首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Amphetamine, a psychostimulant, has been shown to act as a channel blocker of muscle nicotinic receptors and to induce a Ca(2+)-dependent secretion from adrenal chromaffin cells. In this study, the relationship between amphetamine and nicotinic receptors was studied using bovine adrenal chromaffin cells as a model system. Our results show that D-amphetamine sulfate alone induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)](c)) and [3H]norepinephrine release in a dose-dependent and extracellular Ca(2+)-dependent manner. Two common nicotinic receptor antagonists, hexamethonium and mecamylamine, suppressed the D-amphetamine sulfate-induced [Ca(2+)](c) rise and [3H]norepinephrine release. In addition, D-amphetamine sulfate inhibited the 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP)-induced [Ca(2+)](c) rise and [3H]norepinephrine release, but not the high K(+)- or veratridine-induced [Ca(2+)](c) increase and [3H]norepinephrine release. Antagonists, including alpha-bungarotoxin and choline, that are more specific for alpha7 nicotinic receptors were capable of inhibiting the D-amphetamine sulfate-induced [Ca(2+)](c) rise, while D-amphetamine sulfate was found to be capable of inhibiting the [Ca(2+)](c) rise induced by the alpha7-nicotinic receptor agonists, epibatidine and choline. Moreover, D-amphetamine sulfate dose-dependently suppressed [3H]nicotine binding to chromaffin cells. We, therefore, conclude that D-amphetamine sulfate acts as a nicotinic receptor agonist to induce [Ca(2+)](c) increase and [3H]norepinephrine release in bovine adrenal chromaffin cells.  相似文献   

2.
We report the effects of resveratrol, a polyphenol found in the skins of red grapes, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Resveratrol suppressed catecholamine secretion and (22)Na(+) and (45)Ca(2+) influx induced by acetylcholine, an agonist of nicotinic acetylcholine receptors, in a concentration-dependent manner (IC(50)=20.4, 11.0, and 62.8 microM, respectively). Resveratrol also inhibited catecholamine secretion induced by veratridine, an activator of voltage-dependent Na(+) channels, and 56 mM K(+), an activator of voltage-dependent Ca(2+) channels, at concentrations similar to those for (45)Ca(2+) influx. Resveratrol directly inhibited the current evoked by acetylcholine in Xenopus oocytes expressing alpha3beta4 neuronal nicotinic acetylcholine receptors (IC(50)=25.9 microM). Furthermore, resveratrol (IC(50)=5.32 microM) attenuated (14)C-catecholamine synthesis induced by acetylcholine. The present findings suggest that resveratrol inhibits acetylcholine-induced catecholamine secretion and synthesis through suppressing ion influx in cultured bovine adrenal medullary cells.  相似文献   

3.
Cotinine is the major metabolite of nicotine. It has some biological activity, but its pathophysiological effects are largely unclear. We studied whether cotinine initiates calcium transients or affects those induced by nicotine. In bovine adrenal chromaffin cells labeled with the fluorescent calcium indicator Fura 2, cotinine (0. 32-3.2 mM) concentration-dependently increased the intracellular Ca(2+) concentration ([Ca(2+)](i)). The effect was abolished by omitting extracellular Ca(2+) during the stimulations. Also nicotinic receptor channel blockers hexamethonium (10 microM-1 mM) and chlorisondamine (100 microM), as well as a competitive nicotinic receptor antagonist dihydro-beta-erythroidine (10-100 microM), inhibited the response. Cotinine (0.32-3.2 mM) preincubation for 2 min inhibited both the nicotine-induced and the cotinine-induced increases in [Ca(2+)](i). Also nicotine (3.2-10 microM) inhibited the cotinine-induced increase in [Ca(2+)](i). Tetrodotoxin (1 microM) and thapsigargin (1 microM) pretreatments did not affect the responses to cotinine, while 300 nM nimodipine partially inhibited the cotinine-induced increase in [Ca(2+)](i). The results indicate that cotinine has nicotine-like effects on chromaffin cells. It may also desensitize the nicotinic cholinergic receptors, possibly by acting as a low-affinity agonist at these receptors.  相似文献   

