus. A moderately dense innervation was visualized elsewhere excepted in the septum and thalamus where labeled axons were comparatively few. Immunoreactive perikarya were abundant in: neocortex (especially layers II-III), piriform cortex, amygdala, the median preoptic nucleus, the bed nucleus of the stria terminalis, the hypothalamic paraventricular (parvicellular part), arcuate, and dorsomedial (pars compacta) nuclei, the dorsal and perifornical hypothalamic areas, and throughout the thalamus. Areas also containing a moderate number of labeled cell bodies were the medial preoptic area, the globus pallidus, the caudate-putamen, and the periventromedial area in the hypothalamus. Immunostained perikarya were absent or only occasionally observed in the septum, the suprachiasmatic nucleus, the magnocellular hypothalamoneurohypophyseal nuclei, and the ventral mesencephalon. In the adenohypophysis, corticomelanotrophs were labeled in both males and females, and thyrotrophs were labeled in females only. This distribution pattern of CCK-8 immunoreactivity is compared to those previously recorded in other mammals. This shows that very few features are peculiar to the the guinea pig. It is discussed whether some interspecific differences in immunostaining are real rather than methodological.  相似文献   

7.
The efferent, afferent and intrinsic connections of the septal region have been analyzed in the rat with the autoradiographic method. The lateral septal nucleus, which can be divided into dorsal, intermediate and ventral parts, receives its major input from the hippocampal formation and projects to the medial septal-diagonal band complex. The ventral part of the nucleus also sends fibers through the medial forebrain bundle to the medial preoptic and anterior hypothalamic areas, to the lateral hypothalamic area and the dorsomedial nucleus, to the mammillary body (including the supramammillary region), and to the ventral tegmental area. The medial septal nucleus/diagonal band complex projects back to the hippocampal formation by way of the dorsal fornix, fimbria, and possibly the cingulum. Both nuclei also project through the medial forebrain bundle to the medial and lateral preoptic areas, to the lateral hypothalamic area, and to the mammillary complex. The medial septal nucleus also sends fibers to the midbrain (the ventral tegmental area and raphe nuclei) and to the parataenial nucleus of the thalamus, while the nucleus of the diagonal band has an additional projection to the anterior limbic area. Ascending inputs to the medial septal nucleus/diagonal band complex arise in several hypothalamic nuclei and in the brainstem aminergic cell groups. The posterior septal nuclei (the septofimbrial and triangular nuclei) receive their major input from the hippocampal formation, and project in a topographically ordered manner upon the habenular nuclei and the interpeduncular nuclear complex. The bed nucleus of the stria terminalis receives its major input from the amygdala (Krettek and Price, '78); but other afferents arise from the ventral subiculum, the ventromedial nucleus, and the brainstem aminergic cell groups. The principal output of the bed nucleus is through the medial forebrain bundle to the substantia innominata, the nucleus accumbens, most parts of the hypothalamus and the preoptic area, the central tegmental fields of the midbrain, the ventral tegmental area, the dorsal and median nuclei of the raphe, and the locus coeruleus. The bed nucleus also projects to the anterior nuclei of the thalamus, the parataenial and paraventricular nuclei, and the medial habenular nucleus, and through the stria terminalis to the medial and central nuclei of the amygdala, and to the amygdalo-hippocampal transition area.  相似文献   