4.
We studied the effects of the novel Na(+)/Ca(2+) exchange inhibitor KB-R7943, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate, on the native nicotinic receptors present at the bovine adrenal chromaffin cells, as well as on rat brain alpha(3)beta(4) and alpha(7) nicotinic acetylcholine receptors (AChRs) expressed in XENOPUS: oocytes. As expected, KB-R7943 blocked the Na(+)-gradient dependent (45)Ca(2+) uptake into chromaffin cells (IC(50) of 5.5 microM); but in addition, the compound also inhibited the (45)Ca(2+) entry and the increase of cytosolic Ca(2+) concentration, [Ca(2+)](c), stimulated by 5 s pulses of ACh (IC(50) of 6.5 and 1.7 microM, respectively). In oocytes expressing alpha(3)beta(4) and alpha(7) nicotinic AChRs, voltage-clamped at -60 mV, inward currents elicited by 1 s pulses of 100 microM ACh (I(ACh)) were blocked by KB-R7943 with an IC(50) of 0.4 microM and a Hill coefficient of 0.9. Blockade of alpha(3)beta(4) currents by KB-R7943 was noncompetitive; moreover, the blocker (0.3 microM) became more active as the ACh concentration increased (34 versus 66% blockade at 30 microM and 1 mM ACh, respectively). Inhibition of alpha(3)beta(4) currents by 0.3 microM KB-R7943 was more pronounced at hyperpolarized potentials. If given within the ACh pulse (10 microM), the inhibition amounted to 33, 64 and 80% in oocytes voltage-clamped at -40, -60 and -100 mV, respectively. The onset of blockade was faster and the recovery slower at -100 mV; the reverse was true at -40 mV. In conclusion, KB-R7943 is a potent blocker of nicotinic AChRs; moreover, it displays many features of an open-channel blocker at the rat brain alpha(3)beta(4) AChR. These results should be considered when KB-R7943 is to be used to study Ca(2+) homeostasis in cells expressing nicotinic AChRs and the Na(+)/Ca(2+) exchanger.  相似文献   

5.
Effect of the aqueous extract from a medicinal plant Dryobalanops aromatica(Dipterocarpaceae) on catecholamine secretion was investigated in bovine adrenal chromaffin cells. The aqueous extract inhibited [(3)H]norepinephrine ([(3)H]NE) secretion induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nicotinic acetylcholine receptor (nAChR) agonist, with a half-maximal inhibitory concentration (IC(50)) of 8.4 +/- 1.7 microgml(-1). Increases in cytosolic calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) induced by DMPP were also inhibited by the extract. However, the binding of [(3)H]nicotine to nAChRs was not affected by the addition of the extract in receptor binding competition analysis, suggesting that active components in the extract and nicotine do not share the binding site in the nAChR. On the other hand, [Ca(2+)](i)increases induced by high K(+), ionomycin, bradykinin, angiotensin II, and thapsigargin were not inhibited by the extract. The data suggest that the extract from D. aromatica specifically inhibits catecholamine secretion by blocking nAChR in a noncompetitive manner.  相似文献   

6.
The effects of a newly synthesized alpha 2-adrenoceptor agonist (an imidazole derivative, DJ-7141) on catecholamine secretion from isolated bovine adrenal medullary cells were examined. DJ-7141 did not affect basal catecholamine secretion, but inhibited catecholamine secretion induced by stimulation of the nicotinic ACh receptor. This inhibitory effect of DJ-7141 was less than that of clonidine, another alpha 2-agonist. DJ-7141 also inhibited [45Ca]2+ uptake by the cells induced by nicotinic stimulation. DJ-7141 did not affect catecholamine secretion induced by high K+ concentration. Its inhibitory effect on nicotine-induced catecholamine secretion was not restored by increase in either the nicotine or Ca2+ concentration of the medium, suggesting that it interfered with the coupling between nicotinic ACh receptor stimulation and Ca2+-channel activation. The inhibitory effect of DJ-7141 seemed to be independent of its effect on alpha 2-adrenoceptors, because its effect was not antagonized by the alpha 2-adrenoceptor antagonists yohimbine and DG-5128, which both had no effect on either basal or nicotine-induced catecholamine secretion.  相似文献   

7.
We reported previously that the protopanaxatriol saponins in Panax ginseng greatly reduce the secretion of catecholamines from bovine adrenal chromaffin cells stimulated by acetylcholine (ACh). However, protopanaxadiol saponins showed only slight inhibitory effects. Recent studies have demonstrated that oligosaccharides connected to the hydroxyl groups of the aglycone in ginseng saponins (ginsenosides) are in turn hydrolyzed in the digestive tract and absorbed into the circulation following oral administration of ginseng. Therefore, the present study was performed to investigate the effects of the major ginsenoside metabolites (M1, M2, M3, M4, M5, M11, and M12) on catecholamine secretion. All of these metabolites were shown to be potent inhibitors of ACh-evoked secretion, and M4 was the most effective. M4 blocked not only the ACh-induced Na(+) influx into the chromaffin cells but also the ACh-induced inward current into Xenopus oocytes expressing human alpha 3 beta 4 neuronal nicotinic ACh receptors. M4 reduced the secretion induced by high K(+), an activator of voltage-sensitive Ca(2+) channels, to a much lesser extent than that evoked by ACh. M1, M2, M3, M5, and M12 are protopanaxadiol saponin-derived metabolites. Therefore, these results imply that the protopanaxadiol saponins are prodrugs, and they show more potent inhibitory activity following metabolism in the digestive tract. The results further suggest that the metabolites act on nicotinic ACh receptors, blocking Na(+) influx through the receptors, and consequently reduce the catecholamine secretion from bovine adrenal chromaffin cells. The inhibitory effect of ginsenoside metabolites is probably one of the mechanisms of action responsible for the pharmacological effects of ginseng.  相似文献   

8.
Tramadol has been widely used as analgesic. O-Desmethyl tramadol (ODT) is one of the main metabolites of tramadol, having much greater analgesic potency than tramadol itself. Substance P receptors (SPR) are well known to modulate nociceptive transmission within the spinal cord. In this study, we investigated the effects of ODT on SPR expressed in Xenopus oocytes by examining SP-induced Ca(2+)-activated Cl(-) currents. ODT inhibited the SPR-induced Cl(-) currents at pharmacologically relevant concentrations. The protein kinase C (PKC) inhibitor bisindolylmaleimide I did not abolish the inhibitory effects of ODT on SP-induced Ca(2+)-activated Cl(-) currents. The results suggest that the tramadol metabolite ODT inhibits the SPR functions, which may be independent of activation of PKC-mediated pathways.  相似文献   

9.
The effect of camphor, a monoterpenoid, on catecholamine secretion was investigated in bovine adrenal chromaffin cells. Camphor inhibited [3H]norepinephrine ([3H]NE) secretion induced by a nicotinic acetylcholine receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), with a half-maximal inhibitory concentration (IC50) of 70 +/- 12 microM. In addition, camphor inhibited the rise in cytosolic calcium ([Ca2+]i) and sodium ([Na+]i) induced by DMPP with IC50 values of 88 +/- 32 and 19 +/- 2 microM, respectively, suggesting that the activity of nAChRs is also inhibited by camphor. On the other hand, binding of [3H]nicotine to nAChRs was not affected by camphor. [Ca2+]i increases induced by high K+, veratridine, and bradykinin were not affected by camphor. The data suggest that camphor specifically inhibits catecholamine secretion by blocking nAChRs without affecting agonist binding.  相似文献   

10.
The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.  相似文献   

11.
The root of Panax ginseng C.A. MEYER has been reported to have an anti-stress action. Therefore, the effects of ginseng components on functions of adrenal medulla, which is one of the most important organs responsive to stress, were investigated in vitro. First, the components of ginseng were mainly divided into two fractions, that is, the saponin-rich and non-saponin fractions. The saponin-rich fraction greatly reduced the secretion of catecholamines from bovine adrenal chromaffin cells stimulated by acetylcholine (ACh), whereas the non-saponin fraction did not affect it at all. The protopanaxatriol-type saponins inhibited the ACh-evoked secretion much more strongly than the protopanaxadiol-type. On the other hand, the oleanane-type saponin, ginsenoside-Ro, had no such effect. Recent reports have demonstrated that the saponins in ginseng are metabolized and absorbed in digestive tracts following oral administration of ginseng. All of the saponin metabolites greatly reduced the ACh-evoked secretion. M4 was the most effective inhibitor among the metabolites. M4 blocked ACh-induced Na(+) influx and ion inward current into the chromaffin cells and into the Xenopus oocytes expressing human alpha3beta4 nicotinic ACh receptors, respectively, suggesting that the saponin metabolites modulate nicotinic ACh receptors followed by the reduction of catecholamine secretion. It is highly possible that these effects of ginsenosides and their metabolites are associated with the anti-stress action of ginseng.  相似文献   