8.
The distribution of avian pancreatic polypeptide-like (APP) immunoreactivity within the rat hypothalamus was investigated with the indirect immunoperoxidase method. APP immunoreactive perikarya are found in largest numbers in the retrochiasmatic area, the arcuate nucleus, and the supracommissural portion of the interstitial nucleus of the stria terminalis. Small clusters of immunoreactive neurons are also consistently observed in the ventral aspect of the medial preoptic area and lateral hypothalamic area, immediately dorsolateral to the optic chiasm and tracts. These neurons are apparent in all animals but are more intensely strained and occur in larger numbers following colchicine pretreatment. Other immunoreactive neurons are visible only in colchine-treated rats and are scattered throughout the anterior and lateral hypothalamic areas and the supramammillary nucleus. Immunoreactive axons and terminal fields present an extensive and highly characteristic distribution throughout the hypothalamus, which in many instances exhibits differential distribution within specific subfields of hypothalamic nuclei and areas. The heaviest concentrations of APP immunoreactive axons are present in the periventricular nucleus throughout the rostrocaudal extent of the hypothalamus, the ventrolateral portion of the suprachiasmatic nucleus, the retrochiasmatic area, the parvocellular paraventricular nucleus, the ventral supraoptic nucleus, the perifornical nucleus, the ventral dorsomedial nucleus, and the arcuate nucleus. Moderate plexuses of immunoreactive fibers are also present in the medial preoptic area, the anterior and lateral hypothalamic areas, the nucleus circularis, the median eminence, and the ventral premammillary area. Other areas, such as the ventromedial nucleus, contain virtually no immunoreactive axons but are encapsulated by a dense plexus of immunoreactive terminals. The distribution of a major component of APP immunoreactive fibers exhibits a marked similarity to that of previously described norepinephrine-containing hypothalamic afferents. Other groups of APP immunoreactive perikarya and fibers appear to represent components of intrinsic diencephalic systems.  相似文献   

9.
The hypothalamic and basal forebrain sites of synthesis of preprogalanin mRNA were identified in three adult monkeys (Macaca fascicularis) by in situ hybridisation performed with a radiolabelled cRNA probe transcribed from human preprogalanin cDNA. With stringent hybridisation conditions, the cRNA probe was hybridised to free-floating sections containing structures contiguous with the rostral hypothalamus through to the caudal limit of the hypothalamus as defined by the mammillary bodies. Specific hybridisation of the preprogalanin cRNA probe occurred throughout the hypothalamus but was particularly intense in the arcuate, paraventricular (parvicellular and magnocellular portions), and dorsomedial nuclei. Moderate hybridisation was found in the periventricular nucleus and scattered hybridisation in the medial preoptic nucleus. The medial preoptic area and the anterior and lateral hypothalmic areas showed moderate to intense hybridisation in scattered cells. A few cells in the tuberal portion and dorsal cap of the anterior portion of the supraoptic nucleus were labelled. Isolated cells were also labelled in the zona incerta. There was little labelling in the dorsal hypothalamic area but moderate labelling in the posterior hypothalamic area. Structures contiguous with the rostral hypothalamus including the diagonal band of Broca, bed nucleus of stria terminalis, substantia innominata, and basal nucleus of Meynert showed intense hybridisation. These data indicate a widespread distribution of preprogalanin mRNA in the monkey hypothalamus. A comparison with the previously reported distribution of preprogalanin mRNA in the rat, as well as with the distribution of galanin-like immunoreactivity in the rat and human, suggests some important species differences. Of particular interest were differences in the supraoptic, suprachiasmatic, and dorsomedial nuclei. The intense hybridisation throughout the paraventricular nucleus and in the rostral arcuate nucleus suggests that galanin may play a role in the regulation of both posterior and anterior pituitary function. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The atrial natriuretic peptide, atriopeptin, is a circulating hormone that plays an important role in the regulation of fluid and electrolyte homeostasis. Several recent studies have shown that atriopeptin-like immunoreactivity is present within the central nervous system as well as peripheral tissues. In the present report, we describe in detail the organization of atriopeptin-like immunoreactive (APir) perikarya and fibers in the central nervous system of the rat. The most prominent collection of APir perikarya was found in the hypothalamus, adjacent to the anteroventral tip of the third ventricle. Additional groups of APir perikarya were observed along the wall of the third ventricle and in the paraventricular and arcuate nuclei. Separate, smaller groups with distinctive morphology were seen in the lateral hypothalamic area, in the supra-mammillary, medial, and lateral mammillary nuclei, medial habenular nucleus, bed nucleus of the stria terminalis, and the central nucleus of the amygdala. In the pons and brain-stem, APir neurons were observed in the pedunculopontine and laterodorsal tegmental nuclei, as well as in the ventral tegmental area, Barrington's nucleus, the parabrachial nucleus, and the nucleus of the solitary tract. The densest terminal fields of APir fibers were found in the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, the median eminence, and the interpeduncular nucleus. The presence of atriopeptin immunoreactivity within the central nervous system suggests that atriopeptin may function as a central neuromediator. Potential functions of this candidate neuromediator deduced from its anatomical distribution are discussed, including the possibility that atriopeptin may function as both a central neuromediator and a systemic hormone in the regulation of the cardiovascular system.  相似文献   