12.
Liu PS  Liu GH  Chao WL 《Toxicology》2008,244(1):77-85
Nonylphenol (NP) is the most critical metabolite of alkylphenol polyethoxylate detergents. NP is known as an endocrine disruptor with estrogenic activities and as an inhibitor of endoplasmic reticulum Ca(2+)-ATPase. Estrogen has modulatory roles on ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). Ca(2+)-ATPase inhibitors can modulate the cytosolic calcium concentration ([Ca(2+)](c)]) and thus can affect the calcium signaling coupled with nAChRs. Therefore, NP is predicted to have complex effects on the Ca(2+) signaling and secretion coupled with nAChRs. This study investigated these effects using bovine adrenal chromaffin cells. The results show that NP suppressed the Ca(2+) signaling coupled with nAChRs and voltage-operated Ca(2+) channels in a dose-dependent manner, with IC(50)s of 1 and 5.9 microM, respectively. Estradiol exhibits similar suppression but much lower inhibitory potencies. NP alone induced a transient rise in [Ca(2+)](c) in the presence or absence of extracellular calcium. Thapsigargin, an endoplasmic reticulum Ca(2+)-ATPase inhibitor, partially suppressed the [Ca(2+)](c) rise induced by NP, but NP totally blocked the [Ca(2+)](c) rise induced by thapsigargin. This illustrates that NP can cause Ca(2+) release from thapsigargin-insensitive pools. Thapsigargin suppressed the Ca(2+) signaling coupled with nAChRs but increased that coupled with voltage-operated Ca(2+) channels. We propose that three routes are responsible for the effects of NP on nAChRs: named receptor channels, voltage-gated Ca(2+) channels, and Ca(2+)-induced Ca(2+) release. Three routes are related to the characteristics of NP as steroid-like compounds and Ca(2+)-ATPase inhibitor.  相似文献   

13.
Nanomolar concentrations of atropine have been considered up to now to be selective for blockade of muscarinic receptors for acetylcholine. A collateral finding indicated to us that these low concentrations of atropine could also target the neuronal nicotinic receptors. We report here a detailed study on this novel property of atropine. Catecholamine release, measured on-line with amperometry in chromaffin cells stimulated with acetylcholine pulses was blocked by atropine in a competitive manner. To corroborate a direct action of atropine on nicotinic receptors, we have employed N,N-dimethyl-N'-phenyl-piperazinium (DMPP), a pure nicotinic receptor agonist; atropine blocked its secretory responses with an IC50 of 2.04 nM. Nicotinic currents, recorded with the whole cell configuration of the patch-clamp technique were blocked by atropine in a concentration-dependent manner (IC50 of 11 nM), also showing a competitive nature. Nicotinic receptor currents in oocytes expressing bovine alpha7 and alpha3beta4 nicotinic receptors were blocked by atropine with an IC50 of 11.2 and 46.8 nM, respectively. Atropine (30 nM) also decreased the increment of the cytosolic calcium concentrations after stimulation with 30 microM DMPP in bovine chromaffin cells. However, action potentials evoked by DMPP were not modified by atropine. Our results demonstrate that nicotinic currents and their downstream consequences (i.e. cytosolic calcium elevations and catecholamine release) were blocked by nanomolar concentrations of atropine; although the blockade was partial, it must be considered when using atropine to study cholinergic neurotransmission, particularly at synapses where both nicotinic and muscarinic receptors are present i.e., the adrenal medulla and autonomic ganglia.  相似文献   