11.
To determine the localization in rat brain and spinal cord of individual neurons that contain the messenger RNA coding for the opioid peptide precursor preproenkephalin, we performed in situ hybridization with a tritiated cDNA probe complementary to a protion of preproenkephalin mRNA. We observed autoradiographic signal over the cytoplasm of neurons of many regions of the central nervous system. Several types of controls indicated specificity of the labeling. Neurons containing preproenkephalin mRNA were found in the piriform cortex, ventral tenia tecta, several regions of the neocortex, nucleus accumbens, olfactory tubercle, caudate-putamen, lateral septum, bed nucleus of the stria terminalis, diagonal band of Broca, preoptic area, amygdala (especially central nucleus, with fewer labeled neurons in all other nuclei), hippocampal formation, anterior hypothalamic nucleus, perifornical region, lateral hypothalamus, paraventricular nucleus, dorsomedial and ventromedial hypothalamic nuclei, arcuate nucleus, dorsal and ventral premamillary nuclei, medial mamillary nucleus, lateral geniculate nucleus, zona incerta, periaqueductal gray, midbrain reticular formation, ventral tegmental area of Tsai, inferior colliculus, dorsal and ventral tegmental nuclei of Gudden, dorsal and ventral parabrachial nuclei, pontine and medullary reticular formation, several portions of the raphe nuclei, nucleus of the solitary tract, nucleus of the spinal trigeminal tract (especially substantia gelatinosa), ventral and dorsal cochlear nuclei, medial and spinal vestibular nuclei, cuneate and external cuneate nuclei, gracile nucleus, superior olive, nucleus of the trapezoid body, some deep cerebellar nuclei, Golgi neurons in the cerebellum, and most laminae of the spinal cord. In most of these brain regions, the present results indicate that many more neurons contain preproenkephalin mRNA than have been appreciated previously on the basis of immunocytochemistry.  相似文献   

12.
Medial preoptic axons were traced into the diagonal band of Broca and septum, particularly lateral septum. Other labeled fibers could be followed dorsally from medial preoptic area injections adjacent to the stria medullaris, and in the periventricular fiber system and the stria terminalis and its bed nucleus. The anterior and medial amygdaloid nuclei were labeled by fibers via the stria terminalis and others arching over the optic tract and through the substantia innominata. The lateral habenula was labeled. Labeled periventricular fibers reached the periventricular nucleus of the thalamus. Descending efferents were traced principally below the fornix and in the adjacent lateral hypothalamus to label the anterior hypothalamus, the tuberal nuclei, and median eminence. Axons of the medial preoptic area joined the medial part of the medial forebrain bundle and distributed to the reticular formation and the central gray of the midbrain and pons. A small amount of contralateral connections were described.  相似文献   

13.
Distribution of galaninlike immunoreactivity in the rat central nervous system   总被引:17,自引:0,他引:17  
The localization of galanin (GAL) immunoreactive (IR) neuronal structures in the rat central nervous system has been investigated by using the indirect immunofluorescence technique. GAL-IR structures were seen in high concentrations in the hypothalamus, medulla oblongata, and spinal cord. Less extensive systems were detected in the telencephalon, thalamus, mesencephalon, and pons, while virtually no GAL-positive structures were seen in the olfactory bulb and cerebellum. Major populations of cell bodies staining for GAL-like material were seen in many areas. In the telencephalon somata were revealed in the bed nucleus of stria terminalis, in the nucleus of the diagonal band, medial septum, and in the medial aspects of the central amygdaloid nucleus, and in small numbers in cortical areas. The anterodorsal and periventricular nuclei of the thalamus contained positive cell bodies. In the hypothalamus GAL-IR somata were seen in the medial and lateral preoptic nuclei, arcuate nucleus, periventricular nucleus, in the dorsomedial nucleus, in the medial forebrain bundle area, in the tubular, caudal, accessory, supraoptic, and paraventricular magnocellular nuclei and lateral to the mammillary recess. The dorsal raphe nucleus hosted a large number of GAL-positive somata. Locus coeruleus of the pons contained a large number of GAL-IR perikarya. In the medulla oblongata positive somata were found in the caudal spinal trigeminal nucleus, the nucleus of the solitary tract, and in the ventral lateral area just rostral to area postrema. Small cell bodies were detected in the superficial layers of the dorsal horn of the spinal cord at all levels and in lamina X at lumbar levels. Analysis of GAL-positive fibers in the telencephalon revealed highly or medium-dense networks in the lateral septal nucleus, in the bed nucleus of stria terminalis, and in the central and medial amygdaloid nuclei. Positive fibers were found in the thalamus in and around the periventricular nucleus as well as in the lateral habenular nucleus and extending in a lateral, caudal direction from the third ventricle and fasciculus retroflexus to the lateral tip of the medial lemniscus. In the hypothalamus the external layer of the median eminence contained a very dense fiber network. Dense or medium-dense GAL-IR networks were detected in the periventricular nucleus, throughout the medial and lateral preoptic areas, in the medial forebrain bundle area, in the dorsomedial nucleus, and lateral to the mammillary recess. In the pons GAL-IR fibers were seen in the parabrachial nuclei, dorsal to the superior olive, and in the periaqueductal central gray.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The distribution of neuropeptide Y (NPY)-like immunoreactivity within the hypothalamus of the adult golden hamster was investigated with conventional immunohistochemical techniques. Neuropeptide Y immunoreactive cell bodies were found in greatest numbers in the arcuate nucleus while a few stained perikarya were seen in the internal and subependymal zones of the median eminence. Isolated perikarya were observed in the anterior commissure and supracommissural portion of the interstitial nucleus of the stria terminalis. Immunoreactive axons were located throughout the hypothalamus with the highest concentrations in the subependymal and internal zones of the median eminence, the interstitial nucleus of the stria terminalis, the medial preoptic area, and in the following nuclei: periventricular, suprachiasmatic, paraventricular, perifornical, median preoptic, and arcuate. Moderate to dense plexuses of immunoreactive fibers were observed in the anterior, lateral, and posterior hypothalamic areas and in the infundibular stalk. The supraoptic nucleus and lateral preoptic area displayed a small number of labeled axons whereas the ventromedial nucleus contained only a few fibers. NPY immunoreactive fibers were present in the optic tract and in the dorsomedial aspect of the optic chiasm. Labeled fibers penetrated the ependymal lining of the third ventricle throughout the ventral aspect of the periventricular zone. Additional fibers were observed in the pia lining the ventral aspect of the hypothalamus. This systematic analysis of hypothalamic NPY immunoreactivity in the adult golden hamster suggests that a portion of the labeled fibers display a distribution that is similar to previously described noradrenergic fibers in the hypothalamus.  相似文献   

15.
The projections of the stria terminalis were traced with the Fink-Heimer stain following lesions at the level of the anterior commissure. The pre-commissural stria terminalis is amygdalofugal only, and projects to the nucleus of the anterior commissure, the medial preoptic area, the ventral portion of the capsule surrounding the ventromedial nucleus, and to the area closely adjacent to the periventricular nucleus by way of the medial corticohypothalamic tract. The postcommissural stria terminalis is both amygdalofugal and amygdalopetal. Its hypothalamic projection is to the lateral preoptic area and the bed nucleus of the stria terminalis, and to the lateral hypothalamus by way of the lateral preoptic area. The amygdaloid projection is mainly to the basolateral nucleus, with fewer terminations to the basomedial nucleus and the area surrounding the central nucleus. The projections of the bed nucleus of the stria terminalis are quite similar to the postcommissural stria, except for an additional projection to the magnocellular paraventricular and dorsal periventricular nuclei by way of the lateral filiform tract. The commissural stria terminalis projects contralaterally to cells within its fiber bundle and the posterior limb of the anterior commissure.  相似文献   