14.
The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.  相似文献   

15.
PURPOSE: Tramadol is widely used clinically as an analgesic, yet the mechanism by which it produces antinociception remains unclear. O-Desmethyl tramadol, the main metabolite of tramadol, is a more potent analgesic than tramadol. We reported previously that tramadol inhibits the 5-hydroxytryptamine (5-HT) type 2C receptor (5-HT(2C)R), a G-protein-coupled receptor that is expressed widely within brain and that mediates several effects of 5-HT, including nociception, feeding, and locomotion. The effects of O-desmethyl tramadol on 5-HT(2C)R have not been studied. In this study, we investigated the effect of O-desmethyl tramadol on 5-HT(2C)R expressed in Xenopus oocytes. METHODS: We examined the effect of O-desmethyl tramadol on 5-HT(2C)R using the Xenopus oocyte expression system. Furthermore, we investigated the effects of O-desmethyl tramadol on the binding of [(3)H]5-HT by 5-HT(2C)R. RESULTS: O-Desmethyl tramadol, at pharmacologically relevant concentrations, inhibited 5-HT-evoked Ca(2+)-activated Cl(-) currents in oocytes that expressed 5-HT(2C)R. The inhibitory effect of O-desmethyl tramadol on 5-HT(2C)R was overcome at higher concentrations of 5-HT. Bisindolylmaleimide I (GF109203X), a protein kinase C inhibitor, increased 5-HT-evoked currents but had little effect on the inhibition of 5-HT-evoked currents by O-desmethyl tramadol. O-Desmethyl tramadol inhibited the specific binding of [(3)H]5-HT by 5-HT(2C)R expressed in oocytes. O-Desmethyl tramadol altered the apparent dissociation constant for binding of [(3)H]5-HT by 5-HT(2C)R without changing maximum binding, which indicated competitive inhibition. CONCLUSION: These results suggest that O-desmethyl tramadol inhibits 5-HT(2C)R, which provides further insight into the pharmacological properties of tramadol and O-desmethyl tramadol.  相似文献   

16.
We investigated the effects of ginsenosides, the active ingredient of ginseng, on neuronal or muscle-type nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal alpha3beta4, alpha7 or human muscle alphabetadeltavarepsilon subunits. Treatment with acetylcholine elicited an inward peak current (I(ACh)) in oocytes expressing nicotinic acetylcholine receptor subtypes. Cotreatment with ginsenoside Rg2 and acetylcholine inhibited I(ACh) in oocytes expressing with alpha3beta4 or alphabetadeltavarepsilon but not in oocytes expressing alpha7 nicotinic acetylcholine receptors. The inhibition of I(ACh) by ginsenoside Rg2 was reversible and dose-dependent. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 were 60.2+/-14.1 and 15.7+/-3.5 microM in oocytes expressing alpha3beta4 and alphabetadeltavarepsilon nicotinic acetylcholine receptors, respectively. The inhibition of I(ACh) by ginsenoside Rg2 was voltage-independent and noncompetitive. Other ginsenosides besides ginsenoside Rg2 also inhibited I(ACh) in oocytes expressing alpha3beta4 or alphabetadeltavarepsilon nicotinic acetylcholine receptors. The order of potency for the inhibition of I(ACh) was ginsenoside Rg2>Rf>Re>Rg1>Rc>Rb2>Rb1 in oocytes expressing alpha3beta4 nicotinic acetylcholine receptors and was ginsenoside Rg2>Rf>Rg1>Re>Rb1>Rc>Rb2 in oocytes expressing alphabetadeltavarepsilon nicotinic acetylcholine receptors. These results indicate that ginsenosides might regulate nicotinic acetylcholine receptors in a differential manner and this regulation might be one of the pharmacological actions of Panax ginseng.  相似文献   

17.
Nucleotides are released from bovine chromaffin cells and take part in a feedback loop to inhibit further exocytosis. To identify the nucleotide receptors involved, we measured the effects of a range of exogenous nucleotides and related antagonists on voltage-operated calcium currents (I(Ca)), intracellular calcium concentration ([Ca(2+)](i)), and membrane capacitance changes. In comparative parallel studies, we also cloned the bovine P2Y(12) receptor from chromaffin cells and determined its properties by coexpression in Xenopus laevis oocytes with inward-rectifier potassium channels made up of Kir3.1 and Kir3.4. In both systems, the agonist order of potency was essentially identical (2-methylthio-ATP approximately 2-methylthio-ADP > ATP approximately ADP > UDP). alphabeta-Methylene-ATP and adenosine were inactive. UTP inhibited I(Ca) in chromaffin cells (pEC(50) = 4.89 +/- 0.11) but was essentially inactive at the cloned P2Y(12) receptor. The relatively nonselective P2 antagonist pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid blocked nucleotide responses in both chromaffin cells and X. laevis oocytes, whereas the P2Y(12)- and P2Y(13)-selective antagonist N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene ATP (ARC69931MX) blocked responses to ATP in both chromaffin cells and X. laevis oocytes but not to UTP in chromaffin cells. These results identify the P2Y(12) purine receptor as a key component of the nucleotide inhibitory pathway and also demonstrate the involvement of a UTP-sensitive G(i/o) -coupled pyrimidine receptor.  相似文献   