16.
Using tritiated amino acid autoradiography, the efferent projections of the anterior hypothalamic area (AHA) were studied in albino rats. Axons from AHA neurons were not confined to local projections in the hypothalamus. Ascending AHA axons ran through the preoptic region, joined the diagonal band and distributed in the lateral septum. Descending AHA efferents within the hypothalamus coursed in a bundle ventromedial to the fornix. Projections were observed to the dorsomedial, ventromedial, arcuate and dorsal premammillary nuclei, and to the median eminence. Sweeping dorsomedially in the posterior hypothalamus, some AHA axons distributed in the central grey. AHA axons staying ventral projected to the supramammillary region, ventral tegmental area, raphe nuclei and midbrain reticular formation. Other AHA efferents distributed to the periventricular thalamus, to the medial amygdala via the stria terminalis or supraoptic commissure, and to the lateral habenula through the stria medullaris. For comparison with the AHA, efferent projections from the paraventricular nucleus (PVN) and from the ventromedial nucleus and adjacent basal hypothalamus (VMR) were studied. Projections from PVN neurons were not restricted to the median eminence and neurohypophysis. PVN efferents also distributed to many of the same regions as did those of the AHA but had somewhat different fiber trajectories and longer descending projections. VMR efferents were more widespread than those of the AHA, with projections extending into the lateral zona incerta and pontine reticular formation. Projections from the AHA were distinct from those of the medial preoptic area (mPOA). For example, while AHA axons descended in a bundle ventromedial to the fornix, mPOA axons ran in the medial forebrain bundle. Such anatomical differences may underlie experimentally demonstrated functional differences between the mPOA and AHA, for instance, in mediation of male and female sex behaviors.  相似文献   

17.
Horseradish peroxidase, 13% Sigma Type VI, was administered iontophoretically to the mid lateral hypothalamus (LH) of male hooded rats. Animals were perfused intracardially on the following day and brains were removed and sliced in the coronal or sagittal planes into 30–50 μm sections. Sections were processed with DAB and BDH for the brown and blue reaction products and later examined by bright and dark field microscopy for the presence and location of retrogradely labeled neurons. Results indicate that a significant number of afferent connections to the LH originate in the olfactory and accumbens nuclei, pyriform cortex, olfactory tracts, magnocellular and medial preoptic and anterior hypothalamic regions, stria terminalis, stria hypothalamic tract, diagonal tract of Broca, caudate-putamen and globus pallidus, internal capsule, lateral septal nuclei, lateral preoptic area and anterior medial forebrain bundle, the various amygdaloid nuclei, zona incerta, perifornical region, dorsal and ventral medial hypothalamic areas, supraoptic, paraventricular and periventricular nuclei, posterior hypothalamus and medial forebrain bundle, ventral thalamic nuclei, the fields of Forel, arcuate and mammillary nuclei, adjacent to the fasciculus retroflexus, in the ventral tegmental area of Tsai, interpeduncular nucleus, substantia nigra, mesencephalic reticular formation, periaqueductal gray, locus coeruleus and parabrachial region. Results are discussed in terms of previous anatomical and neurophysiological data, probable pathways, and the function of LH neurons.  相似文献   