18.
To evaluate whether pregnenolone sulfate, an abundant neurosteroid in the brain, modulates nicotinic receptor-mediated responses, the effect of pregnenolone sulfate on acetylcholine-induced catecholamine secretion was investigated in cultured bovine adrenal chromaffin cells. Pregnenolone sulfate inhibited acetylcholine-induced catecholamine secretion (IC(50): 27 microM). In addition, pregnenolone sulfate inhibited acetylcholine-induced Na(+) (IC(50): 12 microM) and Ca(2+) (IC(50): 20 microM) influxes. However, pregnenolone sulfate did not inhibit either catecholamine secretion or Ca(2+) influx stimulated by high K(+). Binding of [3H]nicotine to nicotinic receptors was not altered by pregnenolone sulfate. The inhibitory effect on the acetylcholine-induced secretion was insurmountable by increasing acetylcholine concentrations, but was enhanced by decreasing external Na(+) concentrations. These results suggest strongly that pregnenolone sulfate noncompetitively inhibits nicotinic receptor-operated ion channels, thereby suppressing Na(+) influx through the channels and, consequently, attenuates both Ca(2+) influx and catecholamine secretion. Our results further indicate that pregnenolone sulfate may modulate nicotinic receptor-mediated responses in the brain.  相似文献   

19.
1 The effects of genistein and herbimycin, tyrosine kinase inhibitors, on catecholamine (CA) release were examined in bovine adrenal chromaffin cells. 2 In intact cells, genistein (10-100 microm) and herbimycin (3-30 microm) inhibited CA release induced by acetylcholine (ACh; 100 microm) or the nicotinic receptor stimulant 1,1-dimethyl-4-phenyl-piperazinium (DMPP; 10 microm), but did not affect CA release induced by high K+ (40 mm). 3 Genistein and herbimycin inhibited (45)Ca2+ uptake induced by ACh (100 microm). 4 Neither genistein nor herbimycin affected [(3)H]nicotine binding with nicotinic receptors. 5 In beta-escin-permeabilized cells, neither genistein nor herbimycin affected CA release induced by Ca2+ (1 microm). 6 These results suggest that protein tyrosine kinase plays the facilitatory role in the regulation of CA release induced by nicotinic receptor stimulation in stimulus-secretion coupling of bovine adrenal chromaffin cells.  相似文献   

20.
The action of pentobarbitone on stimulus-secretion coupling was studied in bovine isolated adrenal medullary cells. Pentobarbitone inhibited catecholamine release evoked by 500 microM carbachol with half maximal inhibition (IC50) around 50 microM. It also inhibited catecholamine release induced by depolarization with 77 mM potassium (IC50 100 microM). These effects of pentobarbitone were observed with concentrations that lie within the range encountered during general anaesthesia. Evoked secretion required the presence of calcium in the extracellular medium and was associated with an influx of Ca2+ through voltage-sensitive channels. Pentobarbitone inhibited 45Ca influx in response to both carbachol (IC50 50 microM) and K+-depolarization (IC50 150 microM). The action of pentobarbitone on the relationship between intracellular free Ca and exocytosis was examined using electropermeabilised cells which were suspended in solutions containing a range of concentrations of ionised calcium between 10(-8) and 10(-4)M. Catecholamine secretion was measured in the presence of 0, 50, 200 or 500 microM pentobarbitone. The anaesthetic had no effect on the activation of exocytosis by intracellular free calcium. When catecholamine secretion in response to potassium or carbachol was modulated by varying extracellular calcium or by adding pentobarbitone to the incubation medium, the amount of catecholamine secretion for a given Ca2+ entry was the same. Pentobarbitone inhibited the secretion and 45Ca uptake induced by carbachol in a non-competitive manner. The secretion evoked by nicotinic agonists was associated with an increase in 22Na influx. Pentobarbitone inhibited this influx with an IC50 of 100 microM. We concluded that: (a) Pentobarbitone inhibits the catecholamine secretion from bovine adrenal chromaffin cells induced by nicotinic agonists by non-competitive inhibition of the nicotinic receptor. (b) The decrease in Ca influx caused by pentobarbitone accounts fully for the decrease in secretion in response to depolarization with potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号