18.
Lesions were made in the lateral and medial habenular nuclei of the cat. Subsequent degeneration of nerve fibers and terminalis was studied using Nauta-Gygax silver technique. The medial and lateral habenular nuclei project differentially to the septum, olfactory, tubercle, thalamus, midbrain tegmentum and tectum. The diffuse part of the habenulopeduncular tract rises from the lateral habenular nucleus and the compact part rises from both nuclei. Degenerating terminals were seen caudally in the following nuclei: interpeduncular, central superior, dorsal raphae, ventral tegmental (from the medial habenular nucleus), dosral tegmental (from the lateral habenular nucleus), pretectal area, superior colliculus and inferior colliculus (from the lateral habenular nucleus). Rostral projections course in the medial part of the stria medullaris from the medial habenular nucleus and in the lateral part of the stria medullaris from the lateral habenular nucleus: Degenerating terminals were seen rostrally in the following nuclei: dorsomedial, anteroventral, anterodorsal, paraventricular, posterior medial septal (from the medial habenular nucleus) and preoptic area (from the lateral habenular nucleus). Projections occur from the medial habenular nucleus to the amygdala via the stria terminalis. The habenular nuclei are considered to be structures of the limbic system which are differentially related to midbrain, thalamic, amygdaloid, septal and preoptic structures via feedback circuits.  相似文献   

19.
A double-labeling immunofluorescence procedure was used to determine whether progesterone receptor (PR)-immunoreactive (IR) neurons in the preoptic area and hypothalamus of female guinea pigs also contained aromatic L-amino acid decarboxylase (AADC), an enzyme involved in the synthesis of both catecholamines and serotonin. Immunostaining was performed on cryostat sections prepared from ovariectomized guinea pigs primed by estradiol to induce PR. The nuclear presence of PR was visualized by a red fluorescence while the AADC-containing perikarya showed a yellow-green fluorescence. The topographic distribution of AADC-IR neurons was investigated by using a specific antiserum obtained by immunization of rabbits with a recombinant protein β-galactosidase-AADC in the two regions known to contain the densest populations of estradiol-induced PR-IR cells: the preoptic area and the mediobasal hypothalamus. The localization of PR-IR and AADC-IR cell populations showed considerable overlap in these areas, mainly in the medial and periventricular preoptic nuclei and in the arcuate nucleus. A quantitative analysis of double-labeled cells estimated that about 15% to 23% of AADC-IR cells in the preoptic area and about 11% to 21% of AADC-IR cells in the arcuate nucleus possessed PR. This colocalization persisted throughout the rostrocaudal extent of these areas and represented 3% to 9% of the population of PR-IR cells. These findings provide neuroanatomical evidence that a subset of AADC neurons is directly regulated by progesterone. The exact physiological role of this enzyme in target cells for progesterone is not understood. AADC may be involved in functions other than that for the synthesis of the classical neurotransmitters. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The ascending projections of the cuneiform nucleus in the cat were traced by autoradiography in the transverse and sagittal planes following stereotaxically placed injections of (3)H-leucine. The ascending fibers are almost exclusively ipsilateral and enter the diencephalon as a wide radiation. At the mesodiencephalic junction fibers enter the nucleus of the posterior commissure and pretectal nuclei, and others cross in the posterior commissure to distribute to these structures on the contralateral side. More ventrally directed fibers distribute to the fields of Forel and then spread into the posterior hypothalamus and zona incerta. At the caudal level of the ventral thalamic group, the ascending fibers diverge and follow two separate courses. One division of fibers continues forward beneath the ventral thalamic group and distributes to the zpna incerta and dorsal hypothalamic area. It rapidly diminishes in size as it attains more rostral levels where it is found in the bed nuclei of the stria terminalis and the anterior commissure. Other fibers of this division spread laterally to innervate the ventral lateral geniculate nucleus, the lateral hypothalamus, and preoptic area, and still others follow the entire confirmation of the thalamic reticular nucleus. The second division of fiber ascends through midline and intralaminar nuclei, completely encircling the mediodorsal nucleus, which is uninnervated except for a small ventral region. The distribution of this division is heaviest to the paraventricular, parafascicular, and central dorsal nuclei. Neither division is conspicuous rostral to the anterior commissure. No projections to neostriatum or specific thalamic nuclei were evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